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ABSTRACT 

Assisted History Matching Using Pattern Recognition Technology 

Alireza Shahkarami 

Reservoir simulation and modeling is utilized throughout field development in different 

capacities. Sensitivity analysis, history matching, operations optimization and uncertainty 

assessment are the conventional analyses in full field model studies. Realistic modeling of the 

complexities of a reservoir requires a large number of grid blocks. As the complexity of a 

reservoir increases and consequently the number of grid blocks, so does the time required to 

accomplish the abovementioned tasks.  

This study aims to examine the application of pattern recognition technologies to improve the 

time and efforts required for completing successful history matching projects. The pattern 

recognition capabilities of Artificial Intelligence and Data Mining (AI&DM) techniques are 

used to develop a Surrogate Reservoir Model (SRM) and use it as the engine to drive the 

history matching process. SRM is a prototype of the full field reservoir simulation model that 

runs in fractions of a second. SRM is built using a small number of geological realizations.  

To accomplish the objectives of this work, a three step process was envisioned: 

 Part one, a proof of concept study: The goal of first step was to prove that SRM is able 

to substitute the reservoir simulation model in a history matching project. In this part, 

the history match was accomplished by tuning only one property (permeability) 

throughout the reservoir. 

 Part two, a feasibility study: This step aimed to study the feasibility of SRM as an 

effective tool to solve a more complicated history matching problem, particularly 

when the degrees of uncertainty in the reservoir increase. Therefore, the number of 

uncertain reservoir properties increased to three properties (permeability, porosity, and 

thickness).The SRM was trained, calibrated, and validated using a few geological 

realizations of the base reservoir model. In order to complete an automated history 

matching workflow, the SRM was coupled with a global optimization algorithm called 

Differential Evolution (DE). DE optimization method is considered as a novel and 

robust optimization algorithm from the class of evolutionary algorithm methods. 

 Part three, a real-life challenge: The final step was to apply the lessons learned in 

order to achieve the history match of a real-life problem. The goal of this part was to 

challenge the strength of SRM in a more complicated case study. Thus, a standard test 

reservoir model, known as PUNQ-S3 reservoir model in the petroleum engineering 

literature, was selected. The PUNQ-S3 reservoir model represents a small size 

industrial reservoir engineering model. This model has been formulated to test the 

ability of various methods in the history matching and uncertainty quantification. The 

surrogate reservoir model was developed using ten geological realizations of the 

model. The uncertain properties in this model are distributions of porosity, horizontal, 

and vertical permeability. Similar to the second part of this study, the DE optimization 

method was connected to the SRM to form an automated workflow in order to 

perform the history matching. This automated workflow is able to produce multiple 

realizations of the reservoir which match the past performance. The successful 

matches were utilized to quantify the uncertainty in the prediction of cumulative oil 

production. 



 

The results of this study prove the ability of the surrogate reservoir models, as a fast and 

accurate tool, to address the practical issues of reservoir simulation models in the history 

matching workflow. Nevertheless, the achievements of this dissertation are not only aimed at 

the history matching procedure, but also benefit the other time-consuming operations in the 

reservoir management workflow (such as sensitivity analysis, production optimization, and 

uncertainty assessment).  

  



 

“Raise your words, not voice. It is rain that grows flowers, not thunder.”  
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Chapter 1: Problem Statement 
 

 

 

Overview 
The first chapter of this dissertation starts with the problem statement of the study. Then it 

discusses main objectives behind this research and different steps to obtain them. In 

continuation it explains the main attractions of this research and introduces the specific people 

who might be interested in this study.  Finally the chapter ends up with the outline of this 

dissertation. 

1.1 Problem statement 
The purpose of reservoir management is to develop strategies to maximize hydrocarbon 

recovery. Reservoir simulation is usually the standard decision making tool used by industry 

in this workflow. The common concern of reservoir simulation and modeling is accuracy. It is 

generally believed that models with higher resolution (in both time and space) are more 

accurate. Based on what our industry used to do, any increase in resolution (in time and space) 

translates to increase in computational time and cost. Therefore a well-known dichotomy 

arises. On one hand the model must satisfy the accuracy requirements (high resolution), and 

on the other hand it needs to be fast enough to become practical. 

The new improvements in reservoir data acquisition have raised the complexity of the 

reservoir model and therefore the time required to run it. At the same time, typical reservoir 

modeling tasks such as sensitivity analysis, history matching, field development optimization, 

and uncertainty assessment require a large number of simulation runs. The challenge now is to 

keep the complexity of the reservoir model while shortening its run-time. 

The main objective of history matching is to improve and validate the reservoir simulation 

model by incorporating the observed data into the characterization process, in order to obtain a 

reliable production forecast. A simulation model which has been tuned to match the past 

performance of a reservoir offers a higher degree of confidence to predict the future. Having a 

trustworthy prediction of field performance has a direct impact on the technical and financial 

performance of operators.  



 

History matching, by nature, is an ill-posed inverse problem. Correspondingly, classical 

history matching where reservoir parameters are adjusted manually in a trial-and-error fashion 

makes this scenario more tedious and time-consuming. Assisted (automated) history matching 

was proposed to decrease the amount of labor required during the manual history matching. 

During the last two decades there have been efforts to improve assisted history matching in a 

way that could be applicable in the real world. Despite all the attempts, due to increasing rate 

of complexity and resulotion in the reservoir models, there is still hesitation about the 

practicality and potential of these methods to handle highly complicated real reservoir models. 

This makes assisted history matching still a challenging and hot research topic. 

The novelty of the idea in this study is to examine a new application of pattern recognition 

technologies to improve the time and efforts required for completing successful history 

matching projects. The pattern recognition capabilities of Artificial Intelligence and Data 

Mining (AI&DM) techniques are used to develop a Surrogate Reservoir Model (SRM) and use 

it as the engine to drive the history matching process. SRM is a prototype of the full field 

reservoir simulation model that runs in fractions of a second. SRM is built using a small 

number of geological realizations. The results of this study are intended to prove the potential 

of artificial intelligence based reservoir models to ease the obstacles involved in conventional 

history matching tools. 

1.2 Research objectives 
The primary objective of this dissertation is to examine the application of an artificial 

intelligence based reservoir model known as surrogate reservoir model (SRM) as an efficient 

tool for history matching projects. In order to achieve the goal of this study, the larger 

objective is divided into three main parts: 

 Part one, a proof of concept study: The goal of first step is to prove that SRM is able 

to substitute the reservoir simulation model in a history matching project. In this part, 

the history match was accomplished by tuning only one property (permeability) 

throughout the reservoir.  

 Part two, a feasibility study: This step aims to study the feasibility of SRM as an 

efficient tool to solve a more complicated history matching problem. Therefore the 

number of uncertain reservoir properties increased to three properties (permeability, 

porosity, and thickness). The SRM was trained, calibrated, and validated using a few 

geological realizations of the base reservoir model. In order to complete an automated 

history matching workflow, the SRM was coupled with a global optimization 



 

algorithm called Differential Evolution (DE). DE optimization method is considered 

as a novel and robust optimization algorithm from the class of evolutionary algorithm 

methods. 

 Part three, a real-life challenge: The final step is to apply the lessons learned in order 

to achieve the history match of a real-life problem. The goal of this part is to challenge 

the strength of SRM in a more complicated case study. Therefore, a standard test 

model that is known as PUNQ-S3 in literature was selected. The PUNQ-S3 reservoir 

model represents a small size industrial reservoir engineering model which was 

formulated to test the ability of various methods and research groups to quantify the 

uncertainty in the prediction of cumulative oil production. The PUNQ-S3 model has a 

“true” case which is designed to compare the results of different methods of history 

matching and uncertainty assessment. Eight years of production and 16.5 years 

cumulative production are available. Eight years of production was used to match the 

model and 16.5 years of cumulative production was utilized to compare the future 

production. The surrogate reservoir model was developed using ten geological 

realizations of the model. The uncertain properties in this model are distributions of 

porosity, horizontal, and vertical permeability. Similar to part two, DE optimization 

method was connected to the SRM to form an automated workflow in order to 

perform history matching. This automated workflow is able to produce multiple 

realizations of the reservoir which match the past performance. 

1.3 Audience of the study  
This dissertation concentrates on developing a new class of reservoir models which suits the 

era of “data intensive” science. These types of reservoir models are purely based on streams of 

data. They are able to capture the complex and non-linear behavior of fluid flow through the 

porous media by only using a few examples of the system. They are relatively easy to develop 

and simple to analyze. The computational cost for developing these models is not comparable 

with conventional reservoir models (numerical simulation models). Their most important 

characteristic is very low computational time; they run in fractions of second and can 

reproduce the outputs of reservoir simulation models with a high accuracy. The main audience 

of this dissertation is the reservoir modelers who are struggling with drawbacks associated 

with the high resolution and complex reservoir simulation models. A single realization of 

these reservoir simulation models takes hours to run even with advanced and parallel 

computational powers. These problems are magnified when the models are involved in 

reservoir management tasks which require hundreds of realizations of these models. History 



 

matching is an example of these kinds of tasks. Therefore this dissertation looks forward to 

exciting those who suffer the tedious and time-consuming features of conventional history 

matching tools. The achievements of this dissertation are not only aimed at the history 

matching procedure, but also beneficiate the other time-consuming operations in reservoir 

management workflow (such as sensitivity analysis, production optimization, and uncertainty 

assessment).  

1.4 Dissertation outline 
Chapter 2 of this dissertation defines the history matching problem and discusses the 

objectives and different approaches of history matching. It continues with a chronological 

literature review on history matching and finally the chapter ends with presenting the 

alternative methods available for simulation and modeling. 

Chapter 3 is set to prepare the readers with the technology (SRMs) used in this dissertation. It 

starts with describing artificial neural networks used in the SRMs. The basics of artificial 

neural networks and their applications are reviewed. Then the surrogate reservoir model is 

introduced as the novel technology utilized to perform history matching. Finally an 

optimization method used in automated history matching workflow is presented. 

Chapter 4 includes three main sections. The first section describes the general steps required to 

build a surrogate reservoir model. The second and third sections present two case studies used 

to prove and analyze the ability of SRM in history matching projects. 

Chapter 5 is dedicated to the application of SRM on a real-life case study. A surrogate 

reservoir model is developed and validated for a standard reservoir model. Then the developed 

SRM is coupled with the optimization algorithm to build an automated history matching 

workflow. The performance of SRM for this case study is presented. 

Finally chapter 6 provides the summary, discusses the findings and major contributions, and 

makes recommendation for future work.  



 

Chapter 2: Literature Review 
 

 

Overview 
In order to recognize the real values behind the objectives of this dissertation, first a 

comprehensive study regarding the history matching should be performed. The chapter 

initially starts with defining history matching and reviewing different objectives of it. Then it 

goes through the traditional and modern ways of performing a history matching process. In 

addition it gives a chronological review of the history matching problem. The chapter ends 

with a brief review about application of proxy models in the history matching problem. 

2.1 Introduction 
Reservoir simulation is an area of reservoir engineering which computer models are used to 

predict the flow of fluids (typically oil, water, and gas) through porous media. Reservoir 

simulation is a mixture of physics, mathematics, reservoir engineering, and computer 

programming and its objective is building a tool to predict interaction between hydrocarbon 

and the reservoir under different operational conditions. 

Reservoir simulation began in 1954 with the radial gas-flow computations (Watts 1997). Since 

that time, computational advancements have caused significant improvements in reservoir 

simulation. These improvements mainly happened in the size and resolution of the reservoir 

model. Consequently these improvements lead to a huge expansion in the type of users of 

reservoir simulation and their role in industry and business. The introduction of high-speed 

computers and the electronic explosion in the last two decades have changed reservoir 

simulation from a fancy and costly approach to a practical toolbox, which could be available 

on the laptop of a student.  

Today, although reservoir simulation is an established and standard technology, it has not 

stopped improving. Nowadays, feedback from reservoir simulation models are used in almost 

all reservoir development decisions. Simulating reservoirs easily and realistically makes them 

a primary and reasonable choice for oil and gas companies in the development of new (green) 

fields. Similarly, they are used in developed (brown or mature) fields where production 

forecasts are needed to help make future investment decisions. 

A typical reservoir model includes any of the geological, fluid, or other characteristics of the 

reservoir and a large number of grid blocks. This model simulates a detailed process of fluid 



 

flow from reservoir to the surface. The following are the typical reservoir study tasks 

performed by a reservoir model: 

 Sensitivity analysis of uncertain parameters 

 Conditioning a simulation model to history data (history matching) 

 Field-development planning and production optimization  

 Probabilistic forecasting and risk analysis (uncertainty assessment) 

A typical reservoir study workflow contains these tasks. This workflow is summarized in 

Figure 1. 

 

Figure 1: Typical reservoir study workflow. 

2.2 History matching 

2.2.1 Definition 

Most of the required input data to build a simulation model comes from the samples taken 

from wellbore or near wellbore areas (Table 1). These data usually are acquired using 

techniques such as well testing, well logs, core sample analyses, laboratory studies of reservoir 

fluids, and wellbore performance. Compared to the actual size of a reservoir (acres in the areal 

dimension) the sources of reservoir simulation model input data represent a very limited 

portion of reservoir. However these data are the only information provided for the reservoir 



 

simulation model of the field under study. The point to take is that a huge part of the reservoir 

remains unknown to the engineers and geologists working on the simulation model. Therefore 

there is no doubt that the base (first version) simulation model is not very trustworthy due to 

the uncertainties involved in its input data.  A reservoir simulation model goes through 

modification throughout the life a reservoir. Once new data are acquired, these data are used to 

modify the reservoir model. A common type of data is the performance of the reservoir. The 

performance of the reservoir is what we refer to it as the output of reservoir simulation model. 

Having the real performance of the reservoir, it is very common to calibrate the simulation 

model to match the real behavior of the reservoir. This calibration process includes the 

conditioning of geological or static model, which covers the uncertain parameters, to the field 

performance. This process is typically known as history matching. 

History matching is known to be an ill-posed inverse problem. The inverse problem is the 

opposite of a forward or direct problem wherein the model parameters are used to predict the 

data. While inverse problem the observed data is used to conclude (adjust) the model 

parameters (Figure 2). On the other hand, a problem is ill-poised (not well-posed) when there 

are multiple non-unique solutions for a certain problem. History matching is an ill-posed 

problem because many possible combinations of reservoir parameters can result in almost 

same behavior of the reservoir (and match the history data).  

Table 1: Required data for a simulation study (Fanchi 2006). 

 



 

 

Figure 2: Forward problem verses inverse type of problem. 

2.2.2 Objectives of history matching 

The first objective of history matching is verifying the performance of the simulation model. If 

a simulation model is able to match the observed field data, then model is a close 

approximation to the actual subsurface reservoir. Such a verified model is more likely to 

predict reliable future behavior of the field. Additionally once the most uncertain reservoir 

parameters have been estimated by matching the observed reservoir behavior, the tuned model 

can be used to predict the performance of the reservoir under different operating scenarios. On 

the other hand, a successful history match process has the potential to give a better perception 

of the available mechanism in the reservoir. Therefore, there is a chance to improve the future 

development plans of the reservoir and modify the different reservoir characterization and data 

acquisition programs (Ertekin, Abou-Kassem and King 2001). The new data coming from 

these plans will help to improve the reservoir model and subsequently improve the history 

match, model forecasts, and the general understanding of the reservoir. Another valuable 

impact of a well-done history matching process is identifying abnormal behavior of reservoir. 

This kind of behavior could be due to unusual operating constraints or some hidden reservoir 

properties. For example, problems such as casing leaks, improper allocation of fluids to wells, 

etcetera could be identified during a history matching process (Mattax and Dalton 1990). 



 

2.2.3 Practical approaches 

Probably the work performed by Kruger (1960) to adjust the reservoir parameters was the first 

history matching research which is documented. It has been more than five decades since that 

time; still the objective of history matching remains the same (a try to minimize the error 

between the reservoir model output and observed data). Figure 3 is the general workflow to 

perform a history matching process. Various methods of history matching may be different in 

many aspects, but they follow the same workflow. This workflow starts with a base geological 

realization, runs the fluid model and basically compares the results of reservoir model with the 

field data. This comparison usually is accomplished by calculating misfit values using set of 

objective functions. Next is to decide if the results are satisfactory; if the answer is positive 

then the reservoir model can be used for further analysis such as future forecast. In case the 

results need to be improved, then we go back to the geological model and try to adjust the 

reservoir properties. Adjusted model is then executed and by having new results whole process 

is repeated until a satisfied match is acquired. However there are different approaches to 

perform each step of this workflow.  

 

Figure 3: Typical workflow for the history matching study. 

Everybody agrees that history matching is not a simple procedure. There are multiple criteria 

which determine degree of success in this process. The most important items are quality and 

quantity of available data, specific characteristic of the reservoir under study, time and 



 

resources allocated to the study, and finally experience and knowledge of the research group 

working on the problem. As a result each one of these criteria give the history matching 

problem its most important characteristic which is the non-uniqueness character of results. In 

addition there are many items which make history matching a problem without specific and 

distinct method to solve. General approaches to perform history matching might be 

implemented on different reservoirs. However the success of history matching is very 

subjective to the characteristics of problem. The main reason behind this claim is that each 

reservoir has its particular specifications and behavior. The geological characterization, 

performance history, production development and operation plans, reservoir drive mechanism, 

and well specifications are the properties that make each reservoir a unique and completely 

different unit (Cosentino 2001).  

2.2.3.1 Manual History Matching: 

Traditionally history matching has been performed in a trial and error process. In this process 

which is referred to as manual history matching, a reservoir engineer tries to evaluate the error 

between the observed data and modeled data and manually adjust the reservoir parameters 

seeking a better match. The quality of match in manual history matching is subjective and 

mainly depends on the experience and technical knowledge of the user. This is the oldest way 

to perform a history matching. There are some similar workflows they have been developed 

through the years (Mattax and Dalton 1990, Cosentino 2001, Ertekin, Abou-Kassem and King 

2001). In a widely discussed approach, reservoir parameters are tuned manually and in a two 

steps process:  

 The first step, called pressure match, tries to achieve a match for pressure behavior of 

the field. At this step, the objective is to adjust the global energy balance. Figure 4 

(Toronyi and Saleri 1988, Cosentino 2001) describes the procedure at this level. 

Permeability is a vital parameter affecting flow in the reservoir. Therefore 

permeability could be modified globally and locally to achieve the pressure match. 



 

 

Figure 4: Matching pressure behavior (Toronyi and Saleri 1988, Cosentino 2001). 

 The second phase, called saturation match, attempts to match the fluid saturation in 

the reservoir. In the real case, there is no saturation distribution to be showed as a 

reservoir performance, but breakthrough of fluids (water and gas) and evolution of the 

relevant production profiles after that could be considered as saturation history. In the 

same way, permeability as well as relative permeability curves and functions are the 

critical parameters in order to get a match. Figure 5 demonstrates the steps to obtain a 

saturation match.   



 

 

Figure 5: Matching saturation performance of reservoir (Toronyi and Saleri 1988, Cosentino 2001).  

2.2.3.2 Automated History Matching 

Today, the traditional manual history matching is not the most popular approach to perform a 

history matching project. This approach is usually time-consuming, tedious, inefficient, and 

computationally expensive. The results mainly lack geological realism and therefore they are 

weak in prediction. The necessity of quantifying uncertainties is also growing in industry. In 

order to capture the uncertainties involved in the outcomes, the industry seeks a range of 

predictions instead of a single prediction. These predations are in the form of probabilities, 

like 10
th
, 50

th
 , and 90

th
 percentiles. For these purposes, the traditional trial-and-error approach 

of history matching is considered outdated.  



 

The modern approaches of history matching try to address the shortfalls of old fashioned 

history matching methods (Romeu 2010). Although advancements in computational power 

and software have attempted to automate the process, still human-expert intervention seems 

inevitable. In general, a collection of these approaches which aim to decrease the time and 

efforts required for history matching are referred to as automated (assisted) history matching. 

The most important characteristics of these methods are: 

 Getting rid of trial and error approach by coupling the objective functions with 

optimization algorithms. 

 Having multiple scenarios for prediction study instead of single matched model. 

 Variation in objective functions.  

 Implementation of alternative models instead of reservoir simulation models. These 

models are known as proxy (surrogate) models and they are the approximation of full 

field reservoir simulation model. There are different logics behind using these models 

which this and upcoming chapter will discuss.  

In the following, a chronological review of history matching approaches is presented. This 

literature review includes examples of manual history matching and different methods of 

automated (assisted) history matching. 

2.2.4 A literature review on history matching: 

The earliest studies in the field of history matching started in 1960’s. Kruger (1961) presented 

a calculation procedure to determine the areal permeability distribution in a reservoir. His 

method allowed the verification of the basic reservoir data by matching the past performance 

of the reservoir. The proposed calculation method was based on a mathematical model of the 

reservoir. He used the matched model to predict the future. Wahl et al. (1962) used an 

electrical model to represent the reservoir model and used it in order to match the performance 

of Saudi Arabian oil fields. Jacquard (1964) showed that there is a mathematical relationship 

between an electric resistance-capacity network and a reservoir model. Using this relationship 

he developed a method for interpreting pressure measurements. Later the results of this work 

helped Jacquard and Jain (1965) to develop an automated system to interpret the field data. 

Their procedure was based on variation analysis in electric networking for a two dimensional 

case. Jahns (1966) developed a systematic search which was able to adjust the properties of 

the reservoir model automatically and find the match between the measured and calculated 

pressure data. The reservoir model was a single-phase, compressible, two-dimensional model. 

Jahns utilized the same search method used by Jacquard and Jain which was based on an 



 

adoption of steepest descent method. Coats et al. (1970) proposed a method which used least 

square and linear programming techniques to determine the reservoir characteristics by 

matching the given reservoir performance. They applied the method on examples of the 

reservoirs with single and two phase flow. Later Solorzano et al. (1973) modified the method 

of Coats et al. and used it as the base for their automated history matching method. The use of 

gradient optimization method started in the early 1970’s. Slater and Durrer (1971) used a 

balanced error-weighted gradient method to match the reservoir performance data. 

Chen et al. (1974) and Wasserman et al. (1975) were among the first researchers to formulate 

history matching as an optimal control problem. An optimal control is a set of differential 

equations describing the paths of control variables that minimize the objective function. At 

that time, the use of optimal control theory with first-derivative optimization methods 

provided an effective approach for automatic history matching. Dougherty and Khairkhah 

(1975) used optimal control theory for history matching a gas reservoir. 

Gavalas et al. (1976) looked at history matching as an underdetermined statistical problem. 

They used a Bayesian framework to reduce the number of unknowns. They assumed that the 

unknown vector of reservoir parameter is a random variable with a mean value of   and prior 

covariance of  .   and   values are achieved from the available geological data. Also they 

utilized gradient and Gauss-Newton optimization methods in their work. 

Watson et al. (1980) studied history matching in two-phase petroleum reservoirs. In addition 

to porosity and permeability, they changed the coefficients of relative permeability functions 

for hypothetical case studies of water flooding. Pruess et al. (1980) probably were the first 

researchers to use software similar to today’s numerical simulator to perform history 

matching. They used the SHAFT 79 simulator developed in the Lawrence Berkley Laboratory 

for history matching. Watson and Lee (1986) introduced a new algorithm for automated 

history matching based on a modification of Gauss-Newton method for minimization of least 

square functions. 

With the advent of geo-statistics, a new class of parameterization approaches which is known 

as pilot point appeared. In these approaches, the reservoir properties are estimated for a limited 

number of points (controlling points) and the rest of reservoir are interpolated using geo-

statistical and mathematical methods. These methods led to a significant decrease in the 

number of parameters. Marsily et al. (1987) were the pioneers in using geo-statistical methods 

in the history matching problem. They started by just using kriging. Later RamaRao et al. 



 

(1995) and Gomez-Hernandez et al. (1997) used Gaussian Random. Fasanino et al. (1986) also 

used the kriging method to create a distribution of reservoir properties obtained from history 

matching. 

Zuber et al. (1987) utilized a dual-porosity and two-phase reservoir simulator to match the 

methane and water production for coal-bed methane reservoirs. 

The gradient of objective function can hold information regarding the sensitivity of reservoir 

parameters. Therefore gradient based optimization methods were among the first approaches 

used in automatic history matching. Different methods to calculate the gradients (first or 

second order) have been proposed. Yang and Watson (1988) used a method based on a 

solution of the adjoint equations. Anterion et al. (1989) developed an analytical approach to 

calculate the gradients for an optimization method. They coupled this gradient based 

optimization method with a three-phase, three-dimensional simulator (SCORE). Although they 

recommended that the use of this method leads to a decrease in processing time and number of 

runs, still the experience of an engineer was required to make a decision in changing the 

parameters. The concerns regarding the role of engineering input to, and interaction with, 

algorithms in history matching have been the center of arguments for many years (Watkins, 

Parish and Modine 1992). The engineering knowledge and experience can be an additional 

help in providing the initial values for parameters or even in the optimization framework.  

In the early 90’s we observe the arrival of experimental design and surface methods in 

petroleum engineering. The theory behind experimental design goes back to 1920 and 1930 in 

the application for agricultural purposes. Simply, it can be said that experimental design looks 

for constructing a design setting which is able to give maximum possible information from a 

minimum number of experiments. Damsleth et al. (1992) claimed that instead of changing one 

parameter at a time, using a well-designed setup makes it possible to achieve the same 

information with considerably fewer realizations of the simulation model. They applied the 

technique for a North Sea gas field in order to decrease the number of simulation runs in 

sensitivity analysis study. They mentioned that the technique has reduced the number of runs 

by 30 to 40 percent compared to the framework in which one parameter at a time was varied.  

Based on their finding the technique would not give good results when it comes to 

extrapolation. 

Response surface investigates the relationships between the inputs and output(s). This 

statistical method was introduced by Box and Wilson (1951). Eide et al. (1994) used 



 

experimental design to develop a response surface which gives the output of reservoir 

simulation. The response surface was used as an approximation of the reservoir simulation 

model to perform automated history matching for a synthetic reservoir model. Basically, they 

used experimental design to create a set of simulation runs with different combinations of 

reservoir parameters. These runs were used to develop the response surface, which in their 

case, was a regression and kriging method.  

In 1992 the first type of global optimization methods was applied in history matching. Ouenes 

et al. (1992a) introduced the application of a new optimization algorithm which did not require 

calculating the gradients of objective function. The algorithm is known as Simulated 

Annealing. The method was independently proposed by Kirkpatrick, et al. (1983) and two 

years later by Černý (1985) for finding the global minima of a cost function which may have 

several local minima. Ouenes and his coworkers used this method for history matching of 

several case studies with a high number of variables (1992b, 1993a, 1993b). Another 

important characteristic of global optimization methods such as simulated annealing was their 

ability to be used in a parallel computation workflow. Ouenes et al. were among the first ones 

which used parallel computing in history matching. By using parallel computing techniques, 

large problems which require high computational power can be divided into smaller ones and 

carried out simultaneously or in parallel. 

The years after early 90’s could be referred to as the modern era of history matching. As the 

computational advancements were happening quickly, the reservoir simulation models were 

getting complicated as well. Therefore simple optimization methods were not good enough to 

address complex history matching problems (Bush and Carter 1996). Significant works were 

done to move history matching from a labor intensive engineer-based framework to a fully or 

semi-fully automated approach. During this time we observe the experiment of different 

optimization algorithms trying to reduce the cost of finding global minima. Single matched 

realization of the simulation model switched to multiple representatives of a simulation model 

(Tyler, Svanes and Omdal 1993, Palatnic, et al. 1993). These multiple solutions were useful 

for understanding the uncertainty of future production and reduce the risk involved in cost and 

benefit.  

Another type of technique which has been used in automated history matching is streamline 

simulation (Emanuel and Milliken 1998, Vasco, Yoon and Datta-Gupta 1998, Wang and 

Kovscek 2000). Originally developed in the 1960’s, the streamline simulation is an alternative 

to block-based finite difference simulation. In conventional finite difference simulation flow 



 

transports from cell to cell, while in a streamline simulation model, fluids are transported 

along streamlines (Baker 2001). Streamline simulation is a fast and efficient forward model 

particularly for history matching purposes. Furthermore its ability to highlight the flow paths 

between the producer/injector wells can be used to identify the parts of a reservoir which are 

critical to match the past performance. Nevertheless this technique has its own assumptions 

and limitations (Thiele, Batycky and Fenwick 2010).  

Baker (2001) believed that during a history matching deciding which cell in a reservoir model 

should be adjusted is very important; therefore regrouping a bunch of cells might be necessary. 

In this case, streamline simulation can be helpful in grouping cells that need to be adjusted. 

Vasco et al. (1998) and Emanuel and Milliken (1998) were the first to use streamline 

simulation in history matching. Wang and Kovscek (2000) developed a streamline approach to 

modify the effective permeability along the streamlines in order to match the dynamic 

production data including producer water-cut curve, well pressures, and rates. The idea was to 

connect water-cut curve at a producer to the water breakthrough of individual streamlines; thus 

by changing the permeability associated with the streamlines, the breakthrough time of 

streamlines and producer fractional-flow curve can be found. On synthetic data sets, they 

achieved rapid history matches, often in only two or three simulations. Later Agarwal and 

Blunt (2003) extended the work of Wang and Kovscek to a real field case in the North Sea. 

Fenwick et al. (2005) used streamline simulation coupled with a combination of geo-statistical 

tools to history match a giant Middle Eastern oil field. They just changed the permeability to 

achieve the match. Batycky et al. (2007) used the approach of Fenwick et al. to apply it to a 

reservoir with 1.4 million grid blocks. They used streamlines as a guide to find the location 

and amount of changes in the reservoir.  

As it was reviewed, gradient based optimization methods were the first algorithms used to 

minimize the objective function in history matching. Generally these approaches are 

computationally expensive and also very prone to fall into a local minima rather than a global 

minimum. On the other hand, most of the history matching problems are multi-dimensional, 

non-linear optimization problems which often include multiple local minima. In order to 

address these problems, global optimization methods such as simulated annealing and 

Evolutionary Algorithms such as Genetic Algorithms (GAs) and Evolution Strategy were 

proposed. Another advantage of global optimization methods over gradient based methods is 

the ability of parallel computing, which plays a critical role in dealing with complex models. 



 

Sen et al. (1995) compared the performance of genetic algorithms with simulated annealing. 

Genetic algorithms belong to the larger class of evolutionary algorithms. The idea behind 

these algorithms is to evolve a group of solutions using the operators inspired by natural 

evolution, such as inheritance, mutation, selection, and crossover. Genetic algorithms and 

evolutionary strategies (ES) are two of the most common types of evolutionary algorithms. 

Romero et al. (2000a, 2000b) coupled geo-statistical modeling with genetic algorithms to 

match the production data on a realistic synthetic case study. They concluded that genetic 

algorithms are capable of handling large full field reservoir simulation models with many 

parameters. Schulze-Riegert et al. (2001) applied evolutionary strategies to complex history 

matching problems. They claimed that evolutionary strategies are robust and less sensitive to 

non-linearities and discontinuities of the solution space. Nevertheless one challenging problem 

was convergence improvement. Genetic algorithms were the optimization tool for assisted 

history matching in Top-Down Reservoir Modeling workflow, a reservoir management 

workflow proposed and used by BP (Williams, et al. 2004). Al-Shammaand Teigland (2006) 

used evolutionary algorithms (GAs) for history matching a complex reservoir model. They had 

46 different parameters including porosity, permeability, and transmissibility at different 

regions. The results of history matching then were used to perform uncertainty assessment. 

Takuda et al. (2004) used a genetic algorithm to match the results of core flooding 

experiments. The adjustable parameters were relative permeability and capillary pressure 

curves. The water saturation of the grid block was measured during the core water flooding 

and then was used as the measured data, which should be matched. Castellini et al. (2006) 

combined designs and response surface techniques with genetic algorithms to perform history 

matching and assess the uncertainty for future forecast. Ballester and Carter (2007) applied a 

modified genetic algorithm and parallel computing to perform history matching for a real 

reservoir case study. In a classic genetic algorithm, the data are converted to binary (zero and 

one) codes; while Ballester and Carter used a modified genetic algorithm in which data were 

an array of real numbers. GAs and evolutionary algorithms have proven to be a great 

optimization tools for history matching and other types of problem in petroleum engineering 

(Stephen and Arwini 2010).  

During the last decade application of a number of global optimization methods have gained 

popularity in the automated history matching process. Among the successful methods we can 

include the ensemble Kalman filter (Van Leeuwen 1999, Evensen 2003, Haugen, et al. 2006, 

Aanonsen, et al. 2009, Hanea, et al. 2010, Szklarz, Hanea and Peters 2011), Neighborhood 

Algorithm (Christie, MacBeth and Subbey 2002, Stephen, et al. 2006, Rotondi, et al. 2006, 



 

Subbey and Christie 2003), Genetic Algorithms (Erbas and Christie 2007) (Castellini 2005), 

Scatter search (Sousa 2007), Tabu Search (Yang, Ngheim and Card 2007), Hamiltonian Monte 

Carlo (HMC) (Mohamed, Christie and Demyanov, Comparison of Stochastic Sampling 

Algorithms for Uncertainty Quantification 2009), Particle Swarm Optimization (PSO) 

(Eberhart and Yuhui Shi 2001, Mohamed, Christie and Demyanov, Comparison of Stochastic 

Sampling Algorithms for Uncertainty Quantification 2009, 2010, Rwechungura, Dadashpour 

and Kleppe 2011, Kathrada 2009) Ant Colony Optimization (ACO) algorithm (Razavi and 

Jalai-Farahani 2008, Hajizadeh, Christie and Demyanov 2009, 2010), Markov chain Monte 

Carlo (Maucec 2007), and Chaotic Optimization (Mantica 2002). 

Rwechungura et al. (2011) have published fascinating information regarding the increasing 

interest in history matching since 1990. Figure 6 which is taken from their article summarizes 

the number of papers on the history matching topic between the years of 1990 to 2010. 

 

Figure 6: Number of papers on the history matching topic between 1990 to 2010 (Rwechungura, 

Dadashpour and Kleppe 2011). 

2.3 Alternative approaches to simulation models 
In the previous section we presented a brief review covering more than 50 years applications 

of history matching. As the brilliant era of history matching, the last 20 years have observed a 

lot of improvements in the way we deal with this problem. Probably the most notable 

improvement is the attempt to switch history matching from an individual knowledge-based 

approach to an automated (or semi-automated) workflow. Today, although the interpretation 

of engineer is still required, the main portion of history matching is performed through an 



 

automated machine-based workflow. However, almost all the methods covered in the previous 

section suffer from one common drawback. This drawback is the significant computational 

cost associated with the complex and high resolution simulation models (S. D. Mohaghegh 

2011). During the last two decades the main approach to address this problem was to find an 

optimization method which can reach the solution with the minimum number of runs 

(Hajizadeh, Christie and Demyanov 2009). Huge advancements happened in this area. 

Optimization algorithms moved from gradient based methods to stochastic global optimization 

approaches. At the same time, improvements in simulation models led to models with higher 

resolutions. Furthermore, it seems like the problem still remains the same, because as the 

proposed solutions are improving the problem is getting bigger. 

Different attempts have been made to speed up the simulation models. One is the application 

of different computational methods in order to decrease the size of the system. Techniques 

such as IMPES (Zhangxin, Guanren and Baoyan 2004), Sequential, and IMPSAT (Haukas, 

Aavatsmark and Espedal 2004) are used whenever there is no need for a fully solved model 

(Yang, et al. 2009). Up-scaling the static and dynamic models, as much as possible, are 

another way to reduce the size of the problem. Clearly, using coarser grid blocks results in the 

simpler and smaller mathematical model to solve; therefore this leads to a faster modeling 

process. Up-scaling the detailed fine-scale geo-models to a lower-order, coarser representation 

is a common practice in reservoir simulation and modeling (Jansen, Brouwer and Douma 

2009, Vakili-Ghahani and Jansen 2010). Some (Yang, et al. 2009) even go further and 

consider the famous Material Balance model as the extreme version of up-scaling, where the 

reservoir is assumed as a huge volumetric tank. Beside the assumptions associated with 

Material Balance Equation, as a matter of fact this method is very effective to estimate 

reservoir pressure decline after production, or for back-computing initial amount of 

hydrocarbons through a simple history match of production pressure data (Hurst 1974, Ojo 

and Osisanya 2006, Yang, et al. 2009). 

Another alternative method that has been frequently used in petroleum engineering is decline 

curve analysis. Many articles are available on this subject (Agarwal, et al. 1999, Li and Horne 

2003, Cheng, Lee and McVay 2008, Ilk, et al. 2010). Decline curves are able to quickly 

predict the future performance of the reservoir based on the past production history. The use of 

this method goes back to even before the availability of computers in petroleum engineering. 

At that period, decline curve analysis was performed manually on semi-log plot papers. The 

early decline curve was based on empirical rate-time equation of Arps (1945). Later different 



 

people modified Arps’s equation for various purposes (Fetkovich 1980, Fetkovich, Vienot, et 

al. 1987, Agarwal, et al. 1999, Li and Horne 2003, Cheng, Lee and McVay 2008, Ilk, et al. 

2010). Although decline curve analysis is still a fast and cheap way for predicting the future 

performance and finding the well’s problems, it has its own limitation and simplifications (Ilk, 

et al. 2010). For example, the common assumptions for this method are single phase, 

homogeneous, and slightly compressible plane radial flow systems (Yang, et al. 2009). 

Advent of global optimization methods such as simulated annealing, genetic algorithms, and 

evolutionary strategies was associated with using parallel computation (Saleri 1993, Ouenes, 

Brefort, et al. 1993b, Sen, et al. 1995). Parallel processing enabled a faster history matching 

process, but as the size and complexity of reservoir model increased the problem basically 

remains the same (S. D. Mohaghegh, J. S. Liu, et al. 2012b). 

An efficient and popular, but at the same time debatable approach, to address the high 

computational cost of a simulation model is to substitute the full field simulation model with 

inexpensive approximation or proxy models. By the rise of super complicated, heavy to 

perform simulation models, proxy or surrogate models showed up as an alternative tool over 

full scale engineering simulation models. Basically proxy models are fast approximations to 

the high fidelity simulation models. They have been widely used in different industries such as 

aerospace in order to substitute the time-consuming and high computational expense 

simulation models (Queipo, et al. 2005, Forrester and Keane 2009). Their efficiency to 

reproduce the results of simulation models with a high speed makes them popular. Using 

proxy models in petroleum engineering goes back to almost two decades ago (Eide, et al. 

1994). However, they still remain arguable because of practical reasons (Zubarev 2009, S. D. 

Mohaghegh 2011, Goodwin and Powell 2012). Proxy models obtain higher computational 

efficiency at the expense of losing the resolution and accuracy associated with full-physics 

simulation models. 

Mathematical and statistical based techniques such as response surface models combined with 

sampling methods (Experimental Design) are popular types of proxy models which have been 

used in the petroleum industry for a long time (Damsleth, Hage and Volden 1992, Eide, et al. 

1994). Response surface methods can be a suitable alternative to simulation models; however, 

it is essential to correctly apply the statistical design methodology to capture the fluid flow 

behavior. Response surface models have been frequently used in petroleum engineering. There 

are number of articles available in uncertainty analysis of reservoir behavior (Damsleth, Hage 

and Volden 1992, Manceau, et al. 2001, Friedmann, Chawathe and Larue 2003, Cheong and 



 

Gupta 2005), well optimization (Zabalza, et al. 2000, Landa and Güyagüler 2003, Valladao, et 

al. 2013), and history matching (Eide, et al. 1994, White and Royer 2003, Alessio, Bourdon 

and Coca 2005, Gupta, et al. 2008, Cheng, Dehghani and Billiter 2008, Arwini and Stephen 

2011).  

Reduced order modeling is another attempt to transfer the high dimensional models into a 

meaningful representation of reduced dimensionality. They have been applied in many 

application areas including petroleum engineering. It is believed that the nonlinear 

dimensionality reduction techniques of reduced order modeling are able to transform the high 

resolution and complex geological models into low dimensional representatives. Although, in 

reality, many well-known reduced order modeling algorithms were developed for linear 

systems (Amsallem and Farhat 2008). On the other hand, while most of reduced order models 

can perform with high efficiency, they require a large number of model realizations to capture 

the relationships between the inputs (S. D. Mohaghegh 2011, S. Amini, et al. 2012). Another 

drawback is the lack of robustness when it comes to the parameter variations. Therefore, they 

need to be rebuilt in order to capture the changes in the inputs (Amsallem and Farhat 2008). In 

recent years there has been some attempts in using reduced order models for history matching, 

uncertainty quantification, and optimization (Cardoso 2009, Cardoso and Durlofsky 2010, He, 

Sarma and Durlofsky 2011, Bazargan and Christie 2012, Bazargan, Christie and Tchelepi 

2013, Wu, et al. 2013) (Gildin, Ibrahim and Ghasemi 2014). 

Another relatively new type of proxy models which are considered as an efficient alternative 

to reservoir simulation models are proxy models based on artificial intelligence and data 

mining techniques. These models are known as Surrogate Reservoir Models (SRMs) and have 

gained popularity in recent years to address many time-consuming operations (such as history 

matching) traditionally performed by reservoir simulation models. Different types of 

techniques to build these models give them different characteristics compared to regular proxy 

models (statistical and mathematical based models). Surrogate reservoir modeling technology 

is the modeling technique used in this dissertation. Therefore, the next chapter separately 

concentrates on this type of modeling.  

2.4 Summary 
Reservoir management is dedicated to design strategies to maximize the hydrocarbon 

recovery. This goal is obtained through the completion of various reservoir studies. In order to 

achieve this goal, reservoir simulation models are the common and standard tools used by 

industry in reservoir management workflow. Typical tasks performed by simulation models 



 

include sensitivity analysis, history matching, production optimization, and uncertainty 

assessment. Among these tasks history matching plays a vital role. History matching is a 

calibration and verification step in this workflow. The feedback from history matching 

enhances the simulation model reliability and decreases the uncertainty involved in future 

prediction. Moreover, history matching provides a better understanding of the reservoir.  

History matching has more than half a century background in the oil and gas industry. The 

first history matching case studies were simply adjusting parameters manually and observing 

the impact of changes by comparing the outputs with field performance. Manually history 

matching workflow, although is not the most efficient way to perform history matching, it is 

still conducted in the industry. Many researchers tried different optimization methods to 

automate the process of history matching. Gradient based optimization algorithms were among 

the first optimization approaches utilized in the automated history matching workflows. The 

advent of geo-statistical approaches, such as pilot point method, resulted in huge changes in 

reservoir parameterization. Using experimental design methods started in the early 90’s to 

decrease the number of runs required for history matching. These approaches were then used 

to develop proxy models, particularly response surface models, in order to approximate the 

results of the simulation model. Computational advancements led to the simulation models 

with higher resolution and accuracy. Global optimization methods took advantage of parallel 

processing to speed up the process of history matching. Also global optimization methods 

showed multiple advantages over gradient based optimization algorithms. At this time single 

matched realization of the simulation model switched to multiple representatives of the 

simulation model. 

By end of the 90’s and start of last decade streamline simulation showed as a fast and efficient 

forward model particularly for history matching. However, this approach might be limited by 

its own assumptions. Application of global optimization algorithms in history matching 

enjoyed significant improvements by this time. Evolutionary Algorithms such as Genetic 

Algorithms (GAs) and Evolution Strategy proposed a higher efficiency in automated history 

matching workflow. During the last decade, numerous history matching case studies were 

accomplished using these methods. 

Proxy models as an inexpensive approximation of high computational cost full field 

simulation models are frequently used in different areas of engineering. By increasing the time 

and cost required to run the reservoir simulation models, proxy models appeared in petroleum 

engineering. They are fast and relatively easy to develop; however, due to practicality 



 

concerns there is a long way to completely surpass full field reservoir simulation models in 

reservoir management workflow. Response surface models and reduced order models are the 

most famous types of proxy models used in petroleum engineering.  

Other relatively new types of models to approximate the reservoir simulation models are the 

proxy models based on artificial intelligence and data mining techniques. The most famous 

example of these models is surrogate reservoir models. The unique characteristics of these 

models are provided by pattern recognition capabilities of artificial intelligence and data 

mining techniques used to develop them. The next chapter will introduce these models in a 

deeper context.   



 

Chapter 3: Surrogate Reservoir 

Models (SRMs) 
 

 

 

Overview 

In the previous chapter a brief review about alternative methods to substitute the reservoir 

simulation models in the modeling process was presented. In the same context, one new 

approach is the proxy models constructed based on artificial intelligence and data mining 

techniques. A successful example of the techniques to build these proxy models is Artificial 

Neural Networks (ANNs). In this dissertation ANNs are used as the core of a novel reservoir 

modeling approach known as Surrogate Reservoir Modeling. This chapter concentrates on 

introducing Surrogate Reservoir Models (SRMs). For this purpose, a review on artificial 

neural networks is presented. Next the definition, classification, and characteristics of an SRM 

will be discussed. In order to use the SRM in an automated history matching workflow, an 

optimization method is utilized. The last section of this chapter goes through this optimization 

method.  

3.1 Learning from data  

In the pattern recognition concept, the data analysis process deals with the predictive 

modeling. By having a high dimensional database, the objective is to learn the underlying 

behavior in the data and forecast the performance of unforeseen examples. The learning 

process refers to some form of algorithm to reduce the error on the set of training data (R. O. 

Duda, P. E. Hart, and D. G. Stork 2001). The learning procedures could be distinguished into 

(i) supervised learning or (ii) unsupervised learning (recently another set of learning has been 

discussed in the literature called semi-supervised) (Jain 2009). Supervised learning generally 

represents a learning procedure which takes down an available set of inputs and also known 

corresponding outputs. The efforts will be made to build a predictive model by matching the 

available responses with the inputs. This predictive model is able to generate reasonable 

predictions for the response to novel data. The most important characteristic of this learning 

technique is that the responses (outputs) are recognized or labeled in the training database. On 

the other hand, unsupervised learning involves only unlabeled data which makes the process 



 

more challenging than the previous one. In other words, unsupervised learning forms clusters 

or natural patterns underlying in the structure of data. In our case we develop surrogate models 

using the available training examples of reservoir simulation models. In other words, we face 

examples with known outputs; therefore this case mainly involves the supervised learning 

process. This is valid for the modeling style available in the artificial neural networks, which 

will be covered in this chapter. 

3.2 Artificial neural networks 

3.2.1 Introduction 

One of the most famous pattern recognition techniques, which has a long and prosperous 

history in a variety of scientific fields, is Artificial Neural Networks (ANNs), usually called 

Neural Networks (NNs). There are characteristics which distinguish ANNs from the 

traditional modeling methods. ANNs are non-linear data driven, fact, and example based and 

most importantly a self-adaptive approach (Kriesel 2011). Their pattern recognition ability is 

more highlighted when there are unknown and complex relationships between different 

parameters. Similar to the way that the human brain processes the non-linear and complex 

data, the ANNs can identify and learn the patterns between the sets of inputs and the 

corresponding output sets (S. D. Mohaghegh, Virtual intelligence applications in petroleum 

engineering: part 3 – fuzzy logic 2000). After the training step (learning from the provided 

examples known as training set), ANNs are able to predict the outcome of independent data 

which have not been used during the training process. One important feature of ANNs is that 

they can process the problems which even have incomplete and noisy data (S. D. Mohaghegh 

2009). Therefore, they are ideally suited for the modeling the problems from the oil and gas 

industry which are known to have uncertain and imprecise data. Another important 

characteristic of ANNs is their self-adaptive nature. An ANN adjusts its structure based on the 

output and input information that flows through the network during the learning phase (S. D. 

Mohaghegh 1995). This feature plays a vital role in application areas where learning by 

example is dominant.   

Historically ANNs were motivated by the goal of having machines that are able to mimic the 

brain’s behavior (Haykin 2008). In fact, ANN includes an interconnected group of artificial 

neurons and its structure is an idea coming originally from the human neural system. 

However, the “network” in ANNs is more a mathematical/statistical concept than 

neuroscience. ANNs are physical cellular systems capable of obtaining, storing information, 

http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Artificial_neuron


 

and using experimental knowledge (S. D. Mohaghegh 2009). There are several distinguished 

characteristics of ANNs which make them an efficient tool to solve the non-linear and 

complex problems (Haykin 2008, S. D. Mohaghegh 2011, Kriesel 2011, S. D. Mohaghegh 

2014): 

 Non-linear nature of neural networks is suitable for many real-life problems. Stock 

market prediction and weather forecast are examples in which non-linear 

characteristic of ANNs has been successfully implemented. 

 Unlike the statistical and mathematical based methods, artificial neural networks are 

not limited by predetermined functions. In fact they are data driven models. Thus they 

are able to identify the non-linear relations among different parameters in the database 

without a prior assumption of the relation between the input and target values (Hagan, 

Demuth and Beale 1996). 

 The ability of ANNs to learn by examples. ANNs can learn the hidden patterns and 

trends of the problem from the known examples.  

 The generalization ability of ANNS; this helps to predict new outcomes from the past 

performance.  

 The capability of ANNs to catch the full patterns from the incomplete and noisy data. 

 Parallel processing capability of ANNs gives the option to process information faster. 

 ANNs are constrained to the data used for training them. That means they may not 

show a good performance on the data outside of the range of inputs which they have 

seen during the training process. However, neural networks have the capability to 

adapt the network parameters to the adjustments in the system. A trained network can 

be easily retrained by introducing new information. This feature is important when the 

system under study is dynamic (for example stock market or receiving new pressure 

data from the field). Therefore, neural networks can be simply trained again by having 

new data. 

3.2.2 Basics of artificial neural networks 

The phrase of “neural network” consists of two words: the first word “neural” is the adjective 

form of neuron which in the field of medical science is the basic unit of the nervous system 

and describes a cell that transmits the messages from the brain to other parts of body (Merriam 

Webster Dictionery Online 2014). The second word, “network”, is referred to as a group or 

system of interconnected people or objects. The terminology of artificial neural networks has 

originated from the analogy of biological neural networks (Kriesel 2011). A biological neuron 



 

is composed of different parts; each neuron receives the signals through synapses which are 

located on the dendrites or membrane of the neuron. As the received signals are strong enough 

to pass a threshold, the neuron is activated and sends out a signal to the other neurons through 

the axon (Kriesel 2011). The human brain is made up of 10
11

 cells which are connected with 

approximately 10
15

 connections (synapses) (Kriesel 2011). Figure 7 depicts the structure of a 

biological neuron. Each neuron works with the frequency of 1 to 100 Hz; therefore, the human 

neural network is able to handle 10
18

 operations per second. This rate is much higher than the 

performance of the best available computers that the human being has created so far (AGH 

University of Science and Technology webpage 2014). This structure gives the learning and 

pattern recognition abilities to the human brain. 

 

Figure 7: The scheme of neuron (cell) and its components (AGH University of Science and Technology 

webpage 2014). 

The artificial neuron is much simpler than the biological one. It is basically consists of several 

inputs,           (similar to synapses); the input signals are multiplied by weights,             (representing the strength of respective signals) and then makes a summation. 

Next, a mathematical function known as activation function,      , determines the activations 

of the neuron. Finally, another function calculates the output. The artificial neural networks 

are a combination of neurons which process the information in parallel. Figure 8 demonstrates 

the structure of an artificial neuron. 



 

 

Figure 8: A single artificial neuron (Kumar and Thakur 2012).  

The most common activation function is sigmoid function defined as the following equation 

(Kriesel 2011). The output of sigmoid function is between zero and one.  

Equation 1: Sigmoid function as the activation function used in the ANNs algorithm.             

The learning procedure in ANNs is supervised learning; ANNs have an input layer and an 

output layer (R. O. Duda, P. E. Hart, and D. G. Stork, 2001). In addition to the input and 

output layers, ANNs have at least one more layer known as the hidden layer as it is shown in 

Figure 9. Usually all the computations are performed in the neurons located in the hidden 

layer. 

 

Figure 9: The structure of ANNs. 



 

3.2.3 Feed Forward Neural Networks 

An ANN is a data processing system including a network of interconnected processing 

elements (artificial neurons). The way that these neurons are arranged and connected to each 

other is defined as the architecture of neural network. There are several types of architecture 

available in the applications and literature. The most commonly used architecture is feed 

forward neural network (Kriesel 2011). As the name of this architecture indicates, the flow of 

information is “forward” and in one direction. Figure 10 shows the structure of a feed forward 

neural network with three hidden layers. There is always one input layer and one output layer; 

also one hidden layer is required. The hidden layers are disconnected with the external world 

and therefore are called hidden layers. The neurons in each layer are connected to the neurons 

on the next layer. The flow of information is from the input layer to the hidden layers and 

finally to the output layer. In addition in feed forward architecture neurons in the same layer 

are not connected to each other or to the neurons in the previous layers. If we recall the 

definition of supervised learning, this type of learning is associated with labels (outputs), 

therefore, we have supervised learning in feed forward neural networks (R. O. Duda, P. E. 

Hart, and D. G. Stork, 2001). 

 

Figure 10: Feed forward neural network architecture with three hidden layers (Roberts 2000).  

The learning process from the provided data is an iteration approach of adjusting the weights 

between the inputs and known output values. The most common learning algorithm for feed 

forward networks is back propagation (BP) (Fausett 1993, Rojas and Feldman. 1996).When 

the training data set is ready, the samples are fed to the network. Then the network produces 

some outputs based on the available weights (randomly selected at the initial step). The 

outputs are compared to the known-correct outputs and the mean squared error is calculated. 

Next the error value is propagated backwards (this is the reason for calling the process back 



 

propagation) and the weights are adjusted. By having the new set of weights, the whole 

process is repeated until the optimization process meets the stoppage criteria. The stoppage 

criteria could be an error threshold, time, or user intervention. It should be noted that the 

optimization process during the training step is unable to find the global optima and therefore 

the stoppage criteria is required. 

Those who interested in further reading about neural networks are encouraged to refer to 

available reference materials (Fausett 1993, Rojas and Feldman. 1996, Haykin 2008, Kriesel 

2011). 

3.2.4 Applications of artificial neural networks 

Since the advent of ANNs (W.S. McCulloch and W.H. Pitts 1943), they have seen different 

stages of rise and fall; however, in the recent years, ANNs have appeared as a practical 

technology with many successful applications in sale and marketing, finance, energy, geology, 

etc. Some applied applications of ANNs are listed in Table 2. 

Table 2: Application of ANNs in the different fields.  

Sales forecasting (D.H.F. Yip , E.L. Hines, and W.W.H. Yu 1997) 

Industrial process 

control 

(G.Glan Devadhas, S. Pushpakumar, and D.M.Mary Synthia Regis Prabha 

2012) 

Customer research (M. Chattopadhyay, P. K. Dan, S. Majumdar, and P. S.Chakraborty 2012) 

Risk management (S. Aless , R. Sarcià , G. Cantone , and V. R. Basili 2007) 

Credit evaluation (B. Baesens, R. Setiono, C. Mues, and J Vanthienen 2003) 

Energy cost prediction (M. Yalcintas, S. Akkurt 2005) 

Medical diagnosis (F. Amato, A. López, E. María Peña-Méndez, P. Vaňhara, and A. Hampl 

2013) (S. Lei and W. Xing-cheng 2010) 

Business applications (E. Y. Li 1994) 

Financial applications (Tan 2004) 

Stock market 

prediction 

(A. A., et al. 2012) 



 

3.2.5 ANNs in petroleum engineering 

Although ANNs have been around for a long time, their popularity in petroleum engineering 

started two decades ago (J. K. Ali 1994). Since that time, the applications of ANNs in 

addressing conventional problems of the petroleum industry have been widely studied. Some 

examples found in literature are: well log interpretation (Baldwin, Otte and Whealtley 1989, 

Masoud 1998, Jong-Se and Jungwhan 2004), well test data analysis (Al-Kaabi and Lee 1990, 

Ershaghi, et al. 1993, Athichanagorn and Horne 1995, Sultanp and Al-Kaabi 2002), reservoir 

characterization (Mohaghegh, et al. 1995, Ahmed, et al. 1997, Singh, et al. 2008), calibration 

of seismic attributes (David 1993), seismic pattern recognition (Yang and Huang 1991), 

inversion of seismic waveforms (Roth and Tarantoia 1992), prediction of PVT data (Briones, 

et al. 1994, Gharbi and Elsharkawy 1997, Osman, Abdel-Wahhab and Al-Marhoun 2001, 

Oloso, et al. 2009), fractures and faults identification (L.Thomas and Pointe 1995, Key, et al. 

1997, Sadiq and I.S. Nashawi 2000, Aminzadeh and deGroot 2005), hydrocarbons detection 

(Cheng-Dang, et al. 1994, Aminzadeh and deGroot 2005), formation damage forecast 

(Nikravesh, et al. 1996, Kalam, Al-Alawi and Al-Mukheini 1996), and more. 

3.3 Surrogate Reservoir Models (SRM) 

Surrogate reservoir modeling is the terminology used to describe the new way of reservoir 

modeling and simulation which is based on using artificial intelligence and data mining 

(AI&DM) techniques. Nevertheless, it is not correct to generalize the concept of surrogate 

reservoir modeling to any type of experiment that is involving AI&DM (S. D. Mohaghegh 

2014). This approach is compared to the conventional methods which the oil and gas industry 

have used during the last half of century. The numerical simulation and modeling techniques 

are the leader of the conventional approach in our industry.  

Surrogate Reservoir Models (SRMs) are relatively new tools for fast track and comprehensive 

reservoir analysis which originate from the existing reservoir simulation models. In other 

words, SRMs are approximations of the full field three dimensional numerical reservoir 

models and are capable of accurately mimicking the behavior of these full field models (S. D. 

Mohaghegh 2014). 

3.3.1 Why do we need SRMs? 

The question which may arise is why we should make a model from the numerical reservoir 

simulation model. In order to answer this question, we should investigate the characteristics of 

numerical simulation models and their applications in reservoir study. Reservoir simulation is 



 

known as the standard tool used by industry for reservoir management and study (Ertekin, 

Abou-Kassem and King 2001). The reservoir simulation model is developed by the integration 

of static and dynamic reservoir data. This simulation model is the major reference of 

information when a decision should be made in the reservoir management workflow. The full 

field reservoir simulation models are utilized in industry to perform sensitivity analysis, 

history matching, production optimization, and uncertainty assessment. These are the typical 

tasks in a reservoir study in order to secure the investment and also increase the rate of return 

for an asset. Each one of these tasks requires hundreds realizations of the reservoir. On the 

other hand, during the life of a reservoir when the new data are acquired, the reservoir 

simulation model usually goes through modifications. These modifications commonly lead to 

resolution enhancement or increases in the number of layers and grid blocks. As the number of 

grid blocks increases, so does the time required to make a run. As we talked about it earlier, 

using techniques such as optimization algorithms and applying parallel processing might 

reduce the number of runs to achieve the goal of simulation. However, the number of 

simulation runs is still too high to be practical. Furthermore, with the growth of smart field 

technology in the oil and gas industry, the necessity for a real time reservoir modeling tool is 

inevitable. Consequently the answer to all the issues associated with reservoir simulation 

models is to find an alternative tool. At the same time this tool should keep the accuracy and 

resolution of simulation models and also have a high speed to perform the tasks required in a 

reservoir management workflow.  

Here the pattern recognition capabilities of SRM come into play. Despite the geo-statistical 

based approaches (such as response surfaces, reduced order models, etcetera) that require 

hundreds of simulation runs (Carreras 2006, B. Li 2005, Salhi 2005), SRM is created by a few 

simulation runs (S. D. Mohaghegh 2011). The accuracy of SRM is guaranteed by validating 

over the realizations of the reservoir model which are not used during the SRM development. 

After the training and validation of SRM, it is able to reproduce the outputs of full field model 

with the high accuracy and same resolution but with a very fast pace (usually takes fractions of 

a second for a single run). The reasons behind the accuracy and high speed of SRM to 

replicate the behavior of the simulation model go back to the characteristics of neuro-fuzzy 

system used in SRM development. The neuro-fuzzy system in SRM could be different 

AI&DM techniques. In this study this technique is artificial neural networks, which we 

covered earlier.  



 

3.3.2 Classifications and applications of SRMs 

Different types of SRMs are categorized based on the outputs or functionality of these models. 

Two of the most common ones are grid-based and well-based SRMs. The well-based SRM is 

developed to give the outputs of the reservoir simulation model at the well such as production 

and injection profiles. In addition, grid-based SRMs are particularly designed to generate the 

outputs at the grid level like pressure and phase saturation distributions. Obviously for a full 

field model, well-based and grid-based SRMs could be coupled in order to generate the full 

results of simulation models. For a study like history matching, since we deal with production 

and pressure profiles at the well, we need to develop the well-based SRM. Therefore, we have 

well-based surrogate reservoir models in this study. 

SRM has been successfully tested with several commercial reservoir simulators such as 

ECLIPSE
TM

 (Schlumberger 2014), IMEX
TM

 and GEM
TM

 (CMG 2013) with models up to 6.5 

million cell blocks (Intelligent Solutions, Inc. 2014). In 2006 (S. D. Mohaghegh, C. A. 

Modavi, et al.), SRM was presented for the first time by Shahab Mohaghegh to solve the 

problem of time-consuming runs for an uncertainty analysis of a giant oil field with 165 

horizontal wells in the Middle East. The reservoir simulation model included about one 

million grid blocks and took 10 hours to run using a cluster of twelve 3.2 GHz processors. 

Therefore, using the simulation model was a major issue for the uncertainty analysis study 

which requires hundreds of realizations of the reservoir simulation model. In his study, SRM 

was used as an objective function for a Monte Carlo Simulation to build hundreds and 

thousands of simulation runs in a very short time compared to the numerical simulator (S. D. 

Mohaghegh, C. A. Modavi, et al. 2006). Later in another publication (2009), Mohaghegh et al. 

presented the results of the SRM prediction which were made in 2006. The results showed the 

accuracy of SRM predictions.  

In another study performed by Jalali and Mohaghegh (2009) an SRM was trained, calibrated, 

and validated only using only eight simulation runs. The SRM was used to substitute the 

reservoir simulation model for the uncertainty quantification of a complex coal-bed methane 

reservoir model. 

Amini et al. (2012, 2014) presented the results of application of a grid-based SRM to perform 

a real case CO2 sequestration project. In this project CO2 was injected into a depleted gas 

reservoir located in Otway, Australia. They used SRM to predict the distribution of pressure 

and CO2 throughout the reservoir in a matter of seconds. The SRM was applied to analyze the 

geological uncertainty and also study the performance of the reservoir under different 



 

operational constraints. The numerical reservoir simulation model was made using a 

commercial simulator and consisted of 100*100*10 grid blocks. 

In projects, like CO2 storage and sequestration, a comprehensive study is required to assure a 

safe and efficient process. This study usually includes short and long term periods of 

monitoring CO2 plume in the formation. The intricacy of simulating multiphase flow, having a 

large number of time steps required to study injection and post-injection periods of CO2 

sequestration, highly heterogeneous reservoir, large number of wells, etcetera result in a highly 

complicated reservoir model. A single realization for such a reservoir takes hours to run. 

Additionally, a thorough understanding of the CO2 sequestration process requires multiple 

realizations of the reservoir model. Consequently, using a conventional numerical simulator 

makes the computational cost of the analysis too high to be practical. Application of SRM in 

this type of study could be very valuable. Shahkarami and his colleagues (2014) developed a 

surrogate reservoir model for a carbon storage project which requires injection and post-

injection monitoring of CO2 for a thousand year period. Each realization of the reservoir 

simulation model took 4 to 24 hours (depending on the convergence) to run; while the 

developed SRM ran in a matter of seconds (a single run). The authors used less than 15 

simulation runs to develop the SRM. 

Mohaghegh et al. (2012a, 2012b) have discussed the results of several projects involving 

surrogate reservoir models for fast track analysis of numerical simulation models. Other 

publications regarding the SRM can be found in variety of reference materials (S. D. 

Mohaghegh, J. S. Liu, et al. 2012b) (S. D. Mohaghegh 2009, S. D. Mohaghegh 2011, S. D. 

Mohaghegh 2014). 

3.3.3 Characteristics of SRMs 

SRM as a relatively new technology has proved itself as an effective tool to address many 

time-consuming processes performed by numerical simulation models. The main 

characteristics of SRM are listed as (S. D. Mohaghegh 2014): 

 Low development cost and labor. Unlike the traditional proxy models used in the oil 

and gas industry (response surfaces, reduced order models …) which require hundreds 

of simulation runs, SRM is created using only a few realizations of the reservoir 

simulation model. There are two main reasons behind this unique ability of SRM. First 

is the pattern recognition ability of AI&DM techniques used to develop SRM. The 

second reason is the way in which a single realization of the reservoir simulation 



 

model is presented to SRM. 

 High implementation pace with low computational cost. When it comes to the 

implementation of SRM, it has remarkably low computational cost with a high pace. 

The computational cost of SRM can be divided into two phases: the development 

phase and the execution phase. Literally the main computational cost of SRMs 

belongs to the development stage. For the execution phase, SRM can easily be 

implemented on a normal PC workstation or a laptop and get involved in the reservoir 

management workflow (S. D. Mohaghegh 2014). 

 Short development time. Compared to the traditional reservoir simulation model it 

takes a short time to develop a surrogate reservoir model. This time, depending on the 

size and complexity of the problem, varies from weeks to months (S. D. Mohaghegh 

2014). 

 Example based and case-subjective. The learning ability of SRM is conditioned to the 

training examples. Depending on the nature of the examples and the strength of the 

provided database you can generally expect an SRM to be trained reasonably well. 

The main limitation of SRM could be the dependency of SRM on the training 

examples (database). That means you cannot train an SRM for an example and expect 

it to give the same accuracy for a completely irrelevant example. Giving an instance 

related to petroleum engineering, an SRM trained for a specific reservoir does not 

necessarily have a good performance for another reservoir. 

 Honor and preserve the physics behind the problem. The nature of geo-statistical 

based proxy models disconnects them from the physics of the problem. The reason 

behind this issue is because these types of proxy models are limited by the strict 

assumptions of normality, linearity, variable dependence, and etcetera. Therefore, geo-

statistical based proxy models are not able to capture the physics and the non-linear 

relations which exist among the parameters in real-life. This is not the case for the 

SRMs. The AI&DM techniques (such as ANNs), used to develop an SRM, utilize a 

different type of learning and that makes it easy for SRM to understand the physics 

hidden in the training examples. 

3.3.4 The keys in developing an SRM  

SRMs are developed using the data extracted from the realizations of the simulation model. 

Depending on the objective of the study, these realizations can vary in geological properties 

or/and operational conditions. For example, for a history matching study of reservoir 



 

characteristics and for an uncertainty analysis study a combination of reservoir properties and 

operational constraints can be changed. The data then are extracted to form a spatio-temporal 

database. Building this database is the first step in developing surrogate reservoir models. The 

main objective of this database is to teach the model the process of fluid flow phenomena in 

the reservoir. Therefore, meticulous efforts should be considered in this part of process. The 

quality and quantity of this database determine the degree of success in developing a 

successful SRM. Not dedicating enough attention to this part of the process is the main reason 

behind unsuccessful attempts at applying artificial intelligence based models in the literature 

(Zubarev 2009). In this section we will go through different steps in building a surrogate 

reservoir model. Additionally, Mohaghegh has thoroughly discussed different steps of SRM 

development in his paper (2011).  

In order to create the spatio-temporal database, the first step is to identify the number of runs 

that are required to develop the SRM. The purpose of having different realizations of a 

reservoir simulation model is to introduce the uncertainties involved in the model to the SRM. 

This is a common step in building SRM and developing response surface methods; however, 

there is a key difference between these two methods and that is the functional forms behind 

these models. Response surface and other reduced order models are developed using statistical 

approaches, which use predetermined functional forms. For example, response surface proxy 

models which use regression have a fixed structure with different components and 

coefficients. These coefficients then are adjusted during the training process; however, the 

structure of function (for example polynomial function) is fixed (Eide, et al. 1994, White and 

Royer 2003, Alessio, Bourdon and Coca 2005, Gupta, et al. 2008, Cheng, Dehghani and 

Billiter 2008, Arwini and Stephen 2011). In order to match these functional forms, hundreds of 

runs are needed. Therefore SRM, due its learning structure, is not constrained to these types of 

functions.  

The pattern recognition characteristics of SRMs enable them to be developed by having a 

small number of simulation runs. Nevertheless, there is no algorithm to find the optimum 

number of simulation runs to build an SRM. The common practice when choosing the best 

number to train the SRM is to use rules of thumb based on the intricacy and heterogeneity of 

the reservoir model, which might vary. Yet, it is obvious that if the number of simulation runs 

is too small, the SRM may not be able to catch the uncertainty and the variation in the 

parameters. In this situation the surrogate reservoir model might even show good results for 

the training samples; here is where the validation sample plays an important role. Although 



 

SRM might have a good performance on the training sample, they will fail to create the same 

quality for the validation set. Therefore, the validation examples will expose the lack of 

required information in the training samples (Mohaghegh, Liu, et al. 2012a, 2012b). 

Alternatively, if the number of simulation runs is too large, there is no reason to develop an 

SRM since the solution is close to the original problem, which is a high number of simulation 

runs. This is a problem which occurs frequently for case studies involved geo-statistical based 

proxy models. In these cases the cost of developing the proxy model is too high and does not 

justify using them. 

After running the realizations, the static and dynamic data are extracted in order to build the 

representative spatio-temporal database. The database includes different types of data such as 

static and dynamic reservoir characteristics, operational constraints, etc. Static data refers to 

properties of the reservoir that are not changing overtime, such as permeability, porosity, top 

depth, and thickness. Dynamic data refer to any data such as well constraints or pressure and 

phase saturations that are not necessarily constant overtime (S. D. Mohaghegh, J. S. Liu, et al. 

2012b). 

Once the database is prepared, it is ready to be used to train the SRM. Usually some 

preprocessing steps are performed before the training starts. The inputs to train the SRM then 

are selected. The training process includes training the neuro-fuzzy agents which form the 

SRM. In this study we have artificial neural networks. Training process of artificial neural 

networks has three main parts: training (learning), calibration, and validation. Therefore, the 

spatio-temporal database is divided into three corresponding sets. The training set is used to 

train the ANNs. The calibration set is used to control the learning process and finally the 

validation set is for testing the trained network. A further validation step in the SRM 

development is utilized to assure its robustness. This step is referred to as “Blind 

Verification”. It is called “blind” because it is a set of realizations that has not been used 

during the training process. These blind testing sets are complete realizations of the reservoir, 

while the verification set used in the training process is a randomly selected portion of the 

spatio-temporal database. 

We will cover each step required to build an SRM in a practical way in the next chapter. 



 

3.4 Differential Evolution optimization algorithm 
Nowadays an important option in history matching workflow is the automation ability. In 

other words, the developed workflow should be able to perform following items without 

human involvement: 

1. Select the value of adjustable parameters; range of parameters can be provided by the 

engineer. 

2. Call the reservoir model to compute the output; the reservoir model could be the 

simulation model or an approximation of simulation model such as SRM. 

3. Calculate the objective functions; the objective functions can be provided by the user. 

4. Measure the misfit; quantify the error between the measured data and simulated data. 

5. Finally, decide if the misfit value is satisfying; the stoppage criteria here can be design 

by the engineer. 

For accomplishing the mentioned items two main tools are required. The first one is a 

reservoir model (simulation model or an approximation of it such as SRM) and the second tool 

is an optimization algorithm. The reservoir model produces the response of the reservoir by 

having the input data. However, other items in the above list are done by the optimization 

algorithm. In the previous chapter we reviewed numerous applications of optimization 

methods in history matching. In this study the reservoir model is an approximation of reservoir 

simulation model (a surrogate reservoir model) and the optimization tool is a method from the 

class of evolutionary algorithms (EAs) known as Differential Evolution (DE). DE recently has 

shown great performance for petroleum engineering case studies (Wang and Buckley 2006) 

(Decker and Mauldon 2006, Jahangiri 2007, Hajizadeh, Christie and Demyanov 2009, 2010, 

Wang and Gao 2010, Wang, Gao and Yang, et al. 2011, Mirzabozorg, et al. 2013) (Okano 

2013). In this section we talk about the necessity of having an optimization method and then 

introduce DE as a novel optimization algorithm. 

3.4.1 Optimization  

Optimization is a daily life problem. Selecting the best option in our decisions are optimization 

problems; these problems could be selecting the best route of transportation, buying the best 

brand of milk, choosing the best hobby to do, etc. In each one of these decisions we look for 

the best solution to reach a certain goal or satisfy a necessity. Merriam Webster dictionary 

defines the word “optimization” as “an act, process, or methodology of making something (as 

a design, system, or decision) as fully perfect, functional, or effective as possible” (Merriam 

Webster Dictionery Online 2014). In mathematics and computer science, optimization is the 



 

process of selecting the best item from the group of different options (Wikipedia 2014). In the 

simplest case, we are seeking the largest (maximum) value or the smallest (minimum) value 

that a function can take.  

Since the advent of automated history matching, it has used many optimization methods in its 

framework. In the early years, gradient descent methods were popular (Slater and Durrer 1971, 

Gavalas, Shah and Seinfeld 1976). In these algorithms the next step is decided based on the 

value and direction of function gradient at the current step. These methods usually are too 

slow and often not able to converge to the global optimum when there are number of local 

minima in the solution space. In addition, sometimes calculating the gradient of objective 

function which is required in these methods is not easy task to perform (Anterion, Eymard and 

Karcher 1989). By starting the modern era in history matching at the beginning of 90’s, global 

optimization methods, such as simulated annealing, came to help find the global optima in 

history matching (Ouenes, Meunier and Moegen 1992a, Ouenes, Fasanino and Lee 1993a, 

Ouenes, Brefort, et al. 1993b). Later evolutionary algorithms such as genetic algorithms and 

evolutionary strategies replaced simulated annealing due to their performance and the way 

they handle the high number of parameters (Sen, et al. 1995, Romero, Carter and Zimmerman, 

et al. 2000a, Romero, Carter and Gringarten, et al. 2000b, Schulze-Riegert, et al. 2001, 

Williams, et al. 2004, Al-Shamma and Teigland 2006). As the new century started many 

researchers tried to experiment with other types of optimizations methods in history matching. 

Almost all of these methods were already used in the other majors and passed their test. 

Particle Swarm Optimization (Eberhart and Yuhui Shi 2001, Mohamed, Christie and 

Demyanov, Comparison of Stochastic Sampling Algorithms for Uncertainty Quantification 

2009, 2010, Rwechungura, Dadashpour and Kleppe 2011, Kathrada 2009), Ant Colony 

Optimization (Razavi and Jalai-Farahani 2008, Hajizadeh, Christie and Demyanov 2009, 

2010), Neighborhood algorithm (Christie, MacBeth and Subbey 2002, Stephen, et al. 2006, 

Rotondi, et al. 2006, Subbey and Christie 2003), Tabu search (Yang, Ngheim and Card 2007), 

etc. were among those. 

Recently, a new optimization method known as Differential Evolution (DE) which belongs to 

the class of evolutionary algorithms has been used in numerous case studies of history 

matching (Hajizadeh, Christie and Demyanov 2009, 2010, Wang and Gao 2010, Wang, Gao 

and Yang, et al. 2011, Mirzabozorg, et al. 2013, Okano 2013). This optimization method has 

been tried in many other problems outside of the oil industry and showed multiple strengths 

over the other global optimization methods. For instance, compared to other global 



 

optimization algorithms (such as genetic algorithm) the convergence rate is faster and needs 

fewer control parameters. It is easy to develop (program) and utilize DE. Like most of other 

global optimizers it can be fit in a parallel computing workflow. DE is an evolutionary 

algorithm and like similar approaches is inspired from the evolution mechanism. In 

continuation, we try to go through the details of evolutionary algorithm and then elaborate 

more on DE. 

3.4.2 Evolutionary Algorithm (EA) 

Evolutionary Algorithms are inspired by biological mechanisms of evolution related to theory 

of Charles Darwin (Wikipedia 2014). Interestingly the adaptation of Darwinian Theory in 

optimization problems is older than the advent of computational machines (Wikipedia 2014). 

The theory indicates that in a population of individuals those survive who can adapt 

themselves according to environmental conditions (survival of the fittest). For each 

environment obviously the fitness is different. Depending on the quality of each individual in 

population, the individual can stay in the population for the next generation or get eliminated. 

Evolutionary Algorithms (as well as DE) are classified as stochastic population based systems 

(Price and Storn 1997). These optimization methods are called population based because they 

consist of multiple individuals, in which the interaction among them will lead to 

improvements in the quality of solutions. 

Evolutionary algorithms differ from traditional techniques of optimization in the learning 

phase. While traditional methods do not have a learning step, evolutionary algorithms utilize 

the experiences of the unsatisfied and satisfied candidates in the previous generations. 

Therefore, evolutionary algorithms are considered as a subfield of artificial intelligence (Eiben 

and Smith 2003). 

Different techniques of evolutionary algorithms have a general concept in common. There is 

always a population of individuals within an environment which compete for the limited 

resources. Based on the evolutionary mechanism the individuals will be passed to next 

generation which can adapt themselves according to environmental conditions. In this case, 

the candidate solutions in an optimization problem are the individuals and the fitness function 

is the environmental conditions (the higher the better). Survival of the fittest happens based on 

the fitness function and the stronger individuals are selected and will be passed to the new 

generation (selection). Therefore, the selection mechanism assures the increase in the quality. 

The process of creating new individuals for new generations makes sure to force the diversity 



 

to facilitate the novelty (through the mutation and recombination steps). Evolutionary 

algorithm is a stochastic optimization method because the variations happening during 

creation of new generation are randomly chosen. Furthermore, the selection process could be 

either deterministic or stochastic. For example, consider the chance for weak individuals (by 

random) to be passed to the new generation. 

To summarize the process of EAs, let us assume we wish to find the optimum values of a 

given objective function. The first generation of individuals (initial set of solutions) is 

randomly selected. The objective functions are calculated for this set of individuals. The 

selection criteria are based on fitness function--the higher the better. Therefore, the fitness 

function allows us to select the candidates which are better than the parents for the new 

generation. The new individuals are created based on applying mutation and recombination 

rules on the parents. In this process recombination is an operator applied to two or more 

selected elements (old generation) and results in one or more new candidates (the children). 

Also mutation is applied to one candidate and results in one new candidate. This process will 

repeat until the candidates meet the termination (stoppage) criteria. The termination criteria 

could be after a number of generations or time or obtaining a value of objective function. 

The following items are the general steps in an evolutionary algorithm (Eiben and Smith 

2003): 

1. Initial generation: Create the initial population of individuals randomly. 

2. Fitness evaluation: Calculate the fitness value for each individual in the population. 

3. Repeat the following tasks on the generation until the termination criteria are met: 

a) Selection of parents: Choose the best-fit individuals for reproduction.  

b) New generation: Breed new individuals through recombination (crossover) 

and mutation operations to give birth to offspring. 

c) Function evaluation: Evaluate the individual fitness of new individuals. 

d) Survival of the fittest: Replace least fit population with new individuals.  

Figure 11 describes the process in a schematic way. 



 

 

Figure 11: Schematic for evolutionary algorithms. 

3.4.3 Differential Evolution  

The Differential evolution (DE) algorithm was developed by Storn and Price (1995) as a 

stochastic population based algorithm for continuous and real-valued numerical optimization 

problems (Storn and Price 1997, Price and Storn 1997, Price, Storn and Lampinen 2005) . As 

it was mentioned earlier, DE belongs to the category of evolutionary algorithms and, like other 

EA methods (such as genetic algorithms), it has mutation, recombination, and selection steps. 

Because of simple mathematical structure, DE is considered as a very effective global 

optimization algorithm. Since the advent of DE, it has been applied to many engineering 

problems (Thomas and Vernon 1997, R. Storn 1996, R. Storn 1999, Liu and Lampinen 2002). 

Similar to a genetic algorithm DE is able to be used in a parallel processing framework. But 

unlike a genetic algorithm, DE is famous for fast convergence (Price, Storn and Lampinen 

2005). 

In the following, we go through the details of different steps in DE algorithm: 

Let us assume we have a function with   real parameters, which we wish to find the optimum 

values. To start assume we select the size of population as   . Since some mutation and 

recombination rules require at least four individuals,    must be at least four. Therefore, the 

parameter vectors are like: 

Equation 2: Parameter vector in DE algorithm.      [                      ]  
Which             and   is the generation number. Also, again,   is the dimension of each 

vector (number of parameters). 



 

Initialization and fitness evaluation 

For this step, the upper and lower bounds of each parameter should be defined. Then 

individuals in the initial generation are selected randomly within the intervals of          .                   
Equation 3: Randomly selection of initial generation.                             (             )  
Here           is a random real number between zero and one. Also        and        are 

minimum and maximum of     parameter in vector  . Figure 12 summarizes the initialization 

step in DE algorithm. 

 

Figure 12: Initialization step in DE algorithm. 

Mutation 

So far we have the initial generation randomly chosen over the range of each parameter. 

Mutation and recombination rules are the attempt to create the options for new generation. 

Particularly, mutation tries to expand the search space. For a given parameter vector      , we 

randomly select three other vectors (therefore there should be at least four vectors in the 

population). We assume these vectors are      ,       and       . The indices  ,   ,    and    

are different. The donor vector is defined based on the following equation: 

Equation 4: Defining the donor vector.                                

The  , known as mutation factor, is a constant from      . The donor vector is used in the 

recombination step. 

Recombination 

Recombination incorporates successful solutions from the previous generation. In this step a 

trial vector,        is developed. The elements of the trial vector are from the components of 



 

the target (parent) vector,     , and donor vector,       . Elements of the donor vector enter the 

trial vector with probability of    (crossover). 

Therefore we have the trial vector as: 

Equation 5: Forming the trial vector. 

          {                                                                              ,         and    are the parameters which determine the source of parameter elements. 

There are two options for the source: the donor vector or the target (parent) vector. 

The          is selected from the standard normal distribution,       , and    is compared to 

this value. If    is greater than or equal to this random number, then the trial parameter is 

copied from the donor vector; otherwise the parameter is inherited from the parent vector. 

The crossover constant,   , is a probability constant defined by user from      . Basically this 

constant controls how much of the parameter are taken from the target (parent) vector or the 

donor vector. A higher    increases the probability of selecting the element from the donor 

vector and a lower    leans toward the element from the parent vector. For example      leads to the selection of the element from the donor vector regardless of         ’s value and 

with      it is guaranteed that the element comes from the parent vector.       is a random 

integer from          .       makes sure that the donor vector and the target are not identical. 

In addition,       assures having at least one parameter to be taken from the donor vector, 

which guarantees the diversity in the population. 

Selection 

At this step there are two vectors, the target (parent) vector,     , and the trial vector,       . 

Here the fitness values for these vectors are evaluated and the one with lowest function value 

is admitted to the next generation. 

Equation 6: Selection step of DE algorithm. 

        {                     (      )                                                          
Mutation, recombination, and selection are repeated until it meets the stoppage criteria. The 

main steps of DE are described in Figure 13. Also Figure 14 illustrates the different steps of 

DE on a solution space. 



 

 

Figure 13: Flowchart of DE. 

 

Figure 14: The steps of DE (Hajizadeh, Christie and Demyanov 2009). 

One of the most important strengths of DE among other evolutionary strategies is its strong 

mutation strategies (Storn and Price 1997, Price and Storn, Differential evolution 1997). There 

are different types of DE that vary in the way that mutation and recombination rules are 

defined. The general naming rule used for the different mutation approaches is “        ”, 

where   is the vector to mutate,   represents the number of difference vectors required in 

mutation equation, and   stands for the type of crossover used in the algorithm. There are two 

kinds of crossover schemes which can be used in the DE algorithm: exponential and binomial  

(Storn and Price 1997, Ferrante and Ville 2010, Price and Storn 1997, R. Storn 1999, Liu and 

Lampinen 2005, Shahryar, Hamid and Magdy 2008). There are five most commonly used 

strategies for the mutation step in the DE algorithm (Shahryar, Hamid and Magdy 2008, Das 

and Suganthan 2009, Kaelo and Ali 2006, Swagatam, et al. 2009, Janez, et al. 2007, Price, 

Storn and Lampinen 2005). In following we review these five strategies: 



 

          

In this strategy, three randomly selected vectors are used. The difference of two vectors are 

multiplied by mutation factor,  , and then added to the base vector. 

Equation 7: First mutation strategy          .                                             

It is similar to the          , because the vectors are selected randomly; but there are two 

difference vectors and mutation factors in this strategy. 

Equation 8: Second mutation strategy          .                  (               )     (               )           

Similar to the          , there is one difference vector. But here the algorithm chooses the 

best vector with lowest fitness function value as the base vector. 

Equation 9: Third mutation strategy          .                                              

Like the           , the base vector is the best vector with lowest fitness function value. But 

instead of one difference vector, two difference vectors are added to base vector. 

Equation 10: Fourth mutation strategy          .                                                                            

In this strategy the base vector is the target (parent) vector and there are two difference vectors 

in the equation. The first difference vector is the difference between the target vector and the 

vector with best fitness function value. The second difference vector is the difference between 

two randomly selected vectors. 

Equation 11: Fifth mutation strategy                    .                                                    

3.4.4 Performance of DE 

Although the efficiency of DE has been shown on a large range of classic optimization 

problems (Price, Storn and Lampinen 2005), there is no proof of convergence for DE. Storn 

and Price (1997) showed that the performance of DE is more effective than simulated 

annealing and genetic algorithms. In another study, Ali and Torn (2004) illustrated case 



 

studies that DE was more accurate and effective than controlled a random search and a 

modified version of genetic algorithm. 

DE is famous for its simple structure. The three control parameters in DE are the size of 

population,   , the mutation factor,  , and crossover,   . The low number of control 

parameters makes DE simple, fast, and easy to apply. There are elaborate references on DE 

algorithm and parameters (Ferrante and Ville 2010, Kaelo and Ali 2006, Das and Suganthan 

2009). DE has been effectively applied in different areas of engineering. Successful examples 

of DE application can be found in electric and electrical engineering (Qing 2009, Qing and 

Lee 2010), aerospace engineering (Madavan 2004), civil and urban engineering (Suribabu 

2010), environmental engineering (Arunachalam 2008), material science and applied 

mechanics (Maciejewski, Myszka and Ziętek 2007), chemical engineering (Babu and Sastry 

1999), and etcetera. 

However the application of DE in petroleum engineering is relatively new. Decker and 

Mauldon (2006) coupled DE with two statistical methods to find the size and shape of 

fractures from trace data. Jahangiri (2007) utilized differential evolution to optimize smart 

well operations in order to maximize oil recovery. Wang et al. (2010) used DE for seismic 

waveform inversion and applied it to enhance the resolution of seismic data. Wang and his 

colleagues (2011) also used DE for waveform inversion of cross-well data. For the history 

matching purpose, Wang and Buckley (2006) deployed DE to find the relative permeabilities 

of oil and water to match the data from core flooding experiment. 

Hajizadeh et al. (2010) used DE to achieve a multiple history matched model of a reservoir 

located in the Gulf of Mexico. Mirzabozorg et al. (2013) applied DE approach in history 

matching of a two dimensional SAGD case. They compared the performance of DE with 

Particle Swarm Optimization (PSO) method and showed that DE is faster and more accurate. 

Okano (2013) used DE for the evaluation of CO2 injection test in a tight oil reservoir. The 

adjustable parameters were involved in the in-place volume and the connectivity between the 

wells. DE showed better performance in the required number of runs than PSO. 

3.5 Summary 
The topic of this chapter includes a new type of modeling which learns from the available 

examples and tries to find the hidden patterns and trends through these examples. These 

models gain their capabilities from artificial intelligence and data mining techniques. A 

famous example of these models is surrogate reservoir models. The characteristics associated 

with SRMs make them an attractive tool for reservoir modelers who struggle with the 



 

shortcomings of time-consuming and complicated reservoir simulation models. In this study, 

SRMs are built based on artificial neural networks. ANNs are non-linear data driven, fact and 

example based and most importantly a self-adaptive approach. These characteristics make 

them an ideal modeling tool for petroleum engineering problems. 

SRMs are approximations of full field reservoir simulation models which are created just 

based on a few realizations of simulation models. Fast track modeling abilities of SRMs suits 

the necessity of having models with high resolution, accuracy, and pace in the reservoir 

management workflow. Since the advent of SRMs in 2006 many successful examples of their 

use have been published. These examples address different tasks of reservoir study such as 

uncertainty analysis and production optimization which require hundreds realizations of the 

reservoir model. Depending on the objective of study, SRMs can be developed to reproduce 

the outputs of simulation models at the well or grid level. For a history matching case, the 

outputs are at the well location and therefore the SRM is referred as well-based SRM. If the 

outputs are at grid level (such as pressure and saturation at grid block) they are known as grid-

based SRM. Also depending on the objective of the study, the training realizations (required 

for SRM development) are varied in geological properties or operational conditions. For 

instance, a history matching study requires changing the geological characteristics and a 

production optimization analysis needs variation in operational conditions. An uncertainty 

assessment study can include both types of these properties.  

In order to have a successful surrogate reservoir model, there are important points that should 

be considered. Preparation and assembling the realizations of reservoir simulation in a way 

that suits the features of AI&DM techniques are really critical. The skill and knowledge of the 

user in reservoir engineering as well as the basics of AI&DM techniques play an important 

role for this purpose. The details of different steps required for SRM development will be 

covered in the next chapter. 

In order to have an automated history matching workflow, the reservoir model (it could be a 

simulation model or an approximation of it like SRMs) should be coupled with an 

optimization algorithm. Different methods of optimization have been utilized in history 

matching, as reviewed in the previous chapter. For this study, an evolutionary algorithm 

optimization method known as differential evolution (DE) was chosen. Recently DE has 

showed prosperous results for petroleum engineering applications. Because of its simple 

mathematical structure, DE is considered as a very effective global optimization algorithm. 

The low number of control parameters, makes DE simple, fast, and easy to apply. 



 

Chapter 4: Surrogate Reservoir Model 

based history matching: A proof of 

concept investigation and a feasibility 

study 
 

 

 

Overview 
In order to accomplish the objectives of this dissertation, a three step process were designed. 

At the beginning a proof of concept study was planned to show the potential of SRM to 

perform a successful history matching. Like many proof of concept studies, we start with a 

simple problem. Therefore an SRM was developed by considering only one uncertain property 

(permeability). However this property is heterogeneously distributed throughout the selected 

reservoir model. The next part of the project was a feasibility study. The objective of the 

second part is to demonstrate the robustness of SRM in handling higher degrees of uncertainty. 

Therefore, the number of uncertain properties increased (porosity, thickness, and permeability 

distributions at all grid blocks). SRM was trained, calibrated, and validated using a few 

number of simulation runs. The developed SRM was coupled with an optimization algorithm 

(DE). Finally the automated SRM-based history matching was performed by setting up the 

objective functions. 

The third part of this project was to apply the lessons learned to a real-life case study. A 

reservoir model known as PUNQ-S3 model was selected. PUNQ-S3 model covers different 

aspects of a real-life case study. The model includes multiple layers, multi-phase fluids, faults, 

aquifer, and strikes of high porosity/permeability. The data for this model is available for the 

researchers who want to examine the novel methods in history matching and uncertainty 

assessment. Different realizations of this model were generated by altering porosity and 

permeability (vertical and horizontal) distributions. The SRM was developed 

(trained/calibrated/validated) and then coupled with DE in order to perform the automated 

SRM-based history matching. Figure 15 summarizes three steps designed in this study.  



 

Primarily this chapter reviews the general steps required for building an SRM. Afterward it 

discusses the first two steps planned for accomplishing the objectives of this dissertation (1- 

Proof of concept 2- Feasibility study). We leave the third part of this research for the next 

chapter.  

This chapter can be divided into three main sections. The first section reviews the general 

steps in the development of an SRM and also the application of SRM for history matching. In 

the second section the proof of concept study will be reviewed and some brief results will be 

shown. The third and last part of this chapter is a report on the feasibility study of SRM in 

accomplishment of a history matching project. Each one of these sections will have different 

sub-sections. 

 

Figure 15: Three steps were defined to prove the concept of SRM, show the feasibility of the technology and 

apply the SRM to a real-life problem. 

4.1 General steps in development and application of SRM for 

history matching  

In the first part of this chapter, the general steps required for developing a surrogate reservoir 

model are explained. These steps have been performed for the three case studies in this 

project. There are three main steps in development and application of an SRM for history 

matching purposes. However each one of these steps includes sub-steps. These general steps 

are:  



 

 Model generation and spatio-temporal database preparation 

 SRM development 

 Using SRM to perform history matching 

Figure 16 lists the general steps and sub-steps in developing an SRM to perform a history 

matching project. In continuation we explain each one of these steps. 

 

Figure 16: The steps in developing an SRM for history matching purpose. 

4.2 Model generation and spatio-temporal database 

preparation 

4.2.1 Spatio-temporal database 

The artificial intelligence based reservoir models including SRMs are constructed based on a 

spatio-temporal database. Depending on the objective of study this database contains different 

types of data. The source of data is from different realizations of the reservoir simulation 

model. The data are extracted from these realizations to create the database. The main goal of 

this database is to teach the model the process of fluid flow phenomena in the reservoir. From 

one point of view the data in this database can be categorized as static and dynamic data. As 

was mentioned earlier, the static data refer to the properties which are constant overtime such 

as porosity, permeability, top depth and thickness. Also dynamic data are those ones which are 



 

not necessarily fixed overtime like operational constraints, the production at wells, pressure 

and phase saturations at the grid blocks, etcetera. Figure 17 is an example of different types of 

data in a spatio-temporal database. 

As was discussed earlier, the SRMs can be categorized based on the outputs. Well-based 

SRMs are the ones developed to estimate the properties at well level. Similarly, the grid-based 

SRMs predict the properties at grid block level. The type of SRMs has a great influence on the 

way that the spatio-temporal database is arranged. For instance, if we have a well-based SRM 

(like this study) the information mainly concentrates on the well performance. Therefore, a 

row in this database represents a well at a time step and the columns are static and dynamic 

data (S. D. Mohaghegh, J. S. Liu, et al. 2012b). On the other hand, a grid-based SRM focuses 

on the grid level. The row mainly shows the properties at grid block and the output is a 

property at grid block (such as pressure or phase saturation) (Amini, Mohaghegh, et al. 2012, 

2014, Shahkarami, et al. 2014). 

We can conclude the spatio-temporal database is responsible to teach the SRM the behavior of 

reservoir. The quality of SRM performance mainly depends on how well this database has 

been prepared. 

 

Figure 17: Different types of data in the spatio-temporal database. 
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4.2.2 Informative simulation runs representation of reservoir 

uncertainties  

The source of information in spatio-temporal database is the different realizations of the 

reservoir simulation model. Again, depending on the goal of study, the preparation of these 

realizations would be different. These realizations differ from each other in the variable 

uncertain properties. These uncertain properties are the variables which study would like to 

investigate their impacts on the output of reservoir model. For example in a history matching 

study which the adjustable parameters are porosity and permeability distributions, the 

realizations vary in distributions of these properties (S. D. Mohaghegh, J. S. Liu, et al. 2012b). 

Another example could be an uncertainty analysis of operational constraints. For this study we 

need realizations of reservoir model with different operational conditions (Amini, Mohaghegh, 

et al. 2012, 2014, Shahkarami, et al. 2014). 

Although SRM does not need a high number of simulation runs, there are no rules to identify 

the exact number of realizations required to have a perfect SRM. Many criteria can increase or 

decrease the number of runs required for developing an SRM. The complexity of the problem, 

particularly the level of reservoir heterogeneity, is an important factor. Here the pattern 

recognition ability of SRM plays a vital role. For geo-statistical proxy models a homogenous 

reservoir is the ideal problem to solve because of the simplicity and linearity of the problem. 

Therefore, the number of runs to create these models decreases. But once the heterogeneity of 

reservoir increases the problem gets more complex and a high number of runs are required to 

capture the relationship among the parameters by the proxy model. However, this process is 

totally different in SRMs. Due to capabilities of AI&DM techniques to understand the non-

linearity relations among the parameters, reservoir models such as SRMs do not require a high 

number of simulation runs to be developed. When it comes to a homogenous reservoir model 

(for example a model with constant value for permeability-no distribution) there is not much 

different information throughout the reservoir compared to a heterogeneous case. In other 

words, for a heterogeneous reservoir model, due to heterogeneity throughout the reservoir, 

each one of the grid blocks represents a different behavior of fluid flow. Therefore, although a 

heterogeneous reservoir is more complicated, it contains more information regarding the fluid 

flow behavior than a homogenous reservoir simulation model. Consequently a low number of 

simulation runs provides enough information for building an SRM. In other words 

heterogeneity is a friend of proxy models such as SRM. 



 

4.2.3 Reservoir delineation and tier system 

After deciding about the number of informative realizations of reservoir, the static and 

dynamic data are extracted in order to build the representative spatio-temporal database. 

Presenting these data to the SRM is an important task to do. The huge amount of data creates a 

very high dimensional database. Data summarization is essential task in this part. One way of 

data summarization is to delineate the reservoir to different segments and make an average of 

data over the segments of reservoir.  The delineation and segmentation of the reservoir is an 

important job in the process of developing an SRM. For a well-based SRM the delineation 

process is based on a famous theory known as Voronoi graph theory (Erwig 2000, Gomez, et 

al. 2009).The concept behind this delineation is simple. Let us assume having an ideal and 

homogenous reservoir, which also all the wells are producing under a same rate and at the 

same time. For this example, after a specific time the drainage area for each well is a polygon, 

where its boundaries have equal distance to the adjacent wells.  

Figure 18 depicts a sample of reservoir delineation based on this theory. The drainage area 

assigned to each well is one Voronoi polygon. For each well in the spatio-temporal database 

the static data (reservoir characteristics) corresponding to its drainage area is considered. 

 

Figure 18: Reservoir delineation based on Voronoi graph theory. 



 

Considering a single drainage area, a reservoir segmentation (tier) system is generated. The 

main purpose of this system is to summarize the information of each grid block based on their 

impact on the well performance. For example, if we consider the Euclidian distance of grid 

blocks from the production well, obviously a closer grid block to the well has higher impacts 

on the well production. The criteria for creating the tiers are subjective and mainly based on 

the rule of thumb. After setting up the tier system, the average reservoir properties are 

calculated in each tier. Finally in the spatio-temporal database, the reservoir properties 

affecting the well performance (production/injection/well bottom-hole pressure) are 

represented by the average value for each tier. Figure 19 demonstrates a tier system used in the 

first part of this study (Proof of concept study). The first tier includes the well block and the 

second tier has eight grid blocks around the well block. The third tier consists of the next 16 

grid blocks and last (fourth) tier in this system includes the rest of grid blocks in the drainage 

area. 

 

Figure 19: Dividing each Voronoi polygon (drainage area) to tiers. This tier system includes four tiers. 

Sometimes in order to consider the effect of nearby wells on the performance of a specific 

well, the closest wells are assigned as the offset wells. Offset wells are the neighbor wells in 

which their performance have impacts on the behavior of the target well. The offset well effect 

is more highlighted in a mature (under production for a while) field when the wells have 

interference on each other’s performance. 

Generally, there are a few facts which affect the number of the offset wells in the database. 

The first one is the conductivity of the reservoir, which is a function of the reservoir 

characteristics, particularly permeability. It is much easier for the fluid to flow in a conduct 

reservoir. Therefore, the fluid sees the further distances of the reservoir faster. Therefore, the 

number of offset wells will be higher compared to a tight reservoir. The second fact is the 



 

background of the reservoir. In a brown (mature) field with long period of production, the 

reservoir has felt the further distance compared to a green field, which still is at the initial 

levels of production. Finally, the measureable impact (practical observation) of other wells 

performance should be considered. Based on the diffusivity equation, the effect of a change in 

a part of system can be observed simultaneously all over the system.  

So far the realizations of the reservoir model are generated and the dynamic and static data are 

extracted. The reservoir is delineated using the Voronoi graph theory and based on the 

designed tier system the average values of static properties are calculated and assigned to the 

tiers. At this time, the spatio-temporal database is ready.  

4.3 SRM development 

An SRM is an ensemble of neuro-fuzzy systems that are trained, calibrated, and tested using 

the information provided in the spatio-temporal database. The neuro-fuzzy systems in SRM 

are used to identify the hidden patterns and trends in the database. This process happens 

mainly in two parts. The first part is a preprocessing step and the second one is during training 

and calibration of SRM. As was mentioned earlier, the main neuro-fuzzy systems used in this 

study are artificial neural networks. However, a fuzzy pattern recognition algorithm was used 

as a preprocessing tool.  

4.3.1 Preprocessing operations 

The spatio-temporal database usually contains a high number of parameters (static and 

dynamic). It is a fact that all the parameters in the database do not necessarily have an equal 

impact on the output of the SRM (Mohaghegh, Modavi, et al., Development of Surrogate 

Reservoir Model (SRM) for Fast Track Analysis of a Complex Reservoir 2009). Before 

training the SRM, preprocessing operations can be performed to identify the most important 

parameters in the database and decrease the dimensionality of the problem. The data 

preprocessing not only improves the efficiency of SRM (during training and implementation), 

but it also helps to have a better understanding of the problem behavior. 

There are different types of preprocessing operations. These operations could be very simple 

such as computing differences between and taking ratios of inputs or scaling the data. On other 

hand, the operations could be very complicated; for example using fuzzy pattern recognition 

techniques to find the hidden patterns and trends among the data. Statistical based methods 



 

such as regression analysis are also common operations for proxy models which are based on 

statistical approaches.  

The preprocessing step in this study is accomplished by using fuzzy pattern recognition 

techniques (S. D. Mohaghegh, Virtual intelligence applications in petroleum engineering: part 

3 – fuzzy logic 2000, Intelligent Solutions, Inc. 2014). The technology is used to find the Key 

Performance Indicators (KPIs). The KPI analysis quantifies the influence of each parameter as 

well as the combinations of parameters on the target output. At the end of this process we have 

a ranking of the most influence parameters in our database. This ranking can serve as a useful 

guide to select the inputs of the SRM for training part. 

Another important step before training the SRM is input data selection. Not all of the 

parameters extracted from the realizations could be helpful during the training process. Input 

data selection can be a demanding and complicated task. Surrogate reservoir models are based 

on data-driven modeling techniques and therefore they can be as good as the input data used to 

train them. Missing the important inputs in this step can have a significant effect on the SRM 

performance. As a result, developing an applicable surrogate reservoir model without a solid 

understanding of the problem domain could be a tough job to do. During the input selection, 

the petroleum engineering knowledge of the user plays an important role to in understanding 

the relations among the inputs. The SRM does not contribute to a particular form of analysis; it 

will attempt to utilize all of the input information available to model the fluid flow behavior. 

Therefore using fundamental data besides the technical data can improve the general 

performance of the SRM. This is an important point in building SRM which is ignored during 

development of other types of proxy models. In other words, the SRM tries to mimic the exact 

behavior of the simulation model; therefore, the fundamental information, which may be fixed 

in different realizations (such as top depth), should be included in the database. 

4.3.2 Train, calibrate, and validate ANNs 

The training process of an SRM includes three different steps: training (learning), calibration, 

and validation procedures. Based on that, the spatio-temporal database is divided into three 

sets: the training or learning set, calibration set, and validation or verification set. The training 

set is part of the data shown to the ANNs during the training process. The ANNs are adapted 

to this set to match the provided outputs (reservoir simulation results). On the other hand, the 

calibration set is not used to adjust the outputs. This set is utilized to assure that any increase 

in accuracy over the training data set will lead to an increase in accuracy over a data set that 



 

has not been seen by ANNs. This set of data is helpful in determining when the training should 

be stopped. Finally, the verification set is a part of the database used to verify the 

predictability of the trained ANNs, and, subsequently, this data set is not used to train the 

ANNs. It is worth mentioning that the elapsed time to perform the training process (learning, 

calibration, and verification) is negligible when is compared to the reservoir simulation run-

time. Another important point is that an SRM may be a collection of several ANNs that are 

trained, matched, and verified in order to generate different results (results can be at grid or 

well and then combined to generate the full field model outputs). 

4.3.3 Blind verification 

A further validation step is applied to test the robustness of the SRM. This step is referred to as 

“Blind Verification”. It is called “blind” because it is a set of realization(s) that has not been 

used during the training process. These blind testing sets are complete realizations of the 

reservoir, while the verification set used in the training process is a randomly selected portion 

of the spatio-temporal database. 

4.4 History matching 

In this step the SRM is trained, calibrated, and validated. The further validation step of blind 

verification is performed and the performance of the SRM on a complete blind set is tested. 

Therefore, the SRM is ready to substitute the reservoir simulation model in the history 

matching process. In order to perform the history matching, the first order of business is to 

define the objective functions. The following equations are among the most common objective 

functions used for the history match process (CMG 2013). 

This objective function calculates the relative difference between the SRM results and the 

measured production data. Equation 12 computes the relative differences at the well level. The 

subscripts   and   represent well and time respectively.        is the total number of measured 

data points for each well   and property  .       are the predicted production by SRM and       are 

the measured production data.     is the scale calculated by subtracting the maximum and 

minimum of measured production data for well  .      is also the total number of properties 

required to be matched (for example oil production, gas production, water cut). Although for a 

real case, there is measurement error and it should be considered in the calculation, we assume 

there is not this kind of error in this study. In practice, it is common to consider that the quality 

and importance of measured data may be different for some specific properties and wells. 

Therefore some weighting factors (      ) are present in these equations.    



 

Equation 12: Individual well objective function. 

     ∑             ∑√∑ (               )                        
    
               

It is also common to define a global objective function in order to have calculations in the field 

level. Equation 13 describes the global objective function using the well level objective 

function, which we defined in Equation 12. Here          is the global objective function,     
is the objective function for well  , and    is the total number of wells.    is the defined 

weight for well  .  
Equation 13: Global (Field) objective function. 

          ∑        ∑        
    

Once the objective functions are set, the misfit between surrogate reservoir model outputs and 

measured data can be calculated. Thus, the misfit value is used in the history matching 

workflow. In this dissertation a manual history matching was used for the first part of the 

study. For the second and third parts of this research the surrogate reservoir model was 

coupled with the optimization method (DE).   

The rest of this chapter will review the two main steps used to accomplish the objectives of 

this dissertation.  

4.5 Proof of concept study 

4.5.1 Objective 

The objective of the first part of this study is to examine the utility of the surrogate reservoir 

model as an effective tool for history matching. In this step, an SRM was created for a 

synthetic but highly heterogeneous and complex oil field, with 24 production wells and 30 

years of production data. The goal is to match the annual production data by tuning 

permeability distribution. The SRM was trained using ten heterogeneous realizations and then 

validated by a blind simulation run. Finally, the full field model was substituted by the trained 

SRM in the history match process.  



 

In order to develop the SRM, different steps mentioned in the previous section were followed. 

The reservoir was divided into different tiers and the spatio-temporal database was generated. 

It included static and dynamic data extracted from ten heterogeneous realizations of the 

reservoir. The uncertain property at this step of study was permeability distribution. In 

addition, one more realization was built to validate the trained SRM. KPI analysis was 

performed and the ANNs were trained, calibrated, and validated using the spatio-temporal 

database.  

The developed SRM substituted the reservoir simulation model to tune permeability 

distribution at the created tiers in order to match the past performance of the reservoir. The 

SRM was used to calculate the oil production of 24 wells during 30 years (2000 to end of 

2029). Consequently, the oil rate production of all 24 wells was history matched in a short 

period of time by modifying the permeability distribution throughout the reservoir. The final 

output of history matching is a permeability distribution that is compared to the original 

permeability distribution. The original (actual) permeability distribution was just used for 

comparison purposes after the completion of the history matching process.  

4.5.2 Model generation and spatio-temporal database preparation 

4.5.2.1 Simulation model 

The reservoir model used in this study is a synthetic replica of a highly heterogeneous oil field, 

with 24 production wells and 30 years of production history. The base simulation model is a 

single porosity oil reservoir, which was constructed in CMG-BUILDER
TM1

(CMG 2013). The 

reservoir has been divided into 4800 non-orthogonal grid blocks, 80 in X direction and 60 in Y 

direction. The reservoir has a single layer and thickness values are variable in different gird 

blocks. The field is producing oil at the initial pressure of 13,789.5 kilopascals (2000 psi) and 

bubble point pressure of 2,068.4 kilopascals (300 psi), therefore it is expected that the 

candidate reservoir will be producing oil for a long time in an under-saturated condition. The 

model is synthetic and does not represent a real field. Figure 20 shows three and two 

dimensional views of the reservoir structure. Figure 21 and Figure 22 illustrate three and two 

dimensional views of porosity and grid thickness distributions for the base reservoir model.  

The given permeability range for the base model is from 10 to 75 md (Figure 23). In addition, 

the geological information from the field identifies a high permeable zone. 24 production 

wells have been drilled in the field and they produce oil for 30 years. Minimum bottom-hole 
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pressure (BHP) is set as the production constraint which varies through time. The wells 

produce for 30 years, starting in 2000/01/01. The available historical data include oil rate 

production for all the wells. 

 

Figure 20: Three and two dimensional top views of simulation model. 

 

Figure 21: Three and two dimensional views of porosity distribution. 

 

Figure 22: Three and two dimensional views of thickness map. 



 

 

Figure 23: Given permeability map for the base case. 

24 production wells have been drilled in the field and they produce oil for 30 years. Minimum 

bottom-hole pressure (BHP) is the production constraints. Figure 24 demonstrates the recorded 

monthly bottom-hole pressure for a couple of wells. Table 3 contains the values of porosity, 

thickness, and permeability in the base model at the well sites. 

 

Figure 24: Bottom-hole pressure as constraints for the production wells. 



 

Table 3: Porosity, thickness and permeability values at the well sites. 

 

The wells produce oil for 30 years, starting in 2000/01/01. The available historical data 

include oil rate production and cumulative oil production for all the wells. Figure 25 shows the 

oil rate and cumulative oil for four wells. The complete historical data are available in the 

Appendix A (section a). 

 

Figure 25: Production history data for some wells, the rest of wells are available in Appendix A (section a). 



 

4.5.2.2 Informative simulation runs representation of reservoir uncertainties  

In order to introduce the uncertainties involved in the reservoir simulation model to SRM, a 

small number of simulation runs should be made. For the proof of concept part of the study ten 

different realizations of the base model were designed to develop the SRM. Using the 

permeability map from base reservoir model, ten different permeability maps were generated. 

The range of permeability for the base model is from 10 to 70 md. Due to the uncertainty 

involved in reservoir properties, a range from 10 to 200 md was considered to create the 

permeability distributions. Afterward, to create ten different cases of permeability values at the 

well location, an experimental method (Latin Hypercube) was used. Table 4 summarizes 

generated permeability values at the well locations. 

Table 4: Permeability (md) values designed at well locations for generating permeability maps. The 

permeability values for each well have been ranged by color, which red and blue represent minimum and 

maximum values, respectively.  

 

Figure 26 shows three different permeability distributions, and the rest of the training 

realizations are shown in the Appendix A (section b). In these realizations, permeability 

distributions as well as the range of permeability values are different. 

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Well-1 44.6 21.6 21.0 38.7 60.5 67.1 31.3 66.4 44.2 89.7

Well-10 40.3 29.8 51.5 140.8 49.7 142.8 146.9 87.5 113.6 107.3

Well-11 41.7 85.8 32.6 83.8 138.6 39.0 122.6 117.7 97.1 33.0

Well-12 33.4 18.0 44.7 51.9 40.1 21.2 89.8 73.9 75.5 34.9

Well-13 64.3 41.3 64.3 61.0 74.9 69.2 54.7 60.9 118.4 104.9

Well-14 17.6 42.8 30.0 31.0 38.1 28.4 43.1 56.1 35.2 62.9

Well-15 18.9 44.9 37.5 47.4 55.8 32.7 92.0 93.1 91.2 59.6

Well-16 21.7 40.0 29.9 32.5 41.1 33.9 43.0 57.8 38.8 66.8

Well-17 78.1 45.0 27.7 44.6 84.1 102.4 93.8 143.9 158.9 152.5

Well-18 34.6 24.6 40.2 56.8 29.5 44.1 75.7 74.9 54.6 81.3

Well-19 76.8 60.3 95.6 38.9 54.0 81.7 107.5 172.6 49.3 61.4

Well-2 58.8 42.9 52.6 92.2 78.0 105.4 93.7 81.6 107.2 119.5

Well-20 41.2 27.3 14.4 53.9 70.7 27.4 18.9 37.4 88.0 21.9

Well-21 19.5 22.4 39.5 27.4 19.6 47.5 50.5 63.4 60.7 89.6

Well-22 30.0 36.0 31.9 42.4 46.1 43.3 63.6 61.3 70.1 57.4

Well-23 58.6 67.8 60.4 117.6 109.0 59.6 82.4 55.8 47.6 73.2

Well-24 29.2 31.6 21.5 44.0 28.2 57.5 17.5 77.4 69.4 27.8

Well-25 29.5 88.8 46.1 68.4 31.7 109.8 159.9 112.4 182.8 153.0

Well-3 67.0 38.5 76.5 55.4 72.5 53.2 36.8 43.1 123.5 94.0

Well-4 26.5 37.5 32.9 71.0 66.7 42.0 31.6 29.8 22.8 19.0

Well-5 43.2 30.2 31.7 15.9 26.4 66.3 60.4 86.2 83.2 72.5

Well-6 24.5 38.1 34.9 40.3 46.5 38.5 62.3 63.4 56.7 61.7

Well-7 41.6 15.9 30.7 65.1 39.2 20.6 44.5 49.6 50.4 57.0

Well-8 54.1 79.0 73.4 112.9 101.4 71.8 193.9 161.8 140.1 131.8

Permeabilty @ Wells' Location for 10 Runs applied in Training part
Well



 

 

Figure 26: Different permeabilty distributions created to train the SRM (th rest of maps are available in the 

Appendix A- section b.) 

4.5.2.3 Reservoir delineation and tier system 

Using Voronoi graph theory, the drainage area for each well was designed. Figure 18 in the 

previous section is the designed Voronoi polygons for this reservoir model. In addition, in 

order to include the static data of adjacent grid blocks of a well into the spatio-temporal 

database, a tier system was generated. Figure 19 depicts the tier system used for this part of 

study.  Finally to consider the impact of the adjacent wells on the production of target well, 

three offset wells were assigned to the target well. The selection criterion was based on the 

Euclidian distance. In the database the static and dynamic data of these offset wells were 

considered for the target well. 

4.5.3 SRM development 

4.5.3.1 Preprocessing operations 

Up to this point, the required simulation runs have been designed and executed, the reservoir 

was divided into the desired segments and three offset wells were recognized for each well. In 

this step, the inputs to develop the spatio-temporal database are selected. As was mentioned, 

the objective of study is an important factor in this step (Amini, Mohaghegh, et al. 2012, 

Mohaghegh, Liu, et al., Application of Surrogate Reservoir Models (SRM) to an Onshore 

Green Field in Saudi Arabia; Case Study 2012a). Figure 17 lists different types of data in the 

database for this step of study. Basically the database is a table in which the rows are the wells 



 

at different time steps (here we have 24 wells and 30 time steps; therefore the database has           rows). The columns of this database are the properties (static and dynamic) 

and also the identification parameters (such as well index, realization indices, etc.). Figure 27 

demonstrate the general format of the spatio-temporal database.  

 

Figure 27: General format of a spatio-temporal database. 

KPI analysis as a pre-modeling operation was performed to identify the most influential 

parameters in the database and provide a base for the input data selection before training the 

ANNs. KPI analysis and generating the neural networks in this study were performed by using 

a data-driven software known as IDEA
TM

. This software is developed particularly for building 

artificial intelligence based models for petroleum engineering applications by Intelligent 

Solutions Inc. (ISI) (Intelligent Solutions, Inc. 2014). 

In the proof of concept study, the SRM consists of two ANNs. These networks vary in 

selection of inputs and outputs. The output of first ANN, we call it “Initialization”, is the 

annual oil production rate at the end of first year of production (2000/31/01). While the output 

of second network, named “Main”, is the annual oil production rate for the other years of 

production. The inputs to train these ANNs are also different from each other. 

Table 5 and Table 6 summarize the results of KPI analysis for this step of the study. Table 5 

shows the results for the initialization network. As expected, the most high-ranking parameters 

for this model are permeability values for the target well and the offset wells. Table 6 shows 

the results of KPI analysis for the main ANN. For this network dynamic parameters such as 

bottom-hole pressure, time, and oil production rate are the most important properties. 



 

The KPI analyses can provide helpful feedback for selecting the final input parameters for the 

training part. However, the selection of inputs is not just limited to KPI analysis. The reservoir 

engineering knowledge could provide good judgment for adding some inputs. Table 7 and 

Table 8 list the final inputs selected for initialization and main networks respectively. 

Table 5: The results of KPI analysis for the Initialization ANN. 

 

Table 6: The results of KPI analysis for the Main ANN.  

 

Rank Feature % Degree of Influence

1 Horizontal Permeability, Tier # 1 100

2 Horizontal Permeability, Tier # 2 98

3 Horizontal Permeability, Tier # 3 82

4 Horizontal Permeability, Tier # 4 57

5 Horizontal Permeability, Offset well # 1, Tier # 4 37

6 Horizontal Permeability, Offset well # 1, Tier # 3 33

7 Latitude (X) 31

8 Latitude (X) Offset well # 1 31

9 Horizontal Permeability, Offset well # 3, Tier # 4 28

10 Horizontal Permeability, Offset well # 1, Tier # 2 25

11 Horizontal Permeability, Offset well # 3, Tier # 3 25

12 Top, Tier # 1 24

13 Top, Tier # 2 23

14 Horizontal Permeability, Offset well # 2, Tier # 3 21

15 Horizontal Permeability, Offset well # 1, Tier # 1 21

16 Top, Tier # 3 21

17 Top Offset well # 1 Tier #1 21

18 Top Offset well # 1 Tier #2 20

19 Horizontal Permeability, Offset well # 2, Tier # 4 20

20 Other parameters Less than 20 %

Rank Feature % Degree of Influence

1 Oil production rate @ a year before 100

2 Bottom-hole Pressure (psi) 54

3 time 52

4 Oil production rate @ (t-1) Offset well # 3 42

5 Oil production rate @ (t-1) Offset well # 1 41

6 Oil production rate @ (t-1) Offset well # 2 35

7 Top, Tier # 1 13

8 Top, Tier # 2 12

9 Horizontal Permeability, Tier # 1 12

10 Top, Tier # 3 11

11 Horizontal Permeability, Tier # 1 11

12 Latitude (X) Offset well # 1 11

13 Thickness, Tier # 2 11

14 Thickness, Tier # 1 10

15 Top Offset well # 1 Tier # 4 10

16 Top Offset well # 1 Tier # 1 10

17 Porosity, Tier #4 10

18 Top Offset well # 1 Tier #2 9

19 Thickness, Tier #4 9

20 Other parameters Less than 9%



 

Table 7: Selected inputs for the Initialization ANN. 

 

Table 8: Selected inputs for the Main ANN. 

 

4.5.3.2 Train, calibrate, and validate the ANNs 

The IDEA
TM

 provides a data partitioning algorithm which selects training, calibration, and 

verification sets randomly. As mentioned, the spatio-temporal database was built based on the 

information from ten simulation runs. The training, calibration, and verification set include 

80%, 10%, and 10% of the data in the database respectively. It should be noted that the size of 

each partition, like many other things in the development of SRMs, is a function of the 

complexity of the problem at hand. There is no “one size fit all” approach, but there are 

general rules that can be followed.  

Up to this point two different ANNs have been initiated. The inputs are selected and the 

database is divided into training, calibration, and verification sets. At this step, the ANNs are 

ready to get into the training procedure. The training algorithm used in this study is a back 

propagation method (Fausett 1993, Rojas and Feldman. 1996). Back propagation networks 

always consist of at least one hidden layer. Krose and Smagt (1996) have stated that only one 

hidden layer is enough to approximate any function with finitely many discontinuities to 

arbitrary precision. Therefore, one hidden layer is selected in this study.  



 

The number of neurons in the hidden layer is completely our choice and there is no rule to 

determine the best possible number. If the number is too large, it will encourage the network 

to memorize the input patterns instead of learning the prototype of reservoir simulation. On the 

other hand, a hidden layer with too small a number of neurons will drastically increase the 

number of iterations essential to train the network. The software has a suggestion for the 

number of neurons, which is a function of the inputs number.  In this study, the recommended 

numbers of IDEA
TM

 have been used which are 20 and 50 for the initialization and main 

networks respectively. 

Figure 28 shows the ANN structure for the initialization and main networks. These graphs 

portray three different layers of ANNs: input, hidden, and output layers. Input layer includes 

the parameters chosen in the input selection part. The hidden neurons were suggested by the 

software and the output of models is annual oil production rate. Different layers are connected 

by the weight vectors; the weights are tuned in an iteration process during the training step to 

match the known outputs (reservoir simulation results).  

 

Figure 28: ANN structure for the Initialization (left) and Main (right) networks. 

Figure 29 is a snapshot of a dynamic training procedure. The graph shows the error profile for 

training (right) and calibration (left) sets. The best results are saved based on the best values 

achieved for the calibration set. Figure 30 and Figure 31 demonstrates the scatter plots for 

training, calibration, and verification sets after training process for initialization and main 

networks respectively. 



 

 

Figure 29: A snapshot of the training procedure. 

 

Figure 30: Scatter plots for the training, calibration and verification sets during the training process of the 

initialization ANN. 

 

Figure 31: Scatter plots for the training, calibration, and verification sets during the training process of the 

main ANN. 

4.5.3.3 Blind verification 

Although there is a verification procedure during the training process, the ANNs are going 

through an extra verification step. The trained ANNs are validated against a complete blind 

realization of the reservoir. Therefore the 11
th
 simulation run was made. The permeability 



 

distribution for this realization is completely different from the ten runs used for SRM 

training. This blind testing set is a complete realization of the reservoir, while the verification 

set used in the training process was a randomly selected portion (10%) of ten realizations. 

It should be noted that this blind realization should honor the range of permeability, which was 

used to train the ANNs. Finally, the trained ANNs were applied to predict the oil rate from the 

blind realization inputs. Figure 32 depicts the permeability distribution for the blind 

realization. The results of the blind verification run compared to the reservoir simulator values 

will be presented in the results section. 

 

Figure 32: Three (left) and two (right) dimensional views of permeability distribution for the blind 

verification realization. 

4.5.4 History matching 

After the blind verification step, the surrogate reservoir model is ready to be used in the 

history matching process. In the first step of this project we started with just one uncertain 

property, permeability. In order to accomplish the history matching, permeability values at 

each defined tier was adjusted. Then the defined objective functions were used to compare the 

oil rates predicted by the SRM against the real production rates. This procedure was repeated 

until an acceptable match in each well was obtained. 

4.5.5 Results 

In this section we present the results of one well (well #20) for different steps of construction 

and application of SRM in the proof of concept section. The results for rest of the wells are 

available in Appendix A (Appendix A: section c shows the results of run #1, section d presents 



 

the results of blind verification run, and part e shows the results of history matching). Figure 

33 shows the results after the training process; the chart portrays the oil rate’s profile for 30 

years of production, comparing SRM results with the simulator outputs. In this picture, the 

blue squares represent the SRM and the red line with stars shows the simulator results. It can 

be seen that SRM can reproduce the simulator results with high accuracy.  

 

Figure 33: Comparison between the results of SRM and simulator for well #20 in a training realization. 

Figure 34 shows the results of blind verification realization. As was mentioned before, a blind 

realization was used for testing the SRM with a realization set which has not seen by SRM. 

Therefore, this graph shows the potential of SRM to predict a realization performance out of 

the training dataset. 

 

Figure 34: Comparison between the results of SRM and simulator for well #20 in a blind verification run. 



 

Finally Figure 35 is a snapshot of the history match results for this well. This graph is the 

comparison of the SRM with the measured production data.  

 

Figure 35: The outcome of history matching for well #20 comparing the best match (SRM results- blue 

squares) and actual data (red line). 

The matched permeability values are shown as a permeability distribution map in Figure 36. 

The right side of this figure pictures some shots of the matched permeability map, while the 

left side shots are the actual permeability distribution. In addition, Figure 37 shows the error 

between the actual permeability and the matched one.  

 

Figure 36: Comparison of matched and actual Permeability distributions. 



 

 

Figure 37: A snapshot of error distribution of permeability. 

4.6 Feasibility study 

4.6.1 Objective 

The first part of this study was to show that the SRM is able to be an efficient substitute of 

reservoir simulation model in the history matching workflow. The results of the first part were 

a proof of SRM applicability to perform history matching. Like many other proof of concept 

studies, we started with a simple and controlled problem. The study was accomplished by 

adjusting one uncertain property (permeability). In the second part of study, we decided to step 

forward and study the performance of the SRM when the problem gets more complicated. 

Therefore, the number of uncertain properties increased to three properties (porosity, 

permeability, and thickness). The SRM was developed by having 20 different realizations of 

the reservoir. The distributions of porosity, permeability, and thickness are different in these 

realizations. The dynamic and static data were then extracted from these simulation runs in 

order to construct the spatio-temporal database. Once the SRM is trained, calibrated, and 

validated, two extra simulations runs (runs 21
st
 and 22

nd
) were used as the blind verification 

realizations.  

Another important improvement in this step of study was to couple the SRM with a global 

optimization algorithm (DE). Nowadays, although manual history matching still exists in the 

industry, the trend is to develop automated systems which are able to repeatedly adjust the 

uncertain parameters, run the model, achieve the results, and report the best matches. These 



 

goals are obtained in this step of study by having an optimization algorithm which selects the 

parameters within the given ranges, calls the developed SRM, runs it, calculates the misfit 

through the defined objective functions, and finally reports the best matches between the SRM 

and actual case.  

In this section of chapter four we go through the steps required to develop the SRM and then 

use it in the history matching process. Some preliminary results also will be reviewed. The 

complete results are provided in Appendix B. 

4.6.2 Model generation and spatio-temporal database preparation 

4.6.2.1 Simulation model 

The reservoir model used in this part is the same as the reservoir model explained in the proof 

of concept study section. Therefore, we skip the simulation model section here and the readers 

can refer to the section  4.5.2.1. 

4.6.2.2 Informative simulation runs representation of reservoir uncertainties  

20 realizations of the reservoir simulation model were generated to train the SRM. These 

realizations are different in porosity, permeability, and thickness distributions. An 

experimental design method was utilized over the properties range to construct combinations 

of the input parameter values such that the maximum information can be obtained from the 

minimum number of simulation runs. Latin hypercube sampling (LHS) is the experimental 

design method in this study. Latin hypercube sampling has enjoyed popularity as a widely 

used sampling technique for the propagation of uncertainty in analyses of complex systems 

(J.C. Helton, and F.J. Davis 2002). 

Using the experimental design method, the range of properties is constrained to the base model 

(with some expansion in range for adding some uncertainties, for example the range of 

permeability in the base model is 10-70 md, therefore we assumed a range of 5-200 md for the 

training realizations). The distribution of properties changes for different realizations. It is 

assumed the property values at the well locations are available (in reality they  are coming 

from the core data or log information); therefore, using an interpolation method (Inverse 

Distance Estimation provided in CMG-Builder
TM

 (CMG 2013)), a distribution of property can 

be generated. Figure 38 explains the process of generating new realizations (altering property 

values at well locations). Figure 39 to Figure 41 compare the permeability, porosity, and 

thickness distributions of the first and second realizations. The property distributions for the 

rest of the realizations are provided in Appendix B (section a). 



 

 

Figure 38: Flow chart to generate different realizations by altering property values at well locations. 

 

Figure 39: Comparison of permeability distributions between realizations #1 and #2. The property 

distributions for the rest of realizations are provided in Appendix B (section a). 



 

 

Figure 40: Comparison of porosity distributions between realizations #1 and #2.  

 

Figure 41: Comparison of thickness distributions between realizations #1 and #2.  

In addition to the 20 training realizations, two extra realizations were created to be used as the 

blind verification runs. Figure 42 displays permeability, porosity, and thickness distributions 

for blind verification runs.  

The 23
rd

 realization was created and assumed as the true case in which its output (oil 

production) is considered as the actual field data. Figure 43 depicts permeability, porosity, and 

thickness distributions for the actual case. 



 

 

Figure 42: Permeability, porosity, and thickness distributions for two blind verification realizations. 



 

 

Figure 43: Permeability, porosity, and thickness distribution for actual simulation model, 23rd realization. 

4.6.2.3 Reservoir delineation and tier system 

The reservoir was delineated to Voronoi polygons and then each polygon was divided into 

four tiers. The tier system used in this section is same as the one shown in Figure 19. After 

extracting the reservoir characteristics, the average value of properties in each tier was 

calculated. Also the dynamic data was extracted and imported into the database. At this stage 

the spatio-temporal database is ready to enter the training process.  

4.6.3 SRM development 

4.6.3.1 Preprocessing operations 

As a pre-modeling process, KPI analysis was performed to find the most important parameters 

in the database. Table 9 is the result of KPI analysis for this part of study. The high ranking 

parameters in this list are the dynamic properties, and then the next are static parameters such 

as top and permeability. In this study one neural network was trained to estimate the annual oil 

rate production. Table 10 shows the selected inputs for the training part of SRM. The latitude 

(X) and longitude (Y) of the wells, the variable parameters (porosity, permeability, and 

thickness), and the top values at each tier are the static parameters. The dynamic parameters 



 

include well bottom-hole pressure (target well and offset wells), time, and oil production rate 

during the year before. 

Table 9: The results of KPI analysis for the SRM in the “Feasibility Study”. 

 

Table 10: Selected inputs for training the SRM in the “Feasibility Study”. 

 

4.6.3.2 Train, calibrate, and validate the ANNs  

After the inputs selection is made, using IDEA
TM

 the database is divided into training, 

calibration, and verification sets (with 80%, 10%, and 10% shares of database 

respectively).  

Static Inputs Dynamic Inputs
Well Latitude (X)

Well Langitude (Y)

Horizontal Permeability, Tier # 1

Thickness, Tier # 1

Top, Tier # 1

Porosity, Tier # 2

Horizontal Permeability, Tier # 2

Thickness, Tier # 2

Top, Tier # 2

Porosity, Tier # 3

Horizontal Permeability, Tier # 3

Thickness, Tier # 3

Top, Tier # 3

Porosity, Tier # 4

Horizontal Permeability, Tier # 4

Thickness, Tier # 4

Top, Tier # 4

Top,T4

Well Bottom-hole Pressure, Offset well # 3

Oil production rate @ a year before

Well Bottom-hole Pressure, Offset well # 1

Well Bottom-hole Pressure, Offset well # 2

Bottom-hole Pressure

Time



 

A back propagation training algorithm was used to train the data. Figure 44 displays the 

structure of the ANN used in this section. There is one hidden layer in this structure which 

contains 29 neurons. The hidden layer is connected to the inputs and output layers. The inputs 

are based on the selected parameters in the previous section and the output of network is 

annual oil production rate. 

 

Figure 44: ANN structure. 

Figure 45 shows the results in scatter plots for training, calibration, and verification sets during 

the training process.  

 

Figure 45: Scatter plots for the training, calibration and verification sets during the training process. 

4.6.3.3 Blind verification 

When the SRM is trained, its robustness is tested using the blind verification runs. As it was 

mentioned earlier, two extra runs were generated as the blind verification realizations. These 

realizations have completely different distributions of permeability, porosity, and thickness 

(Figure 42).  



 

4.6.3.4 Automated SRM-based history matching 

The developed surrogate reservoir model was further validated using the blind verification 

runs. After passing the testing step, the SRM is ready to get into the history matching process. 

For this purpose the SRM was coupled with DE optimization algorithm to perform the history 

matching. Coupling SRM with DE provides an automated workflow. The range of properties 

and the objective functions are the only items provided by the user in this workflow. Then DE 

selects the first set of parameters and calls the developed SRM. The SRM calculates the 

outputs (oil production) and the misfit value are measured using the objective functions. The 

misfit values and selected parameters are saved in the memory of computer. This process is 

carried out automatically and repeated until the stoppage criteria are met. The stoppage criteria 

here are a constant value for misfit or after calling SRM for 3000 times.   

4.6.4 Results 

Similar to the other section, we do not show the results for all the wells here. A single well 

(well #2) was selected in this section to present the results at the different steps of 

development and application of SRM. The results of the other wells are available in Appendix 

B (sections b and c). Figure 46 shows a comparison of the results between the performance of 

SRM and simulator (CMG) for well #2 in a training realization. In addition, Figure 47 shows 

the same comparison for a blind verification run. The SRM shows a good performance over 

the training and blind realizations. 

 

Figure 46: Comparison between the results of SRM and simulator for well #2 in a training realization. 



 

 

Figure 47: Comparison between the results of SRM and simulator for well #2 in a blind verification run. 

Figure 48 is the results of history matching for well #2 comparing the ten best achieved 

matches with the actual data. The blue lines in this figure represent the ten best matches and 

the red stars are the actual data. Offering multiple matched realizations is an advantage 

provided in this automated history matching workflow.  

 

Figure 48: The outcome of history matching for well #2 comparison between ten best matches (blue lines) 

and actual data (red stars). 



 

4.7 Discussion and concluding remarks 

In this chapter we reviewed the general steps required to develop a surrogate reservoir model 

(SRM) in order to utilize it in a history matching process. Based on the explained instructions, 

two examples of SRM were constructed. The first example was an attempt to show the 

potential of SRM to replace the reservoir simulation model in history matching workflow. The 

second case tried to increase the complexity of problem to challenge the SRM performance. 

Furthermore, the SRM was connected to an optimization algorithm to set up an automated 

history matching package. In both cases, the surrogate reservoir models were built using a few 

realizations of the base reservoir model.  The number of simulation runs to build the SRMs is 

far less than the number of runs required for history matching. The SRMs were able to 

accurately match the behavior of the reservoir models through the provided spatio-temporal 

databases. Moreover, the robustness of the SRMs was further verified by applying them to 

extra realizations of the reservoir models. These realizations, called blind verification runs, 

were not seen by SRMs during the training steps.  

Once the SRMs were ready, they substituted the reservoir simulation models. In the first 

example the goal was to achieve a match of production history by tuning permeability 

distribution. Using the SRM in this example accomplished a satisfying match.  

In the next step, the number of uncertain properties increased. The SRM was created by 

altering the distributions of porosity, permeability, and thickness. These properties were the 

uncertain reservoir characteristics to match the field production. The developed SRM showed 

a significant performance in an automated history matching workflow. Based on this approach 

the SRM was connected to an evolutionary algorithm optimization method. This workflow is 

able to produce multiple realizations which match the past performance of reservoir. 

The applications of SRM to reproduce the results of reservoir simulation model in manual and 

automated history matching workflows were tested. The results of history matching 

demonstrate the efficiency of SRM to be used in the history matching process. Although the 

running time for the case studies of reservoir model used in this study is not the concern, the 

number of simulation runs to attain a desired match is time and power consuming. In a 

numerical reservoir simulator, by increasing the size and complexity of the components, the 

run-time can increase in orders of magnitude. Nevertheless, due to pattern recognition 

capability of SRM, it will not be an issue using this technology. 



 

The results of two case studies in this chapter showed the potential of this novel technology 

(SRM) to assist the history matching process. Implementing the technology on a more 

sophisticated (and real-life) case study is the topic of the next chapter of this dissertation.  

  



 

Chapter 5: A real-life case study, 

implementation of SRM on PUNQ-S3 

problem 
  

 

 

Overview 
In the previous chapter we developed two surrogate reservoir models in order to replace the 

reservoir simulation model in history matching case studies. We started with simple 

assumptions. Initially an SRM was made by tuning just one property, and then the number of 

uncertain properties increased.  In the first case, history matching was completed in a manual 

workflow. But in the second case we had an automated workflow benefiting from an 

optimization algorithm. In both cases the objective was to match the oil production history. 

However, in reality we deal with more complicated cases. There are usually various types of 

field data to match (for example matching oil, gas, and water productions or well bottom-hole 

pressure).  

The ideas behind the SRM as well as some details on how to develop SRM were covered in 

chapters 3 and 4. This chapter intends to demonstrate the development and application of an 

SRM for a more realistic case.  The chapter starts with introducing the reservoir model. Then 

the steps to develop the surrogate reservoir model are presented. The automated history 

matching workflow for this case is reviewed and finally representative results are shown.   

5.1 Real-life case study – PUNQ Model 
In the literature we can find various approaches to perform history matching. All these 

methods are usually associated with synthetic or real case examples trying to demonstrate their 

capabilities. However, most of time, it is tough to compare these methods with each other 

because they are very subjective to the case that they have been tested on. One way suggested 

to surpass this problem is to test different methods on a similar and unique example. This is a 

common practice in different areas of applied science. In the area of reservoir management 

there are a couple famous standard case studies which have been utilized to test and compare 

the results of different workflows (Floris, et al. 2001, Chen and Oliver 2010). PUNQ reservoir 



 

model, designed for PUNQ project, is one of these examples. In continuation, we will talk 

about this project and characteristics of the reservoir model used in this study. 

The PUNQ project, (PUNQ stands for Production forecasting with Uncertainty 

Quantification), is a mutual study supported by European Union and conducted by 10 

European companies, universities, and research centers (Figure 49) (Floris, et al. 2001). The 

main objective of the project was to compare the methods for quantifying uncertainty 

assessment in history matching. In order to achieve the objective of the project a simple 

reservoir model (PUNQ-S) was constructed. PUNQ-S was originally based on a real field 

operated by Elf Exploration and Production (Floris, et al. 2001, Barker, Cuypers and Holden 

2001). Three different versions were adopted from PUNQ-S model known as: PUNQ-S1, S2, 

and S3. These models vary in the way the distributions of porosity and permeability were 

created. Since the creation of PUNQ models, many researchers have studied different methods 

of history matching and uncertainty assessment using these models (mainly working on 

PUNQ-S3 model) (Floris, et al. 2001, Barker, Cuypers and Holden 2001, Gu and Oliver 2005, 

Gao, Zafari and Reynolds 2005, Abdollahzadeh, et al. 2011). Figure 50 summarizes the search 

result of “PUNQ Model” in the database belonging to the Society of Petroleum Engineers 

(SPE) (OnePetro 2014).  

 

Figure 49: European companies, universities, and research centers involved in the PUNQ project (Floris, et 

al. 2001).  



 

 

Figure 50: Search results for “PUNQ model” key word in the SPE database (access date: March 2014).  The 

figure summarizes the number of publications by different publishers, the type of publications, the affiliation 

of authors, and the authors involved in highest number of publications (OnePetro 2014). 

In this study we use the third version of PUNQ-S model, known as PUNQ-S3 reservoir 

simulation model. PUNQ-S3 reservoir simulation model is different from PUNQ-S1 and S2 

because of the stochastic correlation between porosity and permeability and also the added 

random noise to the static and dynamic well data (Boss 1999). This simulation model is 

considered a small-size industrial reservoir engineering model and it is widely accepted as a 

standard synthetic test case to investigate the ability of different methods of history matching 

and uncertainty quantification. The model consists of             grid blocks 

(      by      ), of which a total of       grid blocks are active. The geometry of the field 

has been modeled using corner-point geometry. The field is bounded to the east and south by a 

fault. There is also a fairly strong aquifer located in the north and west of reservoir. Due to 

presence of aquifer and providing the pressure support, no injection plan was designed. In 

addition there is a small gas cap in the first layer and in the center of the dome shaped 

structure. In order to avoid the gas production from the gas cap no well has been perforated in 

the first layer. 

Figure 51 demonstrates the top structure of the PUNQ-S3 reservoir model. As it is shown in 

this figure, there are six production wells drilled in the reservoir. Layers one and two are left 

without perforation. The other layers are completed for different wells: wells PRO-1, PRO-4 

and PRO-12 are perforated in layers 4 and 5. The wells PRO-5 and PRO-11 have been 

completed in layers 3 and 4 and well PRO-15 has been perforated only in layer 4.  



 

 

Figure 51: The top structure of PUNQ-S3 model. The field is bounded to the east and south by a fault, and 

links to the north and west to a fairly strong aquifer. In addition there is a small gas cap in the center of the 

dome shaped structure (Floris, et al. 2001). 

5.1.1 True case 

In order to provide similar and identical data for everybody, a “true” case has been designed. 

The synthetic actual data is provided by executing the true model. Then these actual data are 

used to compare the results of different methods of history matching and uncertainty 

assessment. The main characteristics to generate the true case are porosity and permeability 

(horizontal and vertical) distributions. The values of these properties at well sites are taken 

from the original model. The comprehensive procedure of creating the porosity and 

permeability distributions for true case can be found somewhere else (Barker, Cuypers and 

Holden 2001, Petroleum Engineering & Rock Mechanics Group (PERM) 2014). Figure 52 and 

Figure 53 show the horizontal and vertical permeability distributions for the true case. Figure 

54 also depicts the porosity distributions. Then the outputs of the true case are considered as 

the actual historical data. Eight years of production and 16.5 years cumulative production are 

available. Eight years of production will be used to match the model and 16.5 years of 

cumulative production will be utilized to perform the future forecast and uncertainty 

quantification. 



 

 

Figure 52: Horizontal permeability distributions for PUNQ-S3 true case.  

 

Figure 53: Vertical permeability distributions for PUNQ-S3 true case. 



 

 

Figure 54: Porosity distributions for PUNQ-S3 true case.  

5.1.2 Geological description 

Along with presenting the simulation model, there are some geological descriptions available 

for each layer of PUNQ-S3 reservoir model. Layers 1, 3, and 5 have linear streaks (channels) 

of highly porous sandstone. The second layer is mainly low porous, shaly sediment, with some 

irregular patches of somewhat higher porosity. Layer 4 includes an intermediate porosity 

region with an approximate lobate shape embedded in a low-porosity matrix. Complete 

detailed geological description is presented in the work by Floris et al. (2001). The PVT and 

aquifer data for the true model are also available. The relative permeability values are based 

on the power law relative permeability functions and it is assumed there is no capillary 

pressure (Floris, et al. 2001, Barker, Cuypers and Holden 2001). The gas oil contact (GOC = 

2355.0 m) and water oil contact (WOC = 2397.4) values are also given. 

5.1.3 Field production 

The production schedule is similar to what happened in the original model and is based on the 

following schedule (Floris, et al. 2001): 

 First year extended well testing divided into four three-monthly production periods. 

 Three years of shut-in. 

 Twelve and half years of field production. 



 

 Every year of production includes two weeks shut-in test in order to gather the shut-in 

pressure data. 

As it was mentioned previously due to the strong aquifer there is no injection plan. Well PRO-

4 is perforated close to the aquifer; therefore, we see water breakthrough in the seventh year. 

The production constraint is a constant oil rate (        ) until the bottom-hole pressure 

reaches below a fixed value (         ), which they start producing with a constant bottom-

hole pressure (         ). The true model was completed in a commercial simulator 

(ECLIPSE
TM1

 (Schlumberger 2014)). After running the model, the first eight years of 

production and pressure data was considered as the “actual” data for history matching purpose. 

In addition cumulative production (total oil recovery) was provided after 16.5 years for future 

forecast comparison and uncertainty assessments study. The synthetic actual data include oil, 

gas, and water production as well as bottom-hole pressure for each well. Figure 55 

demonstrates a sample of production and pressure curves. The complete data set designed for 

ECLIPSE
TM

 is available for the public here (Petroleum Engineering & Rock Mechanics Group 

(PERM) 2014). Using this simulator, the cumulative production after 16.5 years was reported              (Floris, et al. 2001, Barker, Cuypers and Holden 2001). However the 

commercial simulator used in this study is CMG-IMEX
TM2

(CMG 2013). Therefore the 

cumulative production using this simulator is             , which there is a relative 

difference of 1.29 % compared to what ECLIPSE
TM

 produced. In order to mimic the real-life 

measurement errors, some noise was added to porosity/permeability values as well as the 

synthetic field data. The details of adding noise to the data can be found here (Floris, et al. 

2001, Barker, Cuypers and Holden 2001). 

To summarize what we have covered so far, the available data for PUNQ-S3 reservoir model 

could be listed as the following: 

 Porosity and permeability values at well locations. 

 Geological descriptions for each layer. 

 Production history for the first 8 years (for history matching study). 

 Cumulative production (total oil recovery) after 16.5 years (for uncertainty 

quantification and production forecast study). 

                                                      
1
 Schlumberger 

2
 Computer Modeling Group 



 

 PVT, relative permeability and Carter-Tracy aquifer dataset all taken from original 

field data. 

 There is no capillary pressure function. 

 Gas oil contact (GOC) and water oil contact (WOC). 

 

Figure 55: Provided field performance for PUNQ-S3 reservoir model. Bottom-hole pressure (BHP), well oil 

production (WOPR), gas oil ratio (GOR), and water cut (WCT) for each well and field are available for eight 

years (Floris, et al. 2001).  

5.1.4 Literature review on PUNQ-S3 reservoir model 

In the literature of petroleum engineering, PUNQ-S3 reservoir model is considered as a widely 

favored standard model to challenge the new methods of history matching and uncertainty 

assessment. This model is appropriate as a scale to compare the results of new approaches 

with the previous methods. Many studies have been conducted using PUNQ-S3 reservoir 

model. Floris et al. (2001) summarized the results of eleven different approaches performed by 

the research groups involved in the PUNQ project. These eleven approaches were 

distinguished by the following features: 

 Reservoir parameterization: For instance using homogenous layers, homogeneous 

drainage area regions, pilot points selected, etc. 

 Number and type of adjustable parameters to match the field data: For example 

different approaches vary in selecting porosity and permeability (horizontal and 

vertical) as the uncertain properties. 



 

 Spatial technique for generating the distributions of porosity/permeability such as 

Kriging, Gaussian Random Fields (GRF), etc. 

 The optimization algorithms used for history matching such as genetic algorithm, 

Gauss-Newton, etc. 

 Three different kinds of reservoir simulator. 

Each one of these approaches and their results has been discussed in the article published by 

Floris et al. (2001). Figure 56 displays low, median, and high ranges of total oil recovery after 

16.5 years for all eleven approaches described by Floris et al. (2001). 

 

Figure 56: Comparing the total oil recovery of the true model with low-median-high ranges of cumulative 

production after 16.5 years for all the approaches in Floris et al. article. Floris et al. (2001) published the 

description and results of eleven approaches using PUNQ-S3 as the test model.  

PUNQ-S3 model was used by Soleng (1999) as the test model to investigate a genetic 

algorithm approach for history matching. Manceau et al. (2001) applied a combination of 

experimental design and joint modeling methods to this model. Later Barker et al. (2001), who 

were a partner group in the PUNQ project, published some additional results for the problem 

of PUNQ-S3 model and compared them with the ones reported by Floris and coworkers.  

Gu and Oliver (2005) applied ensemble Kalman filter (EnKF) to PUNQ-S3 reservoir model. 

Using this model to test the different versions of EnKF method is popular. Gao et al. (2005) 

used a modified EnKF method and randomized maximum likelihood (RML) to history match 



 

the PUNQ-S3 model. They concluded that EnKF and RML methods give relatively good 

results for this problem.  

Hajizadeh et al. (2010, 2009) particularly used PUNQ-S3 model to study different stochastic 

global optimization methods such as ant colony optimization, differential evolution, and 

neighborhood algorithm. Li and Yang (2011) applied an ensemble-based history matching 

technique (EnKF) to PUNQ-S3 reservoir model. They defined four different scenarios mainly 

differ in adjustable properties (porosity, permeability, and relative permeability), tuning 

parameter number and characteristics of the ensemble. Then they compared the results of these 

scenarios with those ones described by Floris et al. They reported overall progress using their 

method. Abdollahzadeh et al. (2011) applied different population-based optimization 

algorithms originated in the Evolutionary Computation field to solve the history matching and 

uncertainty quantification problem of PUNQ-S3. 

From all these studies, it can be concluded that the main characteristics to tune in order to 

match the field performance include: porosity and permeability (horizontal and vertical). 

However, in some works they tried to play with the coefficients of relative permeability 

functions (Li and Yang 2011). 

5.2 Model generation and spatio-temporal database 

preparation 
In this section we go through the preparation steps of the SRM for PUNQ-S3 reservoir model. 

The uncertain properties for developing the SRM and matching the field performance include: 

porosity, vertical, and horizontal permeabilities. These properties are the most common 

uncertain reservoir characteristics used in the literature to match history data of this model. 

Similar to what happens in reality, it is assumed that these properties are measured at the well 

locations (well logging and core data samples). Also the geological descriptions of this model 

indicate the streaks of high porosity/permeability profiles in the reservoir (Floris, et al. 2001, 

Barker, Cuypers and Holden 2001). These types of information were used to generate training 

realizations. 

5.2.1 Informative simulation runs representation of reservoir 

uncertainties 

Based on the property values provided at well sites and also the geological descriptions, ten 

different realizations of the reservoir were created. In order to create these realization a 

sampling method (Latin Hypercube) was utilized. The process of creating a new realization of 



 

reservoir was the same as the way we explained in the previous chapter (section  4.6.2.2). It is 

assumed we have the values of reservoir characteristics (porosity and permeability) at the well 

spots. Then these values are fed to an interpolation method provided by CMG-Builder
TM

 to 

create the property distributions. Different realizations differ in the property values at well 

block. In order to assure capturing the maximum information form ten realizations, the Latin 

Hypercube was used. Figure 57 to Figure 59 are the designed property distributions for the 

first realization. The created maps for the rest of realizations are available in Appendix C 

(sections a and b). Figure 60 and Figure 61 show the results of well bottom-hole pressure and 

gas rate production for the well PRO-1 in the training and blind realizations. They are also 

compared with the observed data. The comparison for the rest of the wells are available in 

Appendix C (section ??). For the eight years of history data, water breakthrough happens for 

just one well (PRO-11). Figure 62 demonstrates the results of water rate production for this 

well for training realizations, blind case, and observed data.  

 

Figure 57: Horizontal permeability distributions for the realization #1. 



 

 

Figure 58: Vertical permeability distributions for the realization #1. 

 

Figure 59: Porosity distributions for the realization #1. 



 

 

Figure 60: Comparison of well bottom-hole pressure for the ten training realizations and blind case with 

observed data- well PRO-1. 

 

Figure 61: Comparison of gas rate production for the ten training realizations and blind case with the 

observed data- well PRO-1. 



 

 

Figure 62: Comparison of water rate production for the ten training realizations and blind case with the 

observed data- well PRO-11. 

5.2.2 Reservoir delineation and tier system 

After designing and running ten realizations, the static and dynamic data are extracted to 

generate the spatio-temporal database. In order to summarize and fit the static data into the 

database, the reservoir was delineated into drainage areas. Recalling from the previous 

chapter, Voronoi graph theory was used to perform this task. In the previous case studies we 

had just one layer and no channels of high porosity/permeability, so simply a Voronoi polygon 

was considered as the drainage area for a well. PUNQ-S3 reservoir model consists of five 

layers. The given geological description indicates high porosity/permeability channels located 

in the layers one, three, and five. Therefore, for these layers we consider a modified version of 

Voronoi polygons. Also based on the given geological description, layers two and four have 

no channels. Therefore we consider a regular Voronoi diagram for these layers like what we 

had for the previous two reservoir models. Figure 63 depicts the designed Voronoi diagrams 

for the second and fourth layers.  



 

 

Figure 63: The drainage areas assigned to the wells in layers two and four based on Voronoi diagram.  

Considering the information provided about the channels and also looking at the values of 

porosity and permeability at well blocks, we decided a modified version of Voronoi polygons 

as well drainage areas for layers one, three, and five. Figure 64 demonstrates the drainage 

areas designed for these layers. 

 

Figure 64: A modified version of Voronoi diagram used to define the drainage areas for the wells in layers 

one, three and five. 



 

Each drainage area then is divided into four tiers. The first tier is the well block, which has a 

significant impact on the well behavior. The second tier includes the first row of grid blocks 

around the well block. The third tier is the next row of grid blocks around the second tier. 

Finally the rest of grid blocks in the drainage area are summed up in the fourth tier. The 

average value of reservoir characteristics was calculated at each tier and assigned to the 

corresponding well and tiers in the database. Figure 65 is a scheme of the designed tier system 

in this study. 

 

Figure 65: The designed tier system for the PUNQ-S3 reservoir model. 

5.3 SRM development 
Due to complexity of PUNQ-S3 reservoir model we face a much higher number of input 

parameters in this case study compared to the previous examples. The oil production rate is the 

main constraint during the eight years of production for this reservoir. Thus the outputs of this 

model, which need to be matched, are well bottom-hole pressure, gas production rate, and 

water production rate. For each one these outputs one ANN was created(totally three ANNs).  

PUNQ-S3 model has five layers and a total of six wells. Each drainage area was divided into 

four tiers and also we have three uncertain parameters (porosity, vertical, and horizontal 

permeability). Consequently there are     uncertain (adjustable) parameters (                                       ) which can be tuned in order to match the history data. In 

order to build the SRM, just considering a single well we need to at least include    

parameters for each well. These do not contain the other types of data such as thickness and 

top for each tier. Generally we have a database with more than 120 inputs. Figure 66 



 

summarizes the types of input and output in the spatio-temporal database for PUNQ-S3 

reservoir model. Making sure to select the right inputs is not an easy task to do. Many of 

artificial based models fail in this step (Zubarev 2009, Mohaghegh, Liu, et al., Application of 

Surrogate Reservoir Models (SRM) to an Onshore Green Field in Saudi Arabia; Case Study 

2012a). 

 

Figure 66: Inputs and outputs available in the spatio-temporal database for PUNQ-S3 SRM.  

5.3.1 Preprocessing operations 

In order to select the best parameters for the training step KPI analysis was performed. The 

results can be used as a guide for input selection; however, choosing inputs are not limited just 

to this analysis. Table 11 lists the most important parameters identified by KPI analysis tool 

box in IDEA
TM

. Table 11 shows the KPI analysis results for the network which estimates well 



 

bottom-hole pressure. There was around 120 parameters which were not all listed in this table. 

Though obviously the most important parameters, which decide the fluid flow to the wellbore, 

are the dynamic inputs such as oil rate (which is set as the constraint), well bottom-hole 

pressure at the time steps behind and time. The important static data include the horizontal 

permeability and porosity. These results were expected since dynamic data impose the 

production in the field. The porosity represents the storage capacity and permeability shows 

the conductivity of the reservoir.  

Table 11: The results of KPI analysis for the SRM in the PUNQ-S3 problem. 

 

In addition to the KPI results, the reservoir engineering judgment and experience were used to 

choose the inputs. Table 12 to Table 14 are the selected inputs for three networks in this study. 

The inputs generally include the static and dynamic data. The static data contain the uncertain 

properties which are tuned to match the history data, thickness, and top depth. Time and oil 

production rate are common inputs for different networks. However, depending on the output, 

we use the value of the output for time steps behind. For example, if we would like to predict 

well bottom-hole pressure at time  , the value of well bottom-hole pressure at one and two 

time steps behind are used as input of network. 

Rank Feature % Degree of Influence

1 Oil Rate (Production Constraint) 100

2 Well Bottom-hole Pressure @ (t-1) 60

3 Time 56

4 Well Bottom-hole Pressure @ (t-2) 40

5 Hirozontal Permeability-Tier #3- Layer #4 33

6 Porosity -Tier #4- Layer #4 31

7 Hirozontal Permeability-Tier #2- Layer #4 30

8 Hirozontal Permeability-Tier #4- Layer #4 28

9 Hirozontal Permeability-Tier #1- Layer #4 27

10 Porosity -Tier #2- Layer #3 27

11 Top-Tier #4- Layer #3 27

12 Top-Tier #2- Layer #2 25

13 Porosity -Tier #4- Layer #3 24

14 Top-Tier #1- Layer #5 24

15 Vertical Permeability-Tier #4- Layer #4 23

16 Porosity -Tier #1- Layer #3 23

17 Top-Tier #2- Layer #5 23

18 Top-Tier #4- Layer #1 22

19 Top-Tier #4- Layer #2 22

20 Hirozontal Permeability-Tier #4- Layer #3 22

Other Parameters Less than 22 %



 

Table 12: Selected inputs for the well bottom-hole pressure network. 

 

Table 13: Selected inputs for the gas production rate network. 

 

Table 14: Selected inputs for the water production rate network. 

 

5.3.2 Train, calibrate, and validate the ANNs 

Once the inputs were selected, 80 % of the database was used as training set. The share of 

calibration and validation sets is also 10 % for each one. For each output we have one 

network; therefore, a total three networks are set. All three networks contain one hidden layer 

(Figure 67). Consequently the SRM is created by integrating three neural networks after the 

training process is completed. 
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Figure 67: ANN structure used for training the SRM. 

5.3.3 Blind verification 

An extra simulation run (eleventh realization) was created in order to validate the developed 

surrogate reservoir model. 

5.4 Automated SRM-based history matching 
The surrogate reservoir model then combined with differential evolution optimization method 

to build up the automated workflow for history matching. The objective functions defined in 

the previous chapter were used to estimate the misfits between SRM estimation and actual 

data. In order to start the automated workflow, the ranges of properties are given to the 

optimization algorithm. The ranges are taken from the geological description provided for 

PUNQ-S3 model. The automated workflow was set to be stopped automatically after 3000 

runs of SRM (stoppage condition). However, the process can be stopped at any time or 

reaching a specific value of misfit.  

5.5 Results 
In this section we present some results for development and application of SRM for PUNQ-S3 

problem. The first set of results belongs to a training realization used to train the SRM. Figure 

68 is the comparison of well bottom-hole pressure results generated by SRM and similar 

results from simulator. The figure portrays six profiles corresponding to six wells. Blue 

markers are SRM results over eight years (almost 3000 days) of reservoir life compared to 

simulator (CMG) outputs (red line). As it was mentioned earlier, the oil rate is the main 



 

constraint during this period. Therefore, we have well bottom-hole pressure, gas rate, and 

water rate date to match.  

 

Figure 68: Comparison of well bottom-hole pressure profile generated by the SRM (blue markers) with the 

similar results from a numerical simulator (CMG) for a training realization of PUNQ-S3 reservoir model. 

Figure 69 depicts the results of gas rate production for a training realization. It is a comparison 

between the results of SRM and simulator for six wells in the PUNQ-S3 reservoir model. For 

eight years of history data, we have just one well (well PRO-11) having water breakthrough. 

Figure 70 compares the results of water rate production generated by SRM and same results 

from simulator. For the first five years there is no water production, and then slowly we 

observe some water production. However, SRM is able to properly capture the zero water 

production.  



 

 

Figure 69: Comparison of gas production rates generated by the SRM (blue markers) with the similar 

results from a numerical simulator (CMG) for a training realization of PUNQ-S3 reservoir model. 

 

Figure 70: Comparison of water production rate generated by the SRM (blue markers) with the similar 

results from a numerical simulator (CMG) for a training realization of PUNQ-S3 reservoir model. 

The training results show the good performance of SRM during the training process. It seems 

like the SRM has learnt the behavior of wells through the database. However, it should be 



 

made sure that the SRM has same quality over the realizations which have not been used 

during the training process. For this purpose the SRM was applied on a completely blind 

realization. Figure 71 is the validation results for well bottom-hole pressure. Similar to the 

training results, the SRM is represented by blue markers compared with simulator outcome 

(red line). 

 

Figure 71: Validating the SRM using a blind run. The comparison of well bottom-hole pressure from the 

SRM with the results of numerical simulation model for PUNQ-S3 problem. 

Figure 72 and Figure 73 are the validation results for gas production and water production 

rates respectively.  



 

 

Figure 72: Validating the SRM using a blind run. The comparison of gas production rate profile from the 

SRM with the results of numerical simulation model for PUNQ-S3 problem. 

 

Figure 73: Validating the SRM using a blind run. The comparison of water production rate profile (Well 

PRO-11) from the SRM with the results of numerical simulation model for PUNQ-S3 problem. 

Once the robustness of SRM was assured, it is ready to be used in history matching process. 

One advantage of the automated history matching workflow is to offer multiple realizations 



 

which match the field data. In this study we selected top ten best matches. Figure 74 displays 

the results of history matching for well bottom-hole pressure. There are six profiles of bottom-

hole pressure for six wells present in PUNQ-S3. Each diagram compares the results of top ten 

matches (blue lines) with the actual data (red circles). 

 

Figure 74: History matching results of well bottom-hole pressure. The comparision of 10 best matches (blue 

lines) coming from SRM with the actual data (red circles). 

Figure 75 and Figure 76 demonstrate the comparison between the ten best matches (blue lines) 

and the actual data (red circles) for gas production. On the left side we have the gas production 

rate and the right side diagrams show the cumulative gas production.  



 

 

Figure 75: History matching results of gas production (rates are on the left side and cumulative production 

are on the right side of the figure). Comparision of 10 best matches (blue lines) coming from the SRM with 

the actual data (red circles). The data belong to the wells PRO-1, PRO-11, PRO-12 and PRO-15. 



 

 

Figure 76: History matching results for gas production (rates are on the left side and cumulative production 

are on the right side of the figure). Comparision of 10 best matches (blue lines) coming from the SRM with 

the actual data (red circles). The data belong to wells PRO-4 and  PRO-5. 

Finally, Figure 77 compares the results of the top ten matches (blue lines) with the actual data 

(red circles) for water production. In this figure, the diagram on the left is water rate 

production and the right side depicts the cumulative gas production both for well PRO-11. 

 

Figure 77: History matching results of water production (rates are on the left side and cumulative 

production are on the right side of the figure). Comparision of 10 best matches (blue lines) coming from the 

SRM with the actual data (red circles). In this study we have just one well (PRO-11) with water 

breakthrough during eight years of production history. 



 

5.5.1 Importing the matched characteristics into the simulator 

In this dissertation, SRMs were made to substitute an industrial reservoir simulator (CMG-

IMEX
TM

) in the history matching process. An automated SRM-based history matching 

workflow was designed. This workflow is able to provide multiple realizations of reservoir 

which match the actual data. In this study we chose to have ten best matches. These ten 

realizations were imported into the simulator in order to observe the performance of simulator 

with the inputs coming from the SRM. Figure 78 demonstrates the field cumulative oil 

production results of the simulator after importing the matched properties (match # 1) from the 

SRM into the simulator. This graph compares the simulator results (red line) with the actual 

field cumulative oil production (blue circles). As it was mentioned earlier there are eight years 

of field data available for the history matching purposes. In addition to eight years of history 

data, the field cumulative oil production after 16.5 years has been reported. This value can be 

used for future forecast comparison. Keep in mind this information was not used in the history 

matching process. In the Figure 78 the green dot represents this value. 

 

Figure 78: Comparison between the SRM based history matching results (match #1) and actual data for 

cumulative oil production. The red line represents the matched realization and the blue circles are the actual 

field data (eight years of production history). The green dot also displays the cumulative production for the 

true case after 16.5 years. 



 

Similar to the oil production, Figure 79 shows the comparison between the simulator results 

and actual field data for the cumulative gas production.  

 

Figure 79: Comparison between the SRM based history matching results (match #1) and actual data for 

cumulative gas production. The red line represents the matched realization and the blue circles are the 

actual field data (eight years of production history). The green dot also displays the cumulative production 

for the true case after 16.5 years. 

As it was mentioned the water breakthrough happens at the seventh year for just one well 

(PRO-11). Therefore, except for the well PRO-11 which produces water, the other wells have 

a very little water production. Figure 80 compares the cumulative water production between 

the simulator and actual data.  



 

 

Figure 80: Comparison between the SRM based history matching results (match #1) and actual data for 

cumulative water production. The red line represents the matched realization and the blue circles are the 

actual field data (eight years of production history). The green dot also displays the cumulative production 

for the true case after 16.5 years. 

Figure 81 shows the gas rate and cumulative gas production for the wells in PUNQ-S3 

reservoir. These results belong to the reservoir model which was built using the matched 

properties of the best match obtained by the SRM. This graph compares the results of 

simulator and available actual data. Figure 82 is the same comparison for the well bottom-hole 

pressure. Finally Figure 83 compares the water rate and cumulative water production. 



 

 

Figure 81: Comparison between the SRM history matching results and actual data. The graph compares the 

gas rate and cumulative gas production for eight years of available field data for different wells in the 

PUNQ-S3 reservoir model. 



 

 

Figure 82: Comparison between the SRM history matching results and actual data. The graph compares the 

well bottom-hole pressure for eight years of available field data for different wells in the PUNQ-S3 reservoir 

model. 

  



 

 

Figure 83: Comparison between the SRM history matching results and actual data. The graph compares the 

water rate and cumulative water production for eight years of available field data for different wells in the 

PUNQ-S3 reservoir model. 

The ten best matched obtained from the history matching were used to generate another 

realization of the PUNQ-S3 reservoir model. The characteristics of this realization are the 

average values of ten best matches. Figure 84 presents the field cumulative oil production and 

compares the results of simulator (red line) with the actual data (blue circles). Also it shows 

the simulator forecast compared to the actual cumulative oil production. Figure 85 is the same 



 

results for the field cumulative gas production. Furthermore, Figure 86 is the results for the 

field cumulative water production. 

 

Figure 84: Comparison of actual data and the result of a realization of PUNQ-S3 reservoir model. This 

realization was made using the average properties values of ten best matches. This graph represents the field 

cumulative oil production, comparing the actual data (blue circles) with the simulator results (red line). Also 

the green dot is the actual cumulative oil production after 16.5 years, provided in PUNQ project for the 

forecast comparison.  



 

 

Figure 85: Comparison of actual data and the result of a realization of PUNQ-S3 reservoir model. This 

realization was made using the average properties values of ten best matches. This graph represents the field 

cumulative gas production, comparing the actual data (blue circles) with the simulator results (red line). Also 

the green dot is the actual cumulative gas production after 16.5 years, provided in PUNQ project for the 

forecast comparison.  

 

Figure 86: Comparison of actual data and the result of a realization of PUNQ-S3 reservoir model. This 

realization was made using the average properties values of ten best matches. This graph represents the field 

cumulative water production, comparing the actual data (blue circles) with the simulator results (red line). 

Also the green dot is the actual cumulative water production after 16.5 years, provided in PUNQ project for 

the forecast comparison.  

 



 

 

Figure 87: Comparison between the SRM history matching results and actual data. The graph compares the 

gas rate and cumulative gas production for eight years of available field data for different wells in the 

PUNQ-S3 reservoir model. The results belong to a realization of PUNQ-S3 reservoir which its characteristics 

were the average of properties of ten best matches. 

  



 

 

Figure 88: Comparison between the SRM history matching results and actual data. The graph compares the 

well bottom-hole pressure for eight years of available field data for different wells in the PUNQ-S3 reservoir 

model. The results belong to a realization of PUNQ-S3 reservoir which its characteristics were the average of 

properties of ten best matches. 



 

 

Figure 89: Comparison between the SRM history matching results and actual data. The graph compares the 

water rate and cumulative water production for eight years of available field data for the well PRO-11 in 

PUNQ-S3 reservoir model. The results belong to a realization of PUNQ-S3 reservoir which its characteristics 

were the average of properties of ten best matches. 

For the future prediction, the ten best matches and the average of these matches (total 11 

matches) were executed to capture the field cumulative oil production after 16.5 years. Figure 

90 describes the outputs of these realizations and compares them to the value reported as the 

true case result. The red line is the oil recovery for the true case, the blue markers are the ten 

best matches, and finally the green marker shows the value of oil recovery for the realization 

which is the average of ten best matches. 

Figure 91 is the box plot of oil recovery for the 11 selected matches. The upper level of the 

box in this graph shows P90, the middle of box is P50 (median) and the bottom level of the 

box describes P10 of the results. 



 

 

Figure 90: Comparison of future production forecast of the best matched models with the true case. 

 

Figure 91: Box plot of future production forecast for 11 selected matches (ten best matches and the average 

of these matches). The upper level of box represents P90, the middle is P50 and the bottom of the box is P10. 



 

5.6 Discussion and concluding remarks 
In this chapter a surrogate reservoir model was developed for the PUNQ-S3 reservoir 

simulation model. The PUNQ-S3 model is widely accepted as a standard reservoir simulation 

model to test the ability of different methods on history matching and uncertainty 

quantification. The characteristics of this model make PUNQ-S3 model a unique case to study 

the potential of SRM for history matching. The variable properties to create the SRM are 

porosity and permeability (horizontal and vertical) distributions.  In order to train the SRM, 

ten realizations of PUNQ-S3 simulation model were generated. An extra realization (11
th
 case) 

was used to verify the trained SRM.  

One important feature of an effective history matching workflow is the automation ability.  

Therefore, the developed SRM was coupled with the DE optimization algorithm. The 

objective functions were created to calculate the misfit values between the actual data and 

measured results (SRM). The goal of history matching was to match eight years of history data 

available for three different properties. These properties include the well bottom-hole pressure, 

gas production rate, and water production rate. The stoppage condition for the automated 

history matching workflow was 3,000 times calling the SRM. Also this workflow was able to 

report multiple realizations of the reservoir which match the actual data. Thus, ten best 

matches were selected to be used for the future forecast. The future forecast consists of 

predicting the field cumulative oil production after 16.5 years production. Beside the eight 

years of history data, the PUNQ project provides the field cumulative oil production after 16.5 

years for the purpose of future production comparison.  

Figure 68, Figure 69, and Figure 70 show the results of SRM during the training process for 

the well bottom-hole pressure, gas production rate, and water production rate, respectively. 

These graphs portray the comparison between the SRM results with the outputs of simulator. 

The significant match between the results of SRM and simulator proves that SRM has been 

well-trained. The ability of SRM to capture the zero values of gas and water production rates 

is clear in the Figure 69 and Figure 70.  

Figure 71, Figure 72, and Figure 73 depict the performance of SRM on a completely unseen 

realization of reservoir during the training process. This step, referred to as blind realization, 

shows the robustness of the SRM. The quality of the match for the blind case, as it is seen in 

these graphs, is not as good as the training realizations (Figure 68, Figure 69, and Figure 70). 

This is a normal and expected reaction of the SRM to the set of data which are not used in the 

SRM training. 



 

The trained and verified SRM was used to perform the history matching. As it was discussed 

earlier, the history matching was accomplished in an automated workflow. Furthermore, this 

workflow produced eleven realizations of the reservoir which able to match the history of the 

field. Figure 74, Figure 75, Figure 76, and Figure 77 are the results of ten best history matched 

realizations. The results are the outputs of SRM. These graphs are the comparison between the 

ten best matches with the actual data for the well bottom-hole pressure, gas production rate, 

cumulative gas production, water production rate, and cumulative water production. The 

quality of matches for the well bottom-hole pressure and gas production rate are superb. For 

the water production rate (Figure 77), the matches are acceptable. The SRM matched the zero 

values of water production very well; however for the non-zero values, the quality of matches 

decrease (although they are still acceptable).  

The average values of characteristics of ten best matches were used to construct another 

realization. Therefore, total 11 realizations of PUNQ-S3 are the outputs of this part of study. 

The characteristics of these realizations were imported into the simulator. The goal was to 

observe the performance of simulator and compare it with the actual data. Particularly these 

matches were used to predict the field cumulative production after 16.5 years. The PUNQ 

project has provided the value of field cumulative oil production after 16.5 years.  

Figure 78 displays the results of the best achieved match imported into the simulator. This 

figure compares the results of this realization with the actual data for the field cumulative oil 

production. The results show a good match for the eight years of available history. Also, this 

graph predicts the field cumulative oil production for the next 8.5 years. At the end of this time 

period, the prediction performance has been compared with the reported value. Although the 

match shows an excellent quality, the prediction is slightly overestimating the future 

production. Figure 79 and Figure 80 are the same comparison for the field cumulative gas and 

water production. For the gas production, we see same overestimating behavior; however 

water production has been slightly underestimated.  

Figure 90 and Figure 91 summarize the production prediction of the selected eleven matches 

for the oil recovery. These figures quantify the uncertainty involved in the production 

prediction. The prediction of field cumulative oil production is very close to what has been 

reported as the true case (red line in these figures).  

The general results in this chapter demonstrate the robustness of SRM in history matching and 

future prediction for the PUNQ-S3 problem. Numerous studies have used the PUNQ-S3 



 

reservoir model to test the methods on history matching. Many of these studies are the 

investigation of different optimization methods for automated history matching. Generally 

these optimization algorithms have been coupled with a commercial simulator. The reported 

numbers of simulation runs for history matching the PUNQ-S3 reservoir model are in the 

order of thousands realizations (Hajizadeh, Christie and Demyanov 2010, 2009, 

Abdollahzadeh, et al. 2011). In this study, the required simulation runs to create and validate 

the SRM (eleven runs) are extremely less. Although, the run-time is not an issue for the 

PUNQ-S3 reservoir simulation model; in reality, a typical reservoir simulation model is more 

time-consuming to run and requires higher computational cost. In such a case using a 

numerical reservoir simulator for history matching would be a huge computational issue. In 

conclusion, the application of SRM for history matching purposes would be a great asset in the 

reservoir management workflow.  

  



 

Chapter 6: Summary, conclusions and 

recommendations 

6.1 Summary 
Reservoir simulation and modeling is utilized throughout the field development in different 

capacities. Sensitivity analysis, history matching, operations optimization, and uncertainty 

assessment are the conventional analyses in full field model studies. Realistic modeling of the 

complexities of a reservoir requires a large number of grid blocks. As the complexity of a 

reservoir increases and consequently the number of grid blocks, so does the time required to 

accomplish the abovementioned tasks. A relatively new technology known as Surrogate 

Reservoir Model (SRM) is introduced as a tool for addressing many time-consuming 

operations performed with the reservoir simulation models. SRMs are the replicas of full field 

models that run in matters of seconds. 

History matching techniques are used in reservoir modeling to fine-tune the reservoir 

properties such as porosity and permeability by matching the measured production data 

(pressure and production profiles at each well). During the last two decades there have been 

many attempts to improve history matching approaches in a way that could be applicable and 

practical in the real world. Despite all the efforts, due to the increasing rate of complexity and 

resulotion in the reservoir models, there is still hesitation about the practicality and potential of 

these methods to handle highly complicated real reservoir models. 

In this study, efforts were made in order to show the proofs that SRM is an efficient tool to 

replicate the reservoir simulator performance in the history matching process. This replica 

results in a faster performance and with a reasonable accuracy in order to address the practical 

issues of reservoir simulation models in the history matching workflow.  

Accomplishments of the objectives of this study included a three step process: 

1. Part one, a proof of concept study: The goal of first step was to prove that SRM is able 

to substitute the reservoir simulation model in a history matching project. In this 

project, a SRM was created for a synthetic but heterogeneous and under-saturated oil 

field, with 24 production wells and 30 years of production history. 

The history match was accomplished by tuning only one property (permeability) 

throughout the reservoir. As a result, an SRM was trained, calibrated, and validated 



 

using ten geological realizations of the reservoir simulation model. Then, the SRM 

was further validated using a complete blind (eleventh) realization of the reservoir. 

Finally the trained and validated SRM substituted the reservoir simulation model in 

the history matching process. The oil production rate of all the 24 wells was history 

matched in a short period of time by modifying the permeability distribution 

throughout the reservoir. 

2. Part two, a feasibility study: The objective of the second part was to demonstrate the 

robustness of SRM in handling higher degrees of uncertainty.Therefore, the number of 

uncertain reservoir properties increased to three properties (permeability, porosity, and 

thickness). The SRM was trained, calibrated, and validated using a few geological 

realizations of the base reservoir model. 

An additional feature in this part of the study was coupling the SRM with an 

optimization algorithm (DE). DE optimization method is considered as a novel and 

robust optimization algorithm from the class of evolutionary algorithm methods. 

Coupling the SRM with DE created an automated history matching workflow. This 

workflow is able to select the parameters within the given ranges, call the developed 

SRM, run it, calculate the misfit through the defined objective functions, and finally 

report multiple realizations of the reservoir which match the history data. 

3. Part three, a real-life implementation: The third part of this research was to apply the 

lessons learned to a real-life case study. For this purpose, a reservoir model, known as 

PUNQ-S3 model, was selected. The PUNQ-S3 model covers different aspects of a 

real-life case study and has been used by numerous researchers to test the different 

methods of history matching and uncertainty quantification. The model includes 

multiple layers, multi-phase fluids, faults, aquifer, and strikes of high 

porosity/permeability. Eight years of history data are available for the well bottom-

hole pressure, gas production rate, and water production rate. These data are used for 

history matching. In addition, the field cumulative oil production after 16.5 years is 

given to compare the future prediction. 

Ten realizations of this model were generated by altering porosity and permeability 

(vertical and horizontal) distributions. A spatio-temporal database was constructed 

using the data extracted from the ten realizations of PUNQ-S3 reservoir simulation 

model. The SRM was developed (trained/calibrated/validated) based on the spatio-

temporal database. A further validation step was accomplished by utilizing an extra 

realization of PUNQ-S3 reservoir model (blind verification). Finally, the SRM was 



 

coupled with DE in order to perform the automated SRM-based history matching. Ten 

best matches were selected as the output of the history matching process. The average 

values of these ten best matches formed another realization. Consequently, the 

characteristics these eleven matches were imported into the reservoir simulator to 

predict the future performance.  

6.2 Conclusions 
The major conclusions that can be drawn from this dissertation are summarized as the 

following: 

1. The surrogate reservoir models were proved to be an effective tool in accomplishment 

of history matching projects. The unique features of AI&DM techniques, utilized to 

develop the SRMs, give exceptional characteristics to the SRMs. These techniques are 

able to learn the specific behaviors of a system through a few examples. Particularly, 

in this study, SRMs were made using a very few realizations of the original system 

(reservoir simulation models). The results of SRMs in different steps of development 

and application proved and demonstrated the potential of SRMs in history matching 

process. The following items are concluded in order to accomplish a successful SRM:  

a. SRMs are built based on the provided examples of the reservoir simulation 

model. These examples are the main source of information for a spatio-

temporal database which is used to train the SRMs. In order to develop a 

successful SRM, meticulous efforts should be dedicated to the preparation of 

this database. The quality of the SRM mainly depends on the quality of the 

provided database. The objective of study is the main item in shaping the 

spatio-temporal database. For instance, depending on the goal of project, the 

outputs and inputs of SRMs might vary. For a history matching project, like 

this study, we are seeking to estimate the performance of the reservoir 

simulation model at the well. This performance could be a production profile 

or the well bottom-hole pressure at the well site. The SRM created for this 

type of study is known as well-based SRM. 

b. The purpose of having different realizations of a reservoir simulation model is 

to introduce the uncertainties involved in the model to the SRM. Although the 

SRM does not need a high number of the simulation runs, selecting a right 

number of runs is delicate. If the number of simulation runs is too small, then 

the SRM may not be able to capture the uncertainty and the variation in the 



 

parameters. Therefore, the SRM does not show a good performance on the 

data not used in the training examples. This justifies the use of blind 

verification step in the SRM development. In the other words, the validation 

examples will expose the lack of required information in the training samples. 

On the other hand, if the number of simulation runs is too large, then there is 

no reason to develop an SRM since the solution is close to the original 

problem, which is a high number of simulation runs.  

c. Data summarization techniques are very important to decrease the high 

dimension of the spatio-temporal database. One way of data summarization is 

to delineate the reservoir into the different segments (tiers) and make an 

average of the reservoir property values over the grid blocks in the designed 

segments. The Voronoi graph theory (Erwig 2000, Gomez, et al. 2009) was 

proved to be useful in delineating the reservoir to the drainage areas. Each one 

of these drainage areas were divided into multiple tiers based on the impacts 

of different segments of the reservoir on the performance of wells. 

d. Input data selection is another important step for having an efficient SRM. 

The preprocessing operations could be a great help for selecting the right 

inputs to train the SRMs. These operations could vary from very simple 

statistical procedures to complicated data mining techniques. Furthermore, the 

reservoir engineering knowledge of the user plays an important role in 

selecting the right inputs. This is a point which is usually neglected in 

developing the AI-based reservoir models. 

2. In this dissertation, the SRMs were developed for different reservoir models. Initially, 

an SRM was created for a reservoir model by tuning just one property. In the next 

step, the number of uncertain properties increased. In both cases, the SRMs showed a 

great performance in the history matching processes.  

3. Then, the SRM was applied to a standard test case, the PUNQ-S3 reservoir model. 

The SRM showed significant results in history matching different properties of this 

reservoir model. The results achieved by SRM were imported into the reservoir 

simulator to predict the future performance of the reservoir. The future forecast 

showed a great match with the reported value. 

4. The SRM was able to easily couple with an optimization algorithm. The most 

important feature added by the optimization algorithm (DE), was automating the 

history matching workflow. A very important objective of having optimization 



 

methods in history matching approaches is to decrease the number of simulation runs 

in order to achieve the desired matches. However, in a SRM-based history matching 

workflow this is not the issue.  

5. The results of this dissertation prove the ability of SRMs in history matching process; 

nevertheless, these achievements benefit the other time-consuming operations in the 

reservoir management workflow such as sensitivity analysis, production optimization, 

and uncertainty assessment.  

6.3 Recommendations for future studies 
The AI&DM techniques have showed their practical capabilities in many aspects of different 

areas of science and engineering (some examples are shown in Table 2). These techniques are 

proved approaches in those areas and have been utilized frequently. On the other hand, it is 

difficult to make a similar conclusion for the oil and gas industry. AI&DM based reservoir 

models such as SRMs are relatively new applications in the petroleum engineering and this 

area of engineering is considered as completely a new territory for the AI&DM techniques.  

An important characteristic of petroleum engineering problems is that these types of problems 

are very subjective to their own properties. In other words, each problem in petroleum 

engineering is associated with very particular specifications. These specifications make each 

one of these problems a unique case. For this reason it is not possible to create a general 

simulation model suitable for different reservoirs. This is a characteristic which perfectly suits 

the features of AI&DM techniques.  

In this dissertation the development and applications of SRMs for three case studies of history 

matching were discussed. However, there is a long way ahead for the petroleum industry to 

accept these types of technologies as a new tool of modeling. In order to increase the rate of 

acceptance the applications of these methods should be further analyzed on different types of 

problems. Therefore, it is highly recommended trying to repeat the accomplishments of this 

study on the new and more complicated history matching problems. The run-time was not the 

issue for the reservoir simulation models in this study; however, in realty, real history 

matching problems include reservoir simulation models which are time-consuming and with 

high computational cost. The continuation for this study could be implementing the developed 

technology on a real-life size reservoir simulation model.  

The PUNQ-S3 reservoir simulation model included many aspects of complexities involved in 

a reservoir simulation model. These complexities were such as multi layers, multi-phase 



 

fluids, faults, aquifer, and channels of high porosity/permeability. However, increasing the 

complexity involved in the reservoir simulation models could be another step for the future 

studies. These complexities could be increasing the number of wells, adding injection 

scenarios, working with different types of operational constraints, having horizontal wells in 

the systems, and etc.  

An aspect of modern era of history matching is the utilization of optimization algorithms. In 

this study DE was the chosen optimization method. The DE has a simple structure and that 

makes it easy to develop and apply in a history matching workflow. In addition to DE, a long 

list of optimizations methods has been proposed for the history matching purposes. An 

additional study regarding the future works could be application and comparison of different 

methods of optimizations in couple with the SRM.  
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Appendix A: Proof of concept study  

a. Production history performance for the reservoir model in 

proof of concept and feasibility investigation study 
 

 

Figure 92: Actual oil rate and cumulative production for different wells. 



 

 

Figure 93: Actual oil rate and cumulative production for different wells.  

 

  



 

 

Figure 94: Actual oil rate and cumulative production for different wells.   



 

b. Ten created permeability distributions for training  the SRM 

 

Figure 95: Permeability Map for different Training Realizations. 



 

c. The results of SRM for a training realizations- Run # 1 

 

Figure 96: Comparison of the SRM results with simulator outputs after the training process- Run # 1. 



 

 

Figure 97: Comparison of the SRM results with simulator outputs after the training process- Run # 1. 



 

 

Figure 98: Comparison of the SRM results with simulator outputs after the training process- Run # 1. 

  



 

d. The results of SRM - blind verification realization 
 

 

Figure 99: Comparison of the SRM results with simulator outputs, the blind verification run. 



 

 

Figure 100: Comparison of the SRM results with simulator outputs, the blind verification run. 

 



 

 

 

Figure 101: Comparison of the SRM results with simulator outputs, the blind verification run. 

  



 

e. The results of SRM- history match results 
 

 

Figure 102: Comparison of the SRM results with field data, history match results. 

 



 

 

Figure 103: Comparison of the SRM results with field data, history match results. 

 

  



 

 

Figure 104: Comparison of the SRM results with field data, history match results. 

 

  



 

Appendix B: Feasibility investigation study  
 

a. Variable reservoir characteristics for training realizations 

a.1 Permeability distributions 

 

Figure 105: Permeability distributions for training realizations. 

  



 

 

Figure 106: Permeability distributions for training realizations. 

  



 

 

Figure 107: Permeability distributions for training realizations. 

  



 

 

Figure 108: Permeability distributions for training realizations. 

a.2 Porosity distributions 

 

Figure 109: Porosity distributions for training realizations. 

  



 

 

Figure 110: Porosity distributions for training realizations. 

  



 

 

Figure 111: Porosity distributions for training realizations. 

  



 

 

Figure 112: Porosity distributions for training realizations. 

a.3 Thickness distributions 

 

Figure 113: Thickness distributions for training realizations. 

  



 

 

Figure 114: Thickness distributions for training realizations. 

  



 

 

Figure 115: Thickness distributions for training realizations. 

  



 

 

Figure 116: Thickness distributions for training realizations. 

 

  



 

b. The results of SRM for a training realization- Run #1 

 

Figure 117: Comparison between the results of SRM and simulator for wells in a training realization. 

  



 

 

Figure 118: Comparison between the results of SRM and simulator for wells in a training realization. 

  



 

 

Figure 119: Comparison between the results of SRM and simulator for wells in a training realization. 

  



 

c. The results of SRM - blind verification realization 

 

Figure 120: Comparison between the results of SRM and simulator for wells in a blind realization. 

  



 

 

Figure 121: Comparison between the results of SRM and simulator for wells in a blind realization. 

  



 

 

Figure 122: Comparison between the results of SRM and simulator for wells in a blind realization. 

  



 

 

Figure 123: Comparison between the results of SRM and simulator for wells in a blind realization. 

  



 

 

Figure 124: Comparison between the results of SRM and simulator for wells in a blind realization. 

  



 

 

Figure 125: Comparison between the results of SRM and simulator for wells in a blind realization. 

 

  



 

d. The results of SRM - automated history matching results  

 

Figure 126: Comparison between ten best history matching cases (blue lines) and actual data (red stars) for 

different wells. 



 

 

Figure 127: Comparison between ten best history matching cases (blue lines) and actual data (red stars) for 

different wells. 



 

 

Figure 128: Comparison between ten best history matching cases (blue lines) and actual data (red stars) for 

different wells. 

  



 

Appendix C: A real-life case study, implementation of 

SRM on PUNQ-S3 problem 

a. Variable reservoir characteristics for training realizations 

a.1 Horizontal permeability distributions 

 

Figure 129: Horizontal permeability distributions for the training realizations. 



 

 

Figure 130: Horizontal permeability distributions for the training realizations. 

  



 

 

Figure 131: Horizontal permeability distributions for the training realizations. 

  



 

 

Figure 132: Horizontal permeability distributions for the training realizations. 

  



 

 

Figure 133: Horizontal permeability distributions for the training realizations. 

  



 

a.2 Vertical permeability distributions 

 

Figure 134: Vertical permeability distributions for the training realizations. 

  



 

 

Figure 135: Vertical permeability distributions for the training realizations. 

  



 

 

Figure 136: Vertical permeability distributions for the training realizations. 

  



 

 

Figure 137: Vertical permeability distributions for the training realizations. 

  



 

 

Figure 138: Vertical permeability distributions for the training realizations. 

  



 

 

a.3 Porosity distributions 

 

Figure 139: Porosity distributions for the training realizations. 

  



 

 

Figure 140: Porosity distributions for the training realizations. 

  



 

 

Figure 141: Porosity distributions for the training realizations. 

  



 

 

Figure 142: Porosity distributions for the training realizations. 

  



 

 

Figure 143: Porosity distributions for the training realizations. 

  



 

b. Variable reservoir characteristics for the blind realization 

 

Figure 144: Horizontal permeability distributions for the blind realization. 

 

Figure 145: Vertical permeability distributions for the blind realization. 

  



 

 

Figure 146: Porosity distributions for the blind realization. 

  



 

c. The results of training and blind realizations compared with 

the observed data 

c.1 Well bottom-hole pressure 

 

Figure 147: Comparison of well bottom-hole pressure for the ten training realizations and blind case with 

observed data- well PRO-11. 

 

Figure 148: Comparison of well bottom-hole pressure for the ten training realizations and blind case with 

observed data- well PRO-12. 



 

 

Figure 149: Comparison of well bottom-hole pressure for the ten training realizations and blind case with 

observed data- well PRO-15. 

 

 

Figure 150: Comparison of well bottom-hole pressure for the ten training realizations and blind case with 

observed data- well PRO-4. 



 

 

Figure 151: Comparison of well bottom-hole pressure for the ten training realizations and blind case with 

observed data- well PRO-5. 

  



 

c.2 Gas production rate 

 

Figure 152: Comparison of gas rate production for the ten training realizations and blind case with the 

observed data- well PRO-11. 

 

Figure 153: Comparison of gas rate production for the ten training realizations and blind case with the 

observed data- well PRO-12. 



 

 

Figure 154: Comparison of gas rate production for the ten training realizations and blind case with the 

observed data- well PRO-15. 

 

Figure 155: Comparison of gas rate production for the ten training realizations and blind case with the 

observed data- well PRO-4. 



 

 

Figure 156: Comparison of gas rate production for the ten training realizations and blind case with the 

observed data- well PRO-5. 

  



 

d. The results of SRM for the training realizations 

d.1 Well bottom-hole pressure 

 

Figure 157: Comparison of the well bottom-hole pressure results for SRM and simulator for training run #2. 



 

 

Figure 158: Comparison of the well bottom-hole pressure results for SRM and simulator for training run #3. 

 

Figure 159: Comparison of the well bottom-hole pressure results for SRM and simulator for training run #4. 



 

 

Figure 160: Comparison of the well bottom-hole pressure results for SRM and simulator for training run #5. 

  



 

 

Figure 161: Comparison of the well bottom-hole pressure results for SRM and simulator for training run #6. 

 

Figure 162: Comparison of the well bottom-hole pressure results for SRM and simulator for training run #7. 

  



 

 

Figure 163: Comparison of the well bottom-hole pressure results for SRM and simulator for training run #8. 

 

Figure 164: Comparison of the well bottom-hole pressure results for SRM and simulator for training run #9. 

  



 

 

Figure 165: Comparison of the well bottom-hole pressure results for SRM and simulator for training run 

#10. 

  



 

d.2 Gas production rate 

 

Figure 166: Comparison of the gas production rate results for SRM and simulator for training run #2. 

 

Figure 167: Comparison of the gas production rate results for SRM and simulator for training run #3. 

  



 

 

Figure 168: Comparison of the gas production rate results for SRM and simulator for training run #4. 

 

Figure 169: Comparison of the gas production rate results for SRM and simulator for training run #5. 

  



 

 

Figure 170: Comparison of the gas production rate results for SRM and simulator for training run #6. 

 

Figure 171: Comparison of the gas production rate results for SRM and simulator for training run #7. 

  



 

 

Figure 172: Comparison of the gas production rate results for SRM and simulator for training run #8. 

 

Figure 173: Comparison of the gas production rate results for SRM and simulator for training run #9. 

  



 

 

Figure 174: Comparison of the gas production rate results for SRM and simulator for training run #10. 

  



 

d.3 Water production rate 

 

Figure 175: Comparison of the water production rate results for SRM and simulator for training runs #2 to 

#7. 

 

 

Figure 176: Comparison of the water production rate results for SRM and simulator for training runs #8 to 

#10. 

 

 




