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Abstract

Image sharing is a service offered by many online social networks. In order to preserve 

privacy of images, users need to think through and specify a privacy setting for each image 

that they upload. This is difficult for two main reasons: first, research shows that many 

times users do not know their own privacy preferences, but only become aware of them 

over time. Second, even when users know their privacy preferences, editing these privacy 

settings is cumbersome and requires too much effort, interfering with the quick sharing 

behavior expected on an online social network. Accordingly, this paper proposes a privacy 

recommendation model for images using tags and an agent that implements this, namely 

PELTE. Each user agent makes use of the privacy settings that its user have set for previ-

ous images to predict automatically the privacy setting for an image that is uploaded to be 

shared. When in doubt, the agent analyzes the sharing behavior of other users in the user’s 

network to be able to recommend to its user about what should be considered as private. 

Contrary to existing approaches that assume all the images are available to a centralized 

model, PELTE is compatible to distributed environments since each agent accesses only the 

privacy settings of the images that the agent owner has shared or those that have been 

shared with the user. Our simulations on a real-life dataset shows that PELTE can accurately 

predict privacy settings even when a user has shared a few images with others, the images 

have only a few tags or the user’s friends have varying privacy preferences.
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1 Introduction

Online social networks (OSNs) are web-based platforms where individuals interact with 

each other to share content [7]. While sharing content, an important concern of users is that 

the privacy of their content is preserved. Privacy in the context of OSNs can be understood 

in two main directions [24]. One perspective is that of surveillance. That is, users do not 

want their content to be used by the service providers to be profiled for marketing targeted 

goods, services or political opinions. Facebook-Cambridge Analytica data scandal [23] is a 

prime example, where Cambridge Analytica used millions of Facebook users’ data without 

their consent for political advertising. Second perspective is that of social, where the users 

do not want their content to reach unintended users present in the network. We are inter-

ested in this second perspective of privacy, where we would like to support the users with 

the necessary tool to preserve their privacy as they share information online.

OSNs provide personal spaces to people to share their contents, such as images, news 

items, and so on. Most of the time, users prefer to share their contents with the audience 

that they see fit. To facilitate the sharing process, users are allowed to define the privacy 

settings of their content. The current OSNs provide different privacy mechanisms to let 

users specify their own privacy preferences. Some of them, such as Facebook, let users to 

specify a set of privacy rules in general. Then it enforces the same privacy rules to specify 

privacy settings of all images shared by the user. In addition to that, changing privacy set-

tings per image is also possible. Enforcing a set of rules to all images is an easy way to 

perform a privacy mechanism. However, specifying a general privacy setting for all the 

images may cause both undesirable accesses to some of those and an unnecessary strict-

ness for some others. Moreover, many of the current OSNs are built with a centralized 

architecture, where the data are kept centrally. This means that these OSNs have the power 

to use the data for their purposes, ranging from profiling to targeting information. Even 

when they offer support for tasks, such as perserving privacy, it is not clear whom this task 

would serve, what data it would have access, and so on. A better way to approach this is to 

support individual users before they access the OSN, similar to the functioning of distrib-

uted OSNs such as diaspora* [14], where the individual data are kept on the user side. This 

has the advantage that personalized recommendations can be done to the user by consider-

ing her sharings and relations with others.

Since OSN users have different type of relationships with their connections in real life, 

users may want specify more customized privacy settings based on relationship types 

rather than binary privacy settings, which are either deny or permit for everyone. Relation-

ship-based access control (ReBAC) model enables users to specify privacy settings based 

on interpersonal relationships [21, 22]. A user can categorize her connections and specify 

fine-grained privacy settings in such a way that deciding for each relationship type [20, 43]. 

However, privacy settings are burden for many users because they find privacy settings dif-

ficult to manage and understand [20].

Various studies show that OSN users have even difficulties in understanding, let alone, 

setting the privacy settings of OSNs [45, 51]. Asking a user to manually set a privacy set-

ting every time she is sharing an image will be time consuming and error prone [19]. The 

user will have to consider all the privacy implications of the image for various audience 

groups and then set the policy. More fundamentally, it is possible that the user does not 

know which privacy settings are appropriate for a content. This is especially true for the 

many new users in the system [37]. Recent studies show that users are in fact interested in 

using personal assistants to help them manage their privacy by providing notifications or 
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recommendations [11]. The aim of this paper is to devise agents that can help both experi-

enced and new users of OSNs in recommending privacy settings for a new image that the 

user wants to share. The following criteria are important to understand the requirements of 

this recommendation task.

Personal data: While many existing OSNs are centralized in governance, an approach 

that helps users set their own privacy settings needs to use only the data available to each 

individual user, rather than using all of the data on the OSN. Having a central approach 

that works at the OSN level poses a threat to the system because the approach would be 

assumed to have access to the entire content shared on the OSN. Such approaches are prone 

to suffer from the surveillance problem mentioned before. Krasnova et al.  [34] state that 

user privacy concerns mainly center on organizational risks such as collection and second-

ary use of their information. Once we assume that a central entity can access the contents 

of all users, potential use cases of such system exceeds the extent of privacy preserving 

mechanism and even it would jeopardize the privacy of the users, rather than helping them 

preserve their privacy. Hence, the privacy preserving mechanism should carry out the pre-

dictions for each user separately, using only the data that are available to the user herself.

Small data: Everyday millions of content are shared on one OSN. However, the number 

of contents shared by a single user is rather small. An approach that helps users set their 

privacy setting correctly needs to learn from this small data. This has two immediate con-

sequences: (i) typical machine learning approaches that learn from big data well cannot be 

immediately used. (ii) If users do not have enough data to make reliable estimations them-

selves, a cold start problem would emerge. Thus, ideally we are in need of an approach that 

can use small data to make correct recommendations to the user.

Privacy variance: Definition of privacy is subject to personal understanding of each 

user  [32]. While a user might not want her home pictures to be shared with colleagues, 

another user might be happy to share them with everyone. Thus, the proposed automated 

approach should predict the privacy of a content for a given user based on the expectations 

of the user. This means that even when other users in the system have different or contra-

dicting privacy preferences, the approach should still recommend the right privacy settings 

to the user.

Robustness: OSNs differ in their size, user representation, or the content they allow. 

If a prediction algorithm that uses such information to make a decision, then it needs to 

be customized for each OSN or maybe even for each user before use. This jeopardizes 

the applicability of the approach. Ideally, the approach should work without preprocessing, 

customization, or configuration, so that it is generic enough to be applied in various OSNs. 

More importantly, the approach should work even when the previously seen content has 

missing information or even inconsistencies.

Although the problem of privacy setting recommendation for images have been exten-

sively studied before, none of the approaches address all of these requirements. An impor-

tant set of approaches [47, 55, 57, 62] train various machine learning approaches to predict 

the privacy labels of images. The size of the data they need changes based on the trained 

model but many of them require a large amount of data to train accurate classifiers because 

of the model complexity. To satisfy the need for big data, these approaches use the data 

as a single training set by assuming the data come from a single source, such as a dataset 

available in an OSN. Thus, the personal data requirement would be omitted. This typical 

training process results in a single classifier that is the same for all users, and therefore, the 

predicted privacy settings would not comply with the privacy variance requirement.

On the other hand, there have been approaches [30, 48, 64] suggesting solutions to 

the privacy variance requirement. These models also face the cold start problem: when 
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there are small data to learn from, these approaches cannot make accurate predictions. 

This typically takes place when a user is new to the system or has not shared much. In 

order to solve the cold start problem, they propose various methods such as building a 

different classifier for each group of users with similar privacy preferences [64], finding 

a privacy policy from another user in the network [48], or asking others that the users 

trust for privacy policy recommendations  [30]. Even though these approaches satisfy 

the privacy variance requirement at some extent, they rely on non-personal data to make 

predictions, violating the personal data requirement (see Sect.  5 for a more detailed 

comparison).

To accommodate the above requirements, we take an agent-based approach. Our 

proposed approach represents each user with a software agent, which helps its user set 

the privacy of her contents by recommending privacy settings. To respect the personal 

data requirement, the agent will only access the contents its user shares or the contents 

shared with its user. Since the privacy expectations vary for each user, each agent will 

learn the privacy expectation of its user, rather than a general privacy understanding of 

a system; thus supporting the privacy variance requirement. When an agent is learning 

its user’s privacy expectations through images, one obvious choice is to employ classi-

cal machine learning techniques on images. However, it is well-known that these tech-

niques require large data sets for training, which we aim to avoid in this work as it might 

not be readily available.

We develop a novel privacy model to learn and recommend privacy settings, which 

is inspired from ideas in information retrieval. The privacy model represents contents 

using their associated tags. Existing works show that tags of an image are successful 

indicators of content. When images are the subjects, automated systems can use tags to 

define access-control policies [31]. The tags of an image can be set by the user herself 

as well as generated automatically by tools. This makes it possible to decide the privacy 

of an image based on given tags. Moreover, in a recent study, Fogues et al. [19] analyze 

how tags and tie strength jointly are employed to specify access control policies for 

photo sharing. Their results show that tags and tie strength are extensively employed by 

users to define a privacy policy instead of using default privacy policies as is done in 

Facebook. Our proposed model is generic and can be realized differently with different 

agent designs.

We present an agent, PELTE that uses the proposed privacy model for recommenda-

tion. In PELTE, each image is automatically tagged (by a tool). Each agent uses the tags 

associated with already-shared images of its user to estimate the privacy setting for 

new images using the privacy retrieval model. Important generic aspects of the model, 

such as dealing with unknown tags and mimicking others when the user has not shared 

enough, are made concrete. PELTE does not require any predefined set of tags or any spe-

cific input space representation to be in place. Thus, it can be used within any system 

where the content can be represented using tags; thus respecting our requirement of 

robustness. Our evaluation shows that using only the tags of images, PELTE is able to pre-

dict privacy setting of contents accurately, even when the number of tags or the number 

of shared contents is low.

The rest of the paper is organized as follows. Section 2 develops our formal framework 

and describes our model for privacy retrieval. Section 3 presents our agent PELTE that real-

izes the proposed privacy model, with details on its implementation. Section 4 evaluates 

PELTE in various experiments over multiagent simulations and presents the results. Finally, 

Sect. 5 discusses PELTE in relation to the existing works in the literature and illustrates some 

of the future directions.
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2  Privacy retrieval model

Each user of the OSN is only connected to a certain other subset of users with some pre-

defined relations, such as friendship, and share various type of content with them. Users 

cannot see every shared item on the OSN, rather they are only allowed to see content 

that are shared with them per se. We propose each user to be supported by a software 

agent to manage the privacy settings of their posts. The agent acts to help the user and 

can view all the posts that are available to the user; i.e., the posts that are shared with 

the user as well as the ones user shares. Posts may contain various content types, such 

as text, image, or video. We specifically focus on one content type, image, which is in a 

great demand. It is common practice that people add tags to their images to make their 

images more visible and understandable for other users who see and search for them. 

A tag is a keyword such as “woman” or “beach” that either identifies an object in the 

image or reflects the context of the post. These tags might have been produced by the 

users as well as an automated tool, such as Clarifai [10]. Whenever a content is assigned 

a privacy setting to be put online, we consider it as a post.

Definition 1 (Content) A content is a tuple c = ⟨i, T⟩ , where i is the image in the content 

and T is the set of tags associated with the image. T
c
 to refer to the tags of a given content c. 

Note that by using different tags, the same image can be made into a different content. This 

is intentional and is useful to demonstrate the effects of the choice of tags for a content.

Definition 2 (Post) A post is a tuple p = ⟨c, S⟩ , where c is the content in the post and S is 

the privacy setting of the post. The content and the privacy setting are visible to users who 

can view the post. We use Sp and c
p
 to refer to the privacy setting and the content of the 

post p and Tp to refer to the tags of the post, such that Tp = Tcp
.

An OSN user can build a network consisting of connections to her friends as well 

as her acquaintances from various relation types, such as colleague. The user needs to 

organize her network with respect to her experience on the OSN, as she does in the real 

life. Misra and Such  [43] analyze the top ranked social media sites and classify them 

according to the control mechanisms they provide. The authors find that although most 

of the OSNs that we use today support only one type of relationship—usually called as 

friends—they provide some additional features to allow users distinguish their friends. 

For instance, Facebook users can connect to their network with only friend relationship 

but they can also categorize their friends by creating computer-supported lists. Simi-

larly, LinkedIn users can organize their network by using the predefined groups. On the 

other hand, OSNs may also support different types of relationship and present those 

with different names, such as Friend, Colleague, and Family, that match up to the use 

cases of OSN more [20]. Definition 3 captures this facility of OSNs.

Definition 3 (Relationship) R = {1,… , m} is the set of all relationship types, which are 

possible to occur in the system. Users and thus their agents can be connected to each other 

through these types to yield a relationship. That is, each relationship is a unidirectional 

connection, denoted with 3-tuple ⟨a, r, b⟩ , where r is a relation type, such as friend or col-

league, from agent a to agent b.
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Users upload images of various contents to their OSN accounts but they do not share all 

images with everyone in their network. In principle, a privacy setting that is used to specify 

whom the post should be shared can contain various audience groups, such as sets of users, 

but here we consider the privacy settings in the type of Relationship Based Access Con-

trol (ReBAC) that considers the relationship type between users to regulate accesses [21]. 

ReBAC enables OSN users to specialize their connections in the network by these poly-

relational means, resulting in a more natural way to share personal information [20, 43]. 

The privacy setting of a post composes of separate decisions, which are either deny or per-

mit, for each relationship type. If the image has a context that relates to a specific group of 

audience, then the user prefer sharing the image only with that group of users. For exam-

ple, an image of a business meeting might be considered as relevant only to users that are 

colleagues and the user chooses a privacy setting that permits only the users having the 

relationship type of Colleague.

Definition 4 (Privacy setting) A privacy setting is a vector, S = ⟨d1, d2,… , d
m
⟩ , contain-

ing sharing decision, d
i
∈ {0, 1} , for each relationship type r

i
∈ R . A sharing decision is 

either 1 for permitting or 0 for denying the access from the corresponding relationship 

type. We use Sp to denote the sharing decision of a post p and Sp,m to denote the sharing 

decision of the post p for a relationship type m.

Definition 5 (Agent) An agent is a software that represents a user and recommends privacy 

settings for the posts that the user is considering sharing. The agent can access the posts 

that the user has shared as well as the ones she can view. We denote the agent as a 3-tuple 

a = ⟨P, U, M⟩ , where P denotes the set of posts that are shared by the user of a and U 

denotes the set of posts that have been shared with the user of a. P ∪ U constitutes the posts 

that a can view. The function M ∶ C → S recommends a privacy setting S for a content 

c ∈ C that a is considering to share. Based on the result of this function, a can decide to 

create a post p with the given content c. We refer to agent a’s posts as P
a
 , viewed posts as 

U
a
 , and the recommendation function as M

a
.

For any image that is visible to a user, we assume that the user can view the privacy 

settings and the tags of the image; thus, the agent can obtain the privacy settings and the 

tags of the images in U
a
 as is common in many OSNs such as Facebook, where an icon 

indicating the privacy settings of the images to let users know which other users can see 

their likes and comments on that image. Whenever a user is interested in sharing a new 

post p, its privacy setting S needs to be configured. In current OSNs, users are expected to 

done this by themselves or to use the default settings. However, managing the settings can 

be complex and the default settings do not satisfy user preferences [60]. Here, the ultimate 

goal of each agent a is to recommend a setting to its user for each image, by using their 

function M
a
 . The recommended setting could be seen as the default setting provided by the 

system and thus, the user would not be aware of the agent. Such an agent does not intro-

duce any new biases to user behavior or changes in user experience while assisting the user 

in picking the right options [5]. For each recommended privacy setting, the user is free to 

follow it or to override it as she sees fit.

Example 1 A user shares images in Fig. 1 in an OSN, where family, friend, and colleague 

are the relationship types, R = {1, 2, 3} respectively. The image in Fig.  1a is taken at a 
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meeting in her child’s school and therefore, the user targets her family and friends as the 

audience of the image, i.e. S = ⟨1, 1, 0⟩ . For the image in Fig. 1b, she considers it as an art 

photo of a modern building and shares with everyone in her network, i.e. S = ⟨1, 1, 1⟩.

We limit the available data to be used by agents to the content of images, which is 

in the form of tags, as opposed to metadata of images or other personal information of 

users. The study of Klemperer et al.  [31] shows that the tags of images are successful 

enough to estimate privacy setting of images. Accordingly, automated systems can ben-

efit from tags to define privacy policies when images are the subjects. Patterns can be 

found in the tags of images that a user permits a relationship type if the user has consist-

ent decisions about what to share with the relationship type. However, if the same tag 

appears in different images that permit and deny the same relationship type, then it is 

difficult to reveal the relation between the tag and the privacy decision even if there is 

any. In other words, the patterns are expected to be more apparent if the user’s previous 

decisions about the shared images of similar contexts are consistent and can be seen 

multiple times. We can reveal these patterns between privacy understanding of users 

and their standpoint against relationship types. Then, agents can use the patterns to rec-

ommend privacy settings for the images users upload. In order to do that, agents need a 

computational model that reveals the patterns from users’ previous tags.

We employ methods that are inspired from information retrieval, in which we can 

measure the influence of tags on privacy settings. Two significant metrics in informa-

tion retrieval are term frequency, which measures the number of times a term occurs in 

a document and inverse document frequency, which measures whether a term is com-

mon in a given corpus. Their multiplication yields how important a term is with respect 

to a document in a given corpus. This is frequently used in search engines to match 

search keywords with documents. Our intuition here is to understand which tags are sig-

nificant in indicating the privacy for an image. For example, if the tag “drink” appears 

frequently for private images only, then one can conclude that this is a good indicator 

of privacy. On the other hand, if “person” appears equally in both public and private 

images, then its strength in indicating privacy is limited. This signals two main differ-

ences from information retrieval:

– While information retrieval focuses on the uniqueness of terms in differentiating con-

tent, privacy retrieval focuses on consistency.

– While information retrieval can differentiate the strength of terms based on how often 

they occur in a document, privacy retrieval cannot as each tag occurs only once in each 

image.

(a) people, many, festival, crowd, group, exhibition, school,
child, carnival, education, ceremony, class, meeting

(b) modern, steel, architecture, futuristic, urban, window,
ceiling, construction, building, sky, city, office, light

Fig. 1  Example images and their tags that are generated by Clarifai
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Given the above differences, we devise two metrics to be able to measure how important a 

tag is in determining the privacy of an image for a given relationship: image frequency and 

public image frequency.

Image frequency, if(t), of a tag t measures how many times the tag is seen in the shared 

posts. It is determined for an agent a as follows:

where P
a
 is the set of post that the agent a has shared and Tp is the set of tags that the con-

tent in post p has. The higher the image frequency of a tag, the more precise information it 

reveals about the privacy preference on the content.

Public image frequency, pif(t, r), of a tag t measures how many times the tag is part of 

a post that is perceived as public for a relationship type r. It is calculated for each relation-

ship type r, separately, as follows:

The public image frequency of a tag denotes how strongly the tag is considered to be public 

for a relationship type. For any relationship, if the public image frequency of a tag is equal 

to the image frequency value, then every content that contains the tag has been shared pub-

licly for the given relationship type. This is rarely the case for most tags. What is more 

frequent is that, a tag appears in contents that are considered public as well as in other con-

tents that are considered private. To calculate the effect of the tag in determining whether a 

content is public, we normalize the public image frequency of a tag for a relationship type 

with its image frequency. This yields the ratio of contents that permits the relationship type 

to all contents with the same tag and the result is between 0 and 1. If the value is small, 

the contents are mostly not shared with the given relationship type. Conversely, the value 

is close to 1 if the given relationship type is permitted for most of the contents. The val-

ues that are around 0.5 show that while many contents having the tag are shared with the 

user of the relationship type, many others are not shared. Therefore, we conclude that the 

user’s privacy preference on the tag having around average value is inconsistent, whereas 

the user’s privacy preference on tags having high and low values is more precise.

This ratio of public image frequency of a tag with image frequency can be thus used to 

understand the effect of the tag on determining whether the content is private or not. When 

an agent is in need of determining the privacy setting of a content, it would consider all 

the tags and calculate the ratio. However, often a content can come with tags that the agent 

has not seen before in the user’s shared posts. For those tags, it is not possible to calcu-

late the public image frequency or the image frequency. To address this, we expand on the 

public image frequency and image frequency definitions above to define expected values to 

account for the unseen tags. Calculating the ratio on these expected values yields an esti-

mation on the privacy setting of the content.

Expected public image frequency, v(c, r), is calculated based on the tags of the image 

for a given relationship. It considers the tags of the image in two separate cases: the tags 

that the agent has seen in the user’s shared posts and those that the agent has not seen 

before. For the former, the agent uses the public image frequency [Eq.  (2)]. For the lat-

ter, it estimates a default value using a function dpif(t, r), which returns a value between 

0 and 1. Depending on the agent, different dpif(t, r) functions can be designed. For exam-

ple, returning a default value of 0 would mean that the function estimates these tags to 

be private and a value of 1 would mean the tags are expected to be all public. Another 

possible realization of this function would be to use the average of all the tags seen so 

(1)if (t) = |{p ∈ Pa ∣ t ∈ Tp}|

(2)pif (t, r) = |{p ∈ Pa ∣ t ∈ Tp & Sp,r == 1}|
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far; this would provide the idea that new tags are expected to be as public as the previous 

tags. The dpif(t, r) function implicitly covers that users can have varying privacy tenden-

cies for different tags. Equation  (3) gives the calculations for the expected public image 

frequency, where T
a
 is the tags that the agent a has seen before in the user’s shared images, 

i.e., Ta = {t ∈ Tp ∣ p ∈ Pa}:

Expected image frequency, w(c) is also calculated by considering the tags of the content in 

two separate cases: those that the agent has seen before ( T
a
 ) and the tags that the agent has 

not seen before. For the former, the expected image frequency is calculated as the image 

frequency. For the latter, it estimates a default value using a function dif(t), which returns 

a value between 0 and 1. The function resembles dpif(t, r) in its usage and can be tailored 

based on the agent’s privacy understanding. For example, the function can yield a default 

value based on how the agent perceives privacy or what the agent has seen so far. Equa-

tion (4) depicts this:

Now, that the expected public image frequency and the expected image frequency are cal-

culated, it is possible to estimate how likely the content in hand to be public by taking their 

ratio. The ratio is called privacy value indicator, pvi(c, r), and it estimates a value between 

0 and 1 that reflects the tendency for the content to be shared with a relationship type r. 

Equation (5) shows the calculation:

The result obtained from Eq. (5) needs to be converted into a decision of a privacy setting. 

A naive approach would be to permit access for values above a certain threshold, such as 

0.5 and the deny access for values below that. However, this has two drawbacks. First, the 

calculated value is dependent on the agent and will only have a significance if it is put into 

the context of previous decisions. For example, consider an agent, for whom all previous 

posts have yielded an average privacy value indicator of 0.9. If the current content yields a 

value of 0.7, this would mean that the content is less likely to be public, thought the num-

ber if above 0.5. Similarly, for an agent with an average privacy indicator value of 0.1, a 

content that yields 0.4 might still be considered public, even though the value is below 0.5. 

Thus, it is also necessary to calculate the average privacy indicator values for the previous 

posts and interpret the privacy value indicator of the current content accordingly. Second, 

for cases when the current privacy value indicator is close to the average privacy indicator, 

making a decision is risky because this signifies that the content can be both private and 

public. For such cases, we employ average privacy indicator, api(r), which is a function to 

convert users’ previous privacy decisions for the posts into a value. It is calculated for each 

relationship r as follows:

(3)v(c, r) =
∑

t∈Tc

{

pif (t, r) t ∈ Ta

dpif (t, r) otherwise

(4)w(c) =
∑

t∈Tc

{

if (t) t ∈ Ta

dif (t) otherwise

(5)pvi(c, r) = v(p, r)∕w(p)

(6)
api(r) =

∑

t∈Ta

pif (t, r)∕
∑

t∈Ta

if (t)
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If the privacy value indicator of the image is higher than the average privacy indicator 

for a given relationship type, the image would be considered more probable to be shared 

with the given relationship type. However, privacy value indicator that is close to average 

could easily be misleading. Therefore, we use a threshold � and require that the privacy 

value indicator has to be at least � amount different than the average to estimate a decision. 

Implicitly, � incorporates a confidence in the decision making: if the difference between the 

privacy value indicator and average privacy indicator is less that � , the decision is uncer-

tain. This uncertainty could come about because the user has shared few contents so far or 

the current set of tags in question do not indicate a clear privacy decision for the image. In 

such cases, we use a function, social(c, r), where the agents can benefit from information 

they have perceived from others.

The intuition of function social(c, r) comes from social learning theory [6], which 

argues that people observe others in social situations and act like the people they 

observe. Recent work done in OSNs show that OSN users are affected by other users in 

the system. For example, in an experimental work of social learning theory in the con-

text of OSNs, Burke et al. [8] show that new members of an OSN closely monitor what 

their friends are sharing and share similar content. In a different work, Xu et al.  [61] 

show that posts from a user’s friends influence the user’s posts on Twitter. Accord-

ingly, our model incorporates this by enabling agents to benefit from their neighbors in 

the OSN by mimicking their sharing behavior when they cannot decide how to share 

content themselves. Equation (7) gives the estimation function for the privacy setting 

of a content for each relationship type r, based on Eqs. (5) and (6) as follows:

Note that in order to put this model in action functions that provide default values, dpif(t, r) 

in Eq. (3) and dif(t) in Eq. (4) have to defined. Moreover, social(c, r) function has to speci-

fied according to the design choice for Social Learning Theory. Using the estimate(c, r) for 

each possible relationship type creates a valid M function for an agent.

3  PELTE: estimating privacy settings using privacy retrieval model

We present a prototype agent, named PELTE, that realizes the privacy retrieval model 

with its data structures and procedures. The ultimate goal of PELTE is to assist its owner 

in managing privacy while sharing images and thus, to make the image sharing process 

easier. In an OSN, it would be possible that a single user owns an instance of PELTE or 

many users does. As the needs of the privacy retrieval model are limited to the images, 

PELTE only accesses to the images shared by and with the user. The agent does not 

need further information, such as the profile information of the user; hence, it does not 

access to them. PELTE estimates the privacy setting of an uploaded image and recom-

mends the estimated privacy setting to the user.

(7)estimate(c, r) =

⎧
⎪
⎨
⎪
⎩

Permit if pvi(c, r) > api(r) + �

Deny if pvi(c, r) < api(r) − �

social(c, r) otherwise
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3.1  Tag tables

When a user uploads an image to share, the user agent estimates the privacy setting of the 

image based on the previous data as explained above. The tags of previous images needs 

to be stored and processed to compute the required indicators. One option is to keep an 

inverted index, as mostly done in information retrieval, where the tags can be searched to 

retrieve the images that they have been seen in. However, this requires recomputation of the 

metrics unnecessarily. Rather, it is more desirable to store the values of the metrics for the 

tags that the agent has seen and update the values when necessary. Accordingly, we intro-

duce a data structure, called tag table, which is indexed by the names of tags such that each 

row of the tag table corresponds to a tag t, its image frequency value and its public image 

frequency values, each as separate columns. This structure is highly efficient in terms of 

the space complexity since the size of the tag table is proportional to the number of unique 

tags. Note that the size of the tag table is not fixed and grows as the agent becomes aware 

of new tags. This dynamic nature of the tag table is a desired outcome in terms of robust-

ness because we assume the set of tags are not known upfront.

Table 1 presents an example tag table of an agent in an OSN that has three relation-

ship types, namely Friend, Colleague, and Family. The first row of the table is the header 

line representing the names of columns. For each relationship type, public image frequency 

value is shown separately. The given tag table is just a part of an actual table and sorted 

Table 1  An example tag table of 

an agent in an OSN that has three 

relationship types

Tag name Image 

frequency

Friend Colleague Family

People 95 12 10 42

Woman 71 5 0 25

Adult 70 6 2 28

Portrait 69 6 4 23

One 63 10 7 27

Girl 45 3 2 11

Fashion 35 6 1 5

Indoors 34 3 4 17

Child 28 1 2 14

Facial expression 19 0 1 6

Son 11 1 2 8

Brunette 11 0 0 2

Nude 10 2 1 3

Wall 6 4 4 5

Vacation 4 1 1 2

Blur 3 1 1 2

Hand 2 0 0 1

Manicure 1 0 0 1

Treatment 1 0 0 1

Fingernail 1 0 0 1

Bay 1 1 1 1

Surf 1 1 1 1

Shore 1 1 1 1
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based on the image frequency for the sake of clarity. The top row (e.g., tag “people”) shows 

that the user has shared 95 images with the the tag, where she permits access of her friends 

only for 12 of these images and her colleagues for 10 of those. However, users who have 

family relationship with the user have been permitted for 42 of them. In the example, “peo-

ple” has the highest image frequency since it has been used by the user most frequently, 

whereas the tags at the bottom of the tag table have been rarely seen in the user’s shared 

images and therefore, those have image frequency value of only 1.

Each agent a collects data of images belong to ( P
a
 ) and accessible to ( U

a
 ) its own user. 

These two conceptually different types of data are stored in two separate tag tables: inter-

nal tag table, which stores the data of images that the user shares herself, and external tag 

table, which stores the data of images that are accessible to the user. The internal tag table 

is the essential component to make PELTE personalized in respect to the fact that privacy is 

by nature subjective, mentioned as the principle of privacy variance in Sect. 1. The exter-

nal tag table will be employed in the implementation of social(c, r) function.

3.2  Computing indicators

The two tag tables of an agent initially are empty. The agent collects data from the environ-

ment over time whenever a new image shared by one of the users in the network. For the 

images shared by the owner, the agent updates the rows of internal tag table for the cor-

responding tags according to the privacy setting of the image, as presented in Algorithm 1. 

If any of the tags is not already stored in the tag table, the agents adds the tag to the tag 

table (line 3). For each relationship type, in case of permit, the agent increments the public 

image frequency by one. Otherwise, the value remains the same (line 7). In both cases, the 

agent increments the image frequency of each tag by one (line 5). 

While the agent of the sharing user is updating its internal tag table, agents of users with 

whom the image has been shared with, update their external tag tables. In other words, if 

the user permits the friend relationship for the shared image, then all friends of the user see 

the image and their agents update external tag tables according to the tags and the privacy 

setting of the image. Note that when agent receives an image, the set of tags belong to 

the image are attached as a part of the post. In many of the current OSNs, it is a common 

practice that users share their images with a set of tags to portray the context better. On the 

other hand, even if the set of tags are not attached to the image, the same process would 

still be possible through using a built-in facility to generate the tags or requesting tags from 

an outsource tag generation tool.

Recall that the estimation is done by first calculating the privacy value indicator. This 

indicator is based on using the public image frequency when the tag is known, but expects 
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a heuristic to be used when the tag is not known [Eq. (5)]. This heuristic could be based on 

the tag itself as well as a default value for all the unknown tags. Here we use the average of 

previous values as the default for the unknown tags. This corresponds to the average image 

frequency for Eq. (4) and to the average public image frequency for Eq. (3). Algorithm 2 

presents the procedure of the estimation function by using the internal tag table. It first cal-

culates the average image frequency of the table (line 1). Then, it searches the internal tag 

table for each tag of the image (line 4). One important point of this search is that it counts 

the tags that are not found in the table (line 5) to take their public image frequency and 

image frequency as average values (line 16) while calculating the privacy value indicator. 

To decide whether the image should be shared with a relationship type, the agent com-

pares the privacy value indicator with the average privacy indicator. If it is higher than the 

value, then it shares with the relationship type and adds a permit decision to privacy setting 

(line 18). Otherwise, it adds sharing action of deny to the privacy setting for the relation-

ship type (Line 20). If the privacy value indicator is around the average privacy indicator 

and within the threshold boundaries (Line 21), estimation from internal tag table cannot 

return a sharing action for the relationship type. Then, it uses the social(c, r) function to 

estimate the decision for the relationship type. 

3.3  Social estimation

We are inspired from the social learning theory [6] in the sense that users mimic their 

friends if they do not have certain privacy preferences. This happens especially when 

a user is a newcomer. From the perspective of a newcomer, an OSN is a union of the 

previously joined users and the posts that the users have already shared. As the new-

comer starts to share her own images, she builds her own privacy preferences over time. 

Moreover, a user might have not made certain privacy decisions on some context even 

though she has shared many images. We consult the Social Learning Theory again; but 
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this time, since the user is not completely inexperienced, she may adapt herself more to 

some of her friends while ignoring some others. This is, benefiting more from those that 

have had similar privacy preferences with the user. For example, if two friends share 

many images with similar tags and the same privacy setting, this would signal that their 

privacy preferences are similar. Based on this intuition, we analyze the privacy settings 

of a user’s friends’ shared images to judge how similar they are to each other.

We use a metric, called similarity, to assess how how similar a user’s privacy prefer-

ences are with a friend on the shared posts. And thus, to benefit more from their privacy 

decisions privacy preferences. As a result of the ReBAC model, a user’s similarity to 

another user yields to a multidimensional value, in which each dimension corresponds 

to the similarity of privacy preferences at a type of relationship. For each relationship 

type r, an agent a computes the similarity to the user’s friend b based on the set of posts 

that user b has shared with the owner of agent a, i.e., the intersection of U
a
 , and P

b
 , as 

follows:

This equation finds the images whose privacy setting (the actual decision given by agent b) 

would be the same with the estimated decision of agent a as if agent a was to actually share 

the image (using Eq.  (7)). Then, it compares the number of them with the total number 

of images. The more the number of images that users share the same privacy setting, the 

higher the similarity value for both of them or vice versa. If the estimation function resorts 

to social(c, r), i.e., does not return a privacy decision from the internal tag table, then this 

image would not be considered in the calculation. Since the estimation function does not 

yield to a certain privacy decision when a user is a newcomer, similarity value is assumed 

to be 1 for each friend until the users starts to have certain privacy preferences. This corre-

sponds to the observation phase of the Social Learning Theory in which they learn how to 

act from others without judging their actions. Note that the similarity values are unidirec-

tional; that is, user a’s similarity to user b could be different than user b’s similarity to user 

a. Moreover, similarity might be different for each types of relationship.

The agent stores the posts shared with the user, U
a
 , in the external tag table and then 

uses the table to make decisions with the social estimation function. The data structure 

of the external tag table is the same with the internal tag table, except that the external 

tag table contains separate image frequency values for each relationship type because 

the agent uses similarity metric as a coefficient in the update procedure and the similar-

ity values are different for each relationship type. The difference of the update procedure 

(Algorithm 1) for the external tag table is that the agent uses the similarity to the user 

who shared the image as a coefficient in both the image frequency update (line 5) and 

the public image frequency update (line  7). Hence, the posts that are shared by users 

who have similar privacy preferences have higher impact than the posts that are shared 

by less similar users.

The procedure of the social estimation is presented in Algorithm 3, which is similar 

to the Algorithm 2. This time the agent uses the external tag table of the user instead 

of the internal tag table. Since the external tag table has image frequency values sepa-

rately for each relationship type, average image frequency value is calculated specific 

to the given relationship type (line 1). The rest of the algorithm computes the indicator 

values and finally finds a sharing decision for the given image post. Notice that the algo-

rithm returns a sharing decision only for the given relationship instead of a complete 

privacy setting. 

(8)similarity(b, r) = |{p ∈ Pb ∩ Ua ∣ (estimate(c, r) = Sp,r)}|∕|Pb ∩ Ua|
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4  Evaluation

The proposed privacy retrieval model and its realization as PELTE address the four require-

ments explained in Sect. 1, namely private data, small data, privacy variance and robust-

ness. First, since each agent only sees the posts that it shares and the posts that are shared 

with it, we satisfy the personal data requirement by design. In other words, agents do not 

see each others’s posts unless they have been shared with them. We analyze if and to what 

extent, PELTE satisfies the remaining three requirements. To show that PELTE can work with 

small data, we experiment with variying data availability for each agent (Sect.  4.2). To 

show that PELTE can accoommodate privacy variance, we experiment with settings where 

agents are on purpose given contradictory privacy preferences (Sect. 4.3). Finally, to show 

that PELTE is robust, we experiment with settings where images have few tags or that the 

images have been labeled differently by different users. These capture cases where the 

agents have access to missing information or inconsistent information (Sect. 4.4). Overall, 

we are especially interested in the following questions: Can PELTE predict the right privacy 

preference, if the user has shared only a few images before? Can PELTE work well if the 

images have only a few tags? Can PELTE predict correct privacy settings when other agents 

have contradictory privacy settings?

In order to answer these questions, we make use of multiagent simulations [15]. Multia-

gent simulations enable a set of agents to execute with predefined system rules over a cer-

tain set of time steps. By varying parameters of the simulation and the agents, different 

simulation setups can be obtained.

4.1  Simulation environment

We have developed a multiagent simulation environment where a set of agents can execute 

in line with PELTE. The underlying idea of the simulations is to enable agents to create posts 

to share with others. While doing that, each agent predicts the privacy settings of an image 

in the post. To do this, the simulations first need a privacy-labeled dataset of images so that 
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each agent can make a decision on the privacy of the image and the simulation can check 

whether this decision was correct against the provided image label. Next, the simulation 

needs the agents to be connected to each other through an OSN so that each agent can 

share posts with those they are connected. Finally, the simulation needs a set of rules to 

describe what will happen at each cycle of the simulation. We explain these three steps in 

detail next:

Dataset: The images used in the simulation environment are obtained from PicAlert 

dataset  [63]. It is one of the widely used datasets of image privacy studies. This dataset 

has 37510 Flickr images and privacy labels, which are collaboratively created by human 

evaluators via impersonation method. The possible privacy labels are private, public and 

undecidable. We remove images that are no longer available on Flickr because we could 

not generate tags for them. Some of the images have conflicting labels from different eval-

uators. To avoid the uncertain decisions on the labels, we remove the images with con-

flicting labels in all experiments except the one that we analyze the effect of these images 

(Sect. 4.4.3). We select equal number of public images with the private ones, ending up 

about 7000 images. Examples of private and public images are presented in Fig.  2. For 

each image, we generate 20 tags by using an automated tool, Clarifai [10], where the tags 

correspond to concepts, objects, scenes, and so on, as we can see in Fig. 1.

In the dataset, public images have 0.77 unique tags per image, whereas private ones 

have 0.49 unique tags per image. While average occurrence of a tag is 25.9 for public 

images, that is 40.8 for the same number of private images. We see that the most frequent 

tags of private images are more frequent than those of public images. For example, peo-

ple tag has frequency of 0.93 in private images, whereas the top tag for public images is 

no person with a frequency of 0.72. Other tags of public images have considerably lower 

frequency value; e.g., outdoors 0.36. Another significant feature of the tags is that private 

images are mostly related with human beings. On the other hand, public image contents are 

variations of nature, outdoor, travel, and so on. These features of the dataset and privacy 

labels of it are similar with the privacy object classes identified by the recent work, deep-

multi task learning approach [62].

Notice that even though people tag is highly dominant for the set of private images, 

there are still private images that do not have people in it, such as the right image in 

Fig. 2a. There are also many public images that have people in it, such as the middle image 

in Fig. 2b. On the other hand, the automated tool cannot be expected to create tags that 

exactly covers the content of an image. For instance, the image on the right in Fig. 2b has 

people tag despite the main objects in the image are bananas and wooden toys. Therefore, 

it is not possible that privacy decisions for the images can be easily given via simple deci-

sion rules. Moreover, none of the information that we achieved by dataset analysis, such 

as a predefined set of all possible tags, is provided as an input to PELTE. This is, agents are 

intentionally ignorant of the characteristics of the dataset and suitable to any kind of image 

dataset.

(a) Private Images (b) Public Images

Fig. 2  Example images from PicAlert dataset
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Social network: The simulation environment needs a realistic social network structure 

to be in place. We construct the network by using the Facebook dataset called ego-Face-

book1 obtained from Standford University Network Analysis Project [38]. The dataset has 

different sized networks. We select a network that allows us to evaluate PELTE’s performance 

with varying number of training sets by using the image dataset. We use the network that 

contains 59 nodes and 146 bidirectional, friend relationships among the nodes, where each 

node might have different number of relations. Although our proposed approach aims to 

work on OSNs where ReBAC is possible, the image and network graph datasets we have 

just correspond to one relationship type. To clarify, network graph data do not have rela-

tionship type in it and the image dataset has just one label for each image. Therefore, our 

datasets limit the evaluations with one relationship type. We evaluate the performance of 

the model step by step for each feature it has.

Simulation cycle: The simulation works as follows: it starts with creating an agent for 

each node and constructs relationships between them. Each agent has two main data struc-

tures that correspond to internal tag table and external tag table defined in Sect. 3. Then 

the image sharing process starts. During the training phase, privacy settings of images are 

defined according to the labels defined in the dataset. While distributing images to agents, 

the simulator shuffles the list of agents and picks one of them randomly. This corresponds 

to the agent sharing the image itself. After the image coming up next is assigned to that 

agent, the agent updates its internal tag table. Similarly, its friend agents update their exter-

nal tag tables. When the training phase ends, privacy settings of new assigned images are 

estimated from the data in the tag tables of the agents. This process is the implementation 

of Algorithm 2. Since the image distribution is randomly performed, the number of images 

each agent has might be different. Moreover, each run of the simulation distributes images 

to agents in different orders. Therefore, an agent will have a different set of images in sepa-

rate runs. To reduce the effect of randomness on the results, we run each experiment 20 

times and we present average of the calculated values as final results.

We have developed the above simulation environment in Java. Each simulation cycle 

takes a set of images as input and returns the predicted privacy settings of the images. 

The comparison between the actual privacy labels of the images and the predicted privacy 

labels results in four groups: true private is the set of private images that are predicted cor-

rectly as private, false public is the set of private images that are predicted as public, true 

public is the set of images that are predicted correctly as public, and false private is the set 

of public images that are predicted as private. The performance of PELTE is evaluated as the 

overall performance of agents via the following success metrics:

• Private recall: the fraction of private images that are successfully predicted as private 

is called private recall. It reflects to how much a system is successful at preserving 

users’ privacy. Klemperer et  al.  [31] state that people are more concerned with false 

allows than false denies while sharing posts in OSNs. Therefore, we present private 

recall values in each of the results we obtain from simulations to analyze that if PELTE 

can satisfy the main concern of OSN users about privacy. 

Private Recall =
|True Private|

|True Private| + |False Public|

1 http://snap.stanf ord.edu/data/egone ts-Faceb ook.html.

http://snap.stanford.edu/data/egonets-Facebook.html
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• Public recall: the fraction of public images that are successfully predicted as public 

is called public recall. It is obvious that predicting all images as private would maxi-

mize the private recall and preserve users’ privacy without any mistake. However, users 

join OSNs and share their personal information through posting because they intend 

to share or transmit information to their friends  [39]. But their willingness to share 

their personal data depends on the sensitivity of the data  [41]. Therefore, we present 

public recall values in addition to the private recall values to analyze if PELTE is able 

to differentiate images that users would share publicly according to both their privacy 

preferences and the properties of the images. Higher public recall values enable users’ 

shared images to reach other users as much as possible without enforcing unnecessary 

strictness. 

• Accuracy: the fraction of both private and public images that are successfully predicted 

is called accuracy. Private and public recalls measure the success from the perspective 

of both private and public images. We present accuracy values as the overall success in 

each of the results to analyze if PELTE would be able to help users manage privacy set-

tings of images. 

4.2  Performance of the estimation function

First, we evaluate the estimation function PELTE when only the internal tag table is available 

by setting � to 0. This part mainly focuses on the effect of the number of training images 

on the accuracy, private recall and public recall values. In each experiment setup, we vary 

the number of training images and repeat the experiments 20 times. Each agent predicts the 

Public Recall =
|True Public|

|True Public| + |False Private|

Accuracy =
|True Private| + |True Public|

|True Private| + |False Public| + |True Public| + |False Private|

Fig. 3  Accuracy, private recall and public recall values of PELTE when the social function is disabled in the 

estimation function, i.e., � = 0
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privacy setting for 20 test images. Figure 3 presents the average of the results obtained from 

each experiment setup. The x-axis is the average number of training images per agent in 

each setup. We then plot the accuracy, private recall, and public recall. The accuracy value 

of PELTE is around 0.7 when there are 236 training images throughout the system and each 

agent has seen four images in average. Providing more training data to the agents make the 

system more accurate, as expected. When each user agent has approximately 25 images, 

PELTE reaches the accuracy value of 0.85. Moreover, the private recall attains a result that is 

higher than the accuracy of the system and around 0.95. In other words, PELTE estimates the 

privacy settings of private images more accurately than those of public images.

These results show that PELTE successfully estimates the privacy of images even when 

the agents uses only their users’ internal tag table. More strikingly, PELTE’s success rate 

in on par with centralized approaches that make use of a far larger data set. In particular, 

Tonge and Caragea [55] use PicAlert image dataset at one-shot to train an SVM classifier, 

which achieves an accuracy of 83.14% by using object tags created via ImageNet. In a more 

recent work  [57], they propose an approach for fusing object, scene context, and image 

tags modalities. The model identifies the set of most competent modalities on the fly and 

obtains an accuracy of 86.36% . Similarly, Squicciarini et al. [47] use visual features (SIFT, 

edge direction, facial detection, RGB, sentiment) and tags of images to build a machine 

learning classifier, which leads to an accuracy of 86.5%.

However, note that estimating only by the means of the internal tag table would cause 

the agents to face the cold start problem. Because of the lack of training images in the 

beginning, agents would not be able to learn the users’ preferences accurately. For instance, 

having four images per agent leads to a success of 0.7. The images that have privacy value 

indicator close to the average privacy indicator are labeled as either public or private even 

the estimation is not strong enough. Privacy settings of these images are more likely to be 

incorrect. This is expected to be ameliorated with the contribution of the social estimation 

function, which uses the external tag table.

We analyze the effect of the social function to the accuracy of the estimation function by 

varying � value in Eq. (7) from 0.005 to 0.1. We take � = 0 as the baseline and then com-

pare the results of the estimation function to the baseline. We expect the results to depend 

on how much data are stored in the tag tables. Therefore, we observe it under different 

number of training images. Figure 4a depicts the results, where the x-axis is the number 

of training images per agent and the y-axis is the improvement at the accuracy given as 

percentage. Every line represent the results of a different � value. As clearly seen, the social 

(a) The accuracy increase of the social function is higher

with smaller training data

(b) The ratio of personal estimation to all estimations increases

with more training data.

Fig. 4  The effect of social function on the estimation function [see Eq. (7)] for varying � values
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function improves the success rate. The improvement is evident especially when the num-

ber of training images is low. For instance, the improvement is around 10% in case of each 

agent having four training images. If we look at Fig. 3, most of the increase in the results 

occurs from three to ten training images. This is when the agents have not shared too many 

posts themselves thus benefit from mimicking the behavior of others by making use of the 

images that have been shared with them.

On the other hand, increasing � value does not always make the system much more suc-

cessful. We analyze how much the social function is involved in the estimation process and 

present the result in Fig. 4b. The x-axis is again the number of training images per agent 

and the y-axis is the number of estimations made by using the internal tag table, called as 

personal, to the overall number of all estimations. Higher � value causes social function 

to estimate privacy settings of more images. Moreover, the estimation function needs the 

social function less with the increasing number of images shared by the agents themselves. 

However, even though the improvement becomes negligible with the more training images, 

the social function estimates privacy settings of images for higher � values, such as � = 0.1.

Now, we know that using a small threshold value is enough to increase success of the 

system via social estimation function. We set � value to 0.01 and analyze the accuracy, 

private recall, and public recall results of PELTE. Figure 5 presents these results, where the 

x-axis is the average number of images each agent has. We plot the accuracy, private recall, 

public recall, and personal/all, which shows the ratio of the estimation function only uses 

the internal tag table to the total number estimations. It helps us to understand how many 

images are estimated by using the internal tag table. We see that both accuracy and recall 

values becomes better with the increase in the number of training images per agent. Moreo-

ver, the increase in the personal/all values shows that PELTE estimates the privacy settings 

of more images when agents have more data in their internal tag tables.

We can see the positive effect of the social estimation function on the results more 

clearly by comparing Figs. 3 and 5. When each agent has only three images and � is set 

to 0, the accuracy of the estimation function is less than 70% . However, when the sys-

tem enables the social estimation function, the accuracy is close to 80% . Moreover, hav-

ing � value equals to 0.01 helps the system to reach its maximum success earlier than the 

system that benefits from only the internal tag table. Even when there are few number of 

Fig. 5  Accuracy, private recall, and public recall results of PELTE when � = 0.01
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training images, accuracy and recall values are comparable to the best results that the full 

system achieves. Note that this is possible because content is being shared with the user 

even though the user has not shared much herself. Therefore, we can conclude that the 

social estimation function improves the results of PELTE when it suffers from the cold start 

problem. If the estimation function only used the internal tag table, it would have required 

much more data to yield the result that is obtained with the social estimation.

4.3  Performance under privacy variance

In the previous scenarios, each agent is indifferent to the privacy understanding of other 

agents. The privacy understanding of other agents is not important when an agent is using 

its internal tag table, as this only reflects its own preferences. However, when the agent 

is using its external tag table, the possible privacy variance among agents would become 

more of an issue. That is, the agent prefers to share an image as private but many of its 

friends on the network are sharing similar images as public. Accordingly, by making deci-

sions based on what others have shared with the agent might give misleading results. 

Hence, the agent should only make decisions based on the agents that it has similar privacy 

understanding. This is represented as the similarity metric of PELTE, which is defined in 

Eq.  (8). In order to show how using the similarity metric affects agents’ privacy setting 

estimations, we introduce agents with contrasting privacy understanding to the environ-

ment. These agents share images with the opposite privacy settings, i.e., sharing a public 

image as private or vice versa.

We examine the effect of contrasting agents to the whole network by varying the num-

ber of contrasting agents. We randomly choose n agents from 59 different agents in the net-

work. In Fig. 6, we plot the accuracy, private recall, and public recall values of the social 

estimation function both when the similarity metric is in use and not. For the latter case, 

we simply set the similarity between all agents to a default value, 1. The x-axis shows 

the number contrasting agents in the network. These results are for the remaining (nor-

mal) agents, i.e. when there are 10 contrasting agents, accuracy values correspond to the 

average accuracy of remaining 49 agents in the environment. We see that as the number 

Fig. 6  The results of the social estimation function when the similarity metric is in use and not (assumed to 

be 1)



 Autonomous Agents and Multi-Agent Systems (2021) 35:7

1 3

7 Page 22 of 33

of contrasting agents increases, the accuracy and the recall values of the social estima-

tion decreases considerably when similarity metric is not actively used by the agents. Even 

though increasing the number of contrasting agents in the network decreases the success 

also when the similarity metric is in use, the decrease is much slower. The comparison 

between these two cases shows that similarity metric help PELTE selectively learn more 

from similar agents and decrease the effect of agents with contrasting views. For example, 

the accuracy of the social estimation function is 30% higher when the half of the network 

becomes contrasting, i.e., 30 agents.

Notice that the accuracy results presented here are lower than the previous parts because 

we present the results of only the social estimation. Also, since we want to observe how 

using the similarity metric affects the social estimation function, we increase the � value 

from 0.01 to 0.1 to make the function more active, as presented in Fig. 4b. These images 

are directed to the social estimation because the privacy value indicators estimated from 

the internal tag table are close to the average privacy indicator [Eq.  (7)]. Therefore, the 

estimated privacy settings are more prone to be misclassified.

4.4  Robustness

The simulations use the tags generated by the general model of Clarifai, which provides 

20 tags for each image. In all the simulations up to now, we allow agents to use all 20 

tags while estimating the privacy setting of an image. In different systems, images might 

be tagged automatically but with another tool, which generates fewer number of tags than 

20 or low quality tags. Instead of using a tool, users might also tag the images themselves 

and this would result fewer tags and more unique tags. Hence, we experiment the perfor-

mance of PELTE when images have fewer tags, when tags come from different sources or 

even when privacy of images are uncertain for users.

4.4.1  Effect of number of tags

To study the effect of number of tags, we first run the simulations where we vary the num-

ber of tags used per image and measure the accuracy of PELTE. To investigate the contribu-

tion of the social function, we evaluate cases of both � is equal to 0, i.e., social function is 

not used, and 0.01, i.e., social function is used. The number of training images per agent 

is 20 and that of the test images per agent is 20 as well. In Fig. 7, we present the accuracy, 

private recall, and public values for both of the cases. The x-axis shows the number tags 

each image has. The figure shows that having as few as five tags guarantees an accuracy 

more than 0.81 that is comparable to a case with 20 tags (0.85). In an extreme case, even 

when each image has only one tag, the accuracy is close to 0.7.

On the other hand, we see that having fewer number of tags pushes the system to con-

sult the social estimation function more. This effect can be seen from the line of personal/

all, which corresponds to the ratio of how many times the internal tag table is used to the 

total number estimations. Notice that the improvement by the means of social function is 

negligible when the number of training images is equal to 20 (see Fig. 4a). The social func-

tion indeed increases the accuracy in case of few number of tags are present. We can con-

clude that the social estimation function improves the success of PELTE not only for the cold 

start phase, but also for the systems having fewer number of tags.
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4.4.2  Effect of sources of tags

To see if the quality of the tags affect the performance of PELTE, we run the same experi-

mental setups for the same images: with tags from two different sources: user tags and deep 

tags2, which have extracted by Tonge and Caragea [56] using AlexNet convolutional neural 

network  [36]. We evaluate the performance of PELTE by replacing Clarifai tags with the 

tags of these source for each image. Additionally, we combine the users tags and Clarifai 

tags of each image and introduce the combinations as the tags of images. We run separate 

Fig. 7  Accuracy, public recall, and private recall values of PELTE for varying number of tags per image

Fig. 8  Accuracy results of PELTE when tags from different datasets are used for the same images

2 https ://githu b.com/ashwi niton ge/deepp rivat e

https://github.com/ashwinitonge/deepprivate
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simulations for each of these tag datasets and evaluate the performance for varying number 

of training images. We present the accuracy results in Fig. 8. The results show that PELTE 

achieves better results with deep tags than user tags while obtaining the highest accuracy 

with Clarafia tags. On the other hand, when we use the combination of user and Clarifai 

tags, PELTE achieves almost the highest performance (0.85).

We have investigated Clarifai, AlexNet, and user tags to find out where the difference 

stems from. Clarifai and AlexNet generate almost the same number of tags per image 

(Clarifai generates 20 tags and AlexNet generates about 18.50 tags), whereas the users pro-

vide fewer than the half of the number of tags generated by automated tools (8.8 tags). 

Moreover, the user tags has around unique 2.5 tags per image and this is about five times 

of the same value for the generated tags. This reveals that automated tools consistently use 

a smaller set of tags, but users tend to create more unique tags since they tag the images 

individually. If we consider user tags as noise to the consistent tags of Clarifai, we can con-

clude that PELTE can overcome the noise and attain almost the same values with its highest 

level of performance.

4.4.3  Effect of privacy uncertainty

We setup an experiment to see if PELTE performs well when the images cannot be clearly 

identified as privacy or public. To realize this, we go back to PicAlert dataset and include 

the images that have conflicting labels; some users label the image as private and some 

others label as public. We take these images into consideration as two different groups: 

The first group includes all of the images with conflicting labels except the ones that have 

the equal number of private and public labels and the second group includes all the images 

by considering the ones having the same number of private and public labels as private 

images. The first group has around 20% more images, whereas the second group doubles 

the number of images. We run simulations with these image groups and compare the per-

formance with the case when we use only images with non-conflicting labels, as in the pre-

vious experiments. We present the accuracy results of PELTE for different number of training 

Fig. 9  Accuracy results of PELTE when images having conflicting privacy labels are included
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images in Fig. 9. The accuracy decreases slightly when images with conflicting but non-

equal labels are included. However, when we also include the images that have equal num-

ber of private and public labels and consider them as private images, the accuracy value 

that PELTE achieves at the highest performance decreases from 0.85 to 0.80.

5  Discussion

We propose an agent based approach to assist OSN users manage privacy settings of 

images. Agents store the tags of uploaded images and then use these tags to automatically 

recommend a privacy setting for a new image that will be shared. We develop a simula-

tion environment on which we can evaluate the performance of our approach. The environ-

ment allows various number of agents to exist and estimate privacy settings at the same 

time. The tags of the images are obtained from an automated tool. Results, as illustrated in 

Sect. 4, show that PELTE can estimate privacy setting of images accurately. When each user 

agent has as few as 25 images, each with 20 tags, PELTE reaches the accuracy value of 

0.85. What is more striking is that, the PELTE achieves better performance in predicting that 

a content is private. This is important because it shows that private content is much less 

likely to be recommended as public. Repeating the same experiment with as few as five 

tags yields an accuracy of 0.8; the accuracy drops sharply with fewer than five tags as PELTE 

has no ground to make recommendations.

An important component of the privacy model is the social function that estimates the 

setting based on what has been shared with the user. Our first experiment on this aspect is 

to see when it is good to invoke the social function by varying the � in Eq. (7). We show 

that setting � value as small as 0.01 leads the model to improve accuracy as much as for 

larger values without invoking the social function excessively. For cases when the social 

function is invoked, it is most useful when the number of training data is very few. With 

each additional content that the user shares, the need for the social function drops. After 

ten contents being shared, the agent does not have to invoke the social function at all. A 

central question is how much the social function is affected by the privacy variance among 

other agents. After all, if the agents all have conflicting privacy expectations, mimicking 

others will not be useful. We observe that as the number of contrasting agents increases, 

the usefulness of the mimicking drops but still enables higher accuracy than cases without 

mimicking. Finally, the quality of the tags plays an important role in how PELTE works. 

When the tags are generated by Clarifai, the accuracy is 0.85, but with user tags the accu-

racy stays at 0.65. This is an expected result as users might assign tags that are more idi-

osyncratic than an automated tool. Interestingly, having images with uncertain privacy 

labels in the dataset decreases the accuracy by at most 0.05. These results are promising in 

both performance and robustness of PELTE.

5.1  Comparison with State‑of‑the‑art

Recent works in the literature mainly focus on machine learning approaches to predict pri-

vacy settings of images more accurately. Squicciarini et  al.  [47] explore users’ uploaded 

images, using images’ visual features (SIFT, edge direction, facial detection, RGB, senti-

ment) as well as their tags. They employ different machine learning models, such as Naive 

Bayes, k-nearest neighbors, and support vector machines and evaluate it by using PicAlert 

dataset. They aim to identify the smallest combination of features that can successfully 
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lead to highly accurate classification. They find that tags are the most dominant features. 

Similarly, Tonge and Caragea  [55] train SVM classifiers to predict privacy labels of 

images. The model is a single classifier that is trained on PicAlert images, by using both 

user tags and deep tags, which are the top 10 object categories identified by a pre-trained 

ImageNet model. Using top 10 object categories allows to create an input vector space of 

size 10. Neither of these approaches is applicable for cases with small data. These pro-

posed approaches uses a large set of images to train a single classifier and therefore, do 

not consider privacy variance requirements. Moreover, the feature vector space needs to be 

recomputed whenever the training size or the number of selected tags changes. Conversely, 

PELTE starts from scratch without any assumption about the representation of content and 

thus satisfies the robustness requirement.

Machine learning has also been used in systems there privacy variance is taken into 

account. Fang et al. [16] develop a model called Privacy Wizard, which uses active learn-

ing methods to help each user set the privacy preferences towards the other users. The 

privacy wizard requires profile data, such as network connections, age, gender, to assign 

similarity values to users. It constructs a decision tree that takes a user’s labeled friends 

as inputs to classify the unlabeled ones. However, the proposed model aims to find user’s 

general privacy preferences, whereas PELTE focuses on predicting privacy settings of each 

image post.

Zhong et al. [64] propose a personalized model to classify images, while acknowledg-

ing that the limited user data is too small to train a classifier accurately. Rather than using 

the tags, their method processes an image into patches to find spatially localized regions 

and identifies the image as private if there is at least one patch with sensitive content. They 

consider the approach as a personalized model since they divide a set of users into subsets, 

which are called privacy groups. Then, the model associates a new user with the group at 

different strengths based on the user’s privacy labels to image patches but also her profile 

data, which is a 30-dimensional binary vector that corresponds to demographic informa-

tion. When a new user does not have any labeled image, the system finds her group, based 

on the profile data. The user profiles here have been used as additional data to help with the 

small data. The approach does not satisfy the robustness requirement because it needs sig-

nificant preprocessing and configuration (e.g., number of user groups or vector size) before 

being used.

Agent-based approaches for privacy prediction also exist. Misra and Such [44] propose 

an agent based access control decisions by combining content features and social relation-

ships among agents, factoring in type and strength. Each agent is trained with machine 

learning algorithms, such as SVM and Random Forest over a very large image dataset, 

where each is represented with a fixed size binary vector of size 15 that corresponds to tag 

categories. While this approach is decentralized and can learn the preferences per user, 

the amount of training data used is huge; thus not applicable in systems with small data. 

Kepez and Yolum [30] also propose an agent-based framework where each agent employs 

machine learning techniques to learn their users’ preferences. To deal with cold start prob-

lem, they employ a multiagent approach where an agent asks others that it trusts in the 

multiagent system for recommendations. They assume that each agent can represent the 

privacy preferences using a fixed set of features. They show that when the training data is 

large or that there are trusted agents in the system the agent can help its user. However, this 

approach does not satisfy the small data requirement as well as the robustness requirement 

as the input space depends on the training dataset.

Criado and Such  [12] propose an Information Assistant Agent that is responsible for 

managing the interactions of its user in an OSN. The agent uses the information model and 
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has four main components: community finding algorithm, passing time function, message 

sending function, and message reception function. It learns the user’s behavior in particular 

contexts and make recommendations for other similar contexts by means of the contextual 

privacy norms. For example, it warns the user before exchanging a potentially inappro-

priate information or engaging in an undesirable dissemination of information. Similarly, 

Ulusoy and Yolum [59] investigate privacy norms specific to the image sharing scenarios. 

They propose a normative agent-based solution to ease burden on the users in collabora-

tive systems. The agents incorporate four different norm types to provide access control 

decisions collaboratively. Similar to privacy retrieval model of PELTE, the agents in their 

approach use tags of images to infer the contextual information. These works on privacy 

norms are important and complementary to our work. By using the privacy retrieval model 

proposed here, the agents proposed in these works can estimate the privacy of the content 

accurately, thereby leading to more accurate privacy norms.

Albertini et  al.  [3] develop a recommender system that extract association rules from 

previous contents of a user and combines these rules to generate privacy policies. The 

proposed model faces with the cold-start problem, whereas social estimation function of 

PELTE addresses the cold start problem. Similarly, Squicciarini et al. [48] propose a recom-

mender, called Adaptive Policy Prediction (A3P), and they consider the cold start problem 

as well. A3P has two components called A3P-Core and A3P-Social, where A3P-Core finds 

an appropriate privacy policy for an uploaded image via using the user’s previous policies, 

A3P-Social tries to find a privacy policy from another user, who has similar social context 

and strictness level with the user. However, accessing the entire OSN is both impractical 

and violates the personal data requirement.

5.2  Connection to other directions in privacy

The idea of helping users manage their privacy through software has been gaining momen-

tum in the past few years. We have proposed an approach specific to privacy settings of 

images. However, privacy is not only about what users share about themselves but also 

what others share about them [53]. There are different ways of considering how privacy 

can be preserved in OSNs. Some of the recent literature analyze information disclosure 

to determine possible ways of privacy breaches [35, 65] or to predict a user’s privacy risk 

when interacting with other users in OSNs  [2]. Several other approaches consider how 

privacy violations can be detected  [33, 49]. These approaches help users after a privacy 

violation takes place. Another set of approaches consider how entities can resolve pri-

vacy conflicts among themselves. They employ techniques like collaborative access policy 

administration [9, 25], argumentation [32], negotiations [29, 54], help of a mediator [52], 

secret key sharing [28] and so on. We review some of these work in comparison to PELTE 

here.

Kökciyan and Yolum [33] propose a semantic approach to detect privacy violations in 

OSNs so that users can take appropriate actions. Three main contributions of the work are 

meta-model to represent online social networks formally, a semantic model that conforms 

to the meta-model, and an ontology based software tool of the proposed model. Privacy 

requirements are defined as commitments between two agents in an agent based social net-

work. The purpose of the system is to detect commitment violation, which corresponds to 

privacy breach. Their algorithm for detection is both sound and complete, but privacy poli-

cies are manually specified by users. PELTE can generate privacy policies automatically and 

thus can complement the work of Kökciyan and Yolum.
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Fogues et. al. [17] propose an agent-based approach, SoSharP, to make effective recom-

mendations about sharing in multiuser scenarios, where a content is about multiple users 

and thus the users have to decide on the content’s privacy together. The proposed approach 

uses context, user characteristics, sharing preferences, and group characteristics as the rel-

evant features. SoSharP works for three rounds by using different variations of the fea-

ture set. In the first round, it starts with context and user based features, whereas it adds 

sharing preferences in the second and group-based features in the third round. It continues 

until users agree on the recommendation. After three rounds, if there is no agreement, it 

is considered a failure. SoSharP is evaluated by conducting a user study in which partici-

pants decide for sharing policies of images via impersonation method. Results show that 

SoSharP has a slightly better performance than veto voting. SoSharP also deals with the 

cold start problem, but it uses a crowd-sourced training dataset, whereas PELTE does not use 

any data that are not shared by or with the user.

Humpert et al. [26] survey the interdependent privacy problems and technical solutions 

in various domains. They have found that almost all the technical solutions focus on either 

photos or generic data (including photos). Although PELTE has been considered as an agent-

based solution for single user scenarios, it would be interesting to employ PELTE as the 

individual decision making module of such multiuser scenarios. For example, Squicciarini 

et  al.  [50] examine privacy as a tax problem. They propose a collaborative management 

model based on Clark Tax algorithm. One of the points they emphasize as requirements 

of collaborative privacy management is automation to make process easier. As part of the 

auction mechanism, PELTE can be used to assign bids to images automatically according to 

privacy value of the image. Similarly, Such and Rovatsos [54] and Keküllüoğlu et al. [29] 

propose negotiation mechanisms for conflicts in OSNs that support ReBAC. PELTE would 

be able to act on behalf of users to provide input to the negotiation mechanisms in case 

user preferences are requested.

OSN users might have difficulties understanding the privacy settings they eventually 

select for the post they share. Lipford et al. [40] show that providing users visual guidance 

with a better user interface improves the experience of users. PViz [42] is a graphical tool 

that display privacy settings at different granularity levels to help users understand whom 

the privacy settings allow. Such visual designs could be integrated to the implementation 

of PELTE to explain users the recommended privacy settings and also how they are retrieved 

from the tags.

5.3  Limitations and future directions

The current work has some limitations and possible areas for further development. We 

have evaluated the access control mechanism of PELTE for a single relationship type, which 

is identical to the binary distinction, such as deciding to share with the whole network or 

only friends. Although the binary distinction is the most widely-used and practical access 

control mechanism by the current OSNs  [43], PELTE can support multiple relationship 

types, which yields to a more desirable mechanism. An ideal evaluation of PELTE would 

require a network dataset where the users are connected to each other with multiple rela-

tionship types and an image dataset that has privacy labels for the corresponding relation-

ship types. However, the well-known image dataset [63] in the privacy literature is created 

by impersonation method and cannot be mapped to real users in an OSN network. There-

fore, we have experimented the performance of PELTE using datasets that support a single 

relationship type. Since our approach considers each relationship type independent from 
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each other, having only a single relationship type does not endanger the validity or the 

applicability of the approach. If more relationship types were introduced and included in 

the privacy labels of images, other experiments concerning the differences among relation-

ship types would have been performed as well.

In addition to the relation types, users can benefit from predefined user groups or cus-

tom users groups to specify privacy settings at different levels. The predefined user groups 

are provided by OSNs, whereas the custom ones could be generated by either a facility 

of the OSNs, such as smart lists in Facebook, or tools designed to help users, such as 

ReGroup  [4] that employs a machine learning approach. PELTE could support predefined 

groups as the relation types since the groups share the same semantics; but it cannot sup-

port groups defined by the users because those groups would be created with different 

semantics.

Since OSN profiles are attributed to presumably known persons from the real world, 

they are implicitly valued with the same trust as the assumed owner of the profile  [13]. 

As relationships develop and the personal information exchange occurs in OSNs, the role 

of trust become even more important for the sharing behaviors  [58]. However, the real 

world experience cannot be directly transmitted to a virtual environment as numerical val-

ues. Automated tools measure different metrics with respect to the sharing behaviors. For 

example, BFF [18] predicts tie strength of the relationships of a user with each person in 

her network. Similarly, the social estimation function of PELTE is implemented as learn-

ing from users’ networks based on the similarity metric and this metric could be consid-

ered as the trust of users towards others on privacy preferences. Automated tools could be 

employed to generate alternatives to the similarity metric. Moreover, we currently propose 

a multidimensional but the same metric for the relationship types. Since the functional-

ity of similarity metric is limited to being used as a multiplier in the update function, it is 

possible to integrate different trust metrics having different meanings for each relationship 

type. A possible model to incorporate here could be that of FIRE  [27], where different 

types of trust, such as interaction and role-based trust, are employed together.

Online social networks enable users to form new friendships as well as remove old ones. 

Even when the friendships persist, their strength may vary. Moreover, as with the change 

in the environment, a user’s privacy understanding may change [1]. The system should be 

able to adapt to these changes immediately. Many existing approaches that predict privacy 

settings generally ignore this dynamism because they are based on an initial preprocessing 

phase that defines limited number of private objects for classification process. However, 

the system should automatically be updated with new information. For example, when a 

new user enters the system or an existing user shares images with different contents, with 

each image that they share, the system should be aware of the changes and able to infer 

their privacy preferences better. As a future direction, we want to study how the change in 

the users’ privacy expectation can be handled in PELTE.

Privacy in Internet of Things of is a growing study area of privacy [46]. The Internet of 

Things consists of smart devices that have an Internet access. People use various type of 

smart devices in daily life. Some of these devices can access to their personal data. Moreo-

ver, we inevitably exposure the devices that record voice, image, video, etc. Therefore, our 

private data becomes a part of the data stored in Internet of Things environments. Since the 

data collected by smart devices may violate privacy of people, the devices should take their 

actions regarding personal data more carefully. For this reason, we think that Internet of 

Things can be another future direction of PELTE. Since it is both agent based and simple, it 

is capable to work in smart devices, which have a low computation power and have a tem-

porary connection to a centralized system. For example, surveillance devices may decide 
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to whether share a scene with third party according to analysis done by our model. Thus, 

surveillance devices can work to respect people’s privacy.
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