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Abstract. We establish the definition of associate and conjugate conformal minimal
isometric immersions into the product spaces, where the first factor is a Riemannian surface
and the other is the set of real numbers. When the Gaussian curvature of the first factor is
nonpositive, we prove that an associate surface of a minimal vertical graph over a convex
domain is still a vertical graph. This generalizes a well-known result due to R. Krust. Focusing
the case when the first factor is the hyperbolic plane, it is known that in certain class of surfaces,
two minimal isometric immersions are associate. We show that this is not true in general. In the
product ambient space, when the first factor is either the hyperbolic plane or the two-sphere,
we prove that the conformal metric and the Hopf quadratic differential determine a simply
connected minimal conformal immersion, up to an isometry of the ambient space. For these
two product spaces, we derive the existence of the minimal associate family.

1. Introduction. A beautiful phenomenon for minimal surfaces in Euclidean space is
the existence of a 1-parameter family of minimal isometric surfaces connecting the catenoid
and the helicoid, which are said to be associate. Also, it is a well-known fact that any two
conformal isometric minimal surfaces in a space form are associate. What happens in other
3-dimensional manifolds ?

Our objective of this paper is to discuss the same phenomenon in the product space,
M × R, establishing a definition of associate minimal immersions. We specialize in the
situations when M = H 2, the hyperbolic plane, and M = S2, the sphere, where surprising
facts occur. We will prove some existence and uniqueness results explained below. We begin
with relevant definitions.

Let M be a two dimensional Riemannian manifold. Let (x, y, t) be local coordinates
in M × R, where z = x + iy are conformal coordinates on M and t ∈ R. Let σ 2|dz|2 be
the metric on M, so that ds2 = σ 2|dz|2 + dt2 is the metric on the product space M × R.

Let Ω ⊂ C be a simply connected domain of the plane, w = u + iv ∈ Ω. We recall that
if X : Ω → M × R, w �→ (h(w), f (w)), w ∈ Ω , is a conformal minimal immersion,
then h : Ω → (M, σ 2|dz|2) is a harmonic map. We recall also that for any harmonic map
h : Ω ⊂ C → M there exists a related Hopf holomorphic quadratic differential Q(h).
Two conformal immersions X = (h, f ) and X∗ = (h∗, f ∗) : Ω → M × R are said to
be associate if they are isometric and if the Hopf quadratic differentials satisfy the relation
Q(h∗) = e2iθQ(h) for a real number θ . If Q(h∗) = −Q(h), then the two immersions are
said to be conjugate. Observe that if M = R2, then, locally, any conformal and minimal
immersion has an associated family, see Remark 17.
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In this paper, we will show that there exist two conformal minimal immersions X,Y :
D → H 2 × R which are isometric each other, with constant Gaussian curvature K ≡ −1,
but are not associate (see Example 18), where D is the unit disk. We will prove also that the
vertical cylinder over a planar geodesic in H 2 × R is the only minimal surface with constant
Gaussian curvature K ≡ 0 (Corollary 5).

One of our principal results is a uniqueness theorem in H 2 × R or S2 × R, showing that
the conformal metric and the Hopf quadratic differential determine a minimal conformal im-
mersion, up to an isometry of the ambient space, see Theorem 6. We will derive the existence
of the minimal associate family in H 2 × R and S2 × R, in Corollary 10, by establishing an
existence result (Theorem 7). The associate minimal family in H 2 × R or S2 × R is derived
by another approach in [4].

The first author has constructed examples of minimal surfaces in H 2 × R and in S2 ×
R, which generalize the family of Riemann’s minimal examples of R3. He classified and
constructed all examples foliated by horizontal constant curvature curves. Some of them have
Gaussian curvature K ≡ −1. This family is parametrized by two parameters (c, d) and the
example corresponding to (c, d) is conjugate to the one parametrized by (d, c) ([8]). The
second and third authors proved that any two minimal isometric screw motion immersions in
H 2 × R and S2 × R are associate, see [15]. The second author proved that any two minimal
isometric parabolic screw motion immersions into H 2 × R are associate. On the other hand,
he proved that there exist families of associate hyperbolic screw motion immersions, but there
exist also isometric non-associate hyperbolic screw motion immersions, see [14]. There exist
hyperbolic screw motion surfaces associate to parabolic screw motion surfaces (Example 16).

Several questions arise: We point out the problem of the existence of the associate mini-
mal family in M × R, for any 2-dimensional Riemannian manifold M . Also, we may ask in
which general assumptions isometric immersions must be associate.

The second principal result is a generalization of Krust’s theorem (see [5, Volume I, page
118] and applications therein) which states that an associate surface of a minimal vertical
graph in R3 on a convex domain is a vertical graph. This theorem is true in M × R when
KM ≤ 0 (Theorem 14), where KM is the Gaussian curvature of M .

For related works on minimal surfaces in M × R, see for instance Daniel [4], Nelli and
Rosenberg [12], Meeks and Rosenberg [11] and Rosenberg [13].

For related works on harmonic maps between surfaces the reader can see, for instance,
Han [7], Schoen and Yau [16], Tam and Wan [17] and Wan [18].

We are grateful to the referee for valuable observations.

2. Preliminarias. We consider X : Ω ⊂ R2 → M × R a minimal surface confor-
mally immersed in a product space, where M is a complete Riemannian two-manifold with
metric µ = σ 2(z)|dz|2 and Gaussian curvatureKM . First we fix some notation. Let us denote
|v|σ = σ |v|, 〈v1, v2〉σ = σ 2〈v1, v2〉, where |v| and 〈v1, v2〉 stand for the standard norm and
inner product in R2, respectively. Let us find w = u+ iv as conformal parameters ofΩ , i.e.,
ds2
X = λ2|dw|2. We denote by X = (h, f ) the immersion, where h(w) ∈ M and f (w) ∈ R.
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Assume that M is isometrically embedded in Rk . By definition (see Lawson [10]) the
mean curvature vector in Rk is given by

2
−→
H = (�X)TXM×R = ((�h)ThM ,�f ) ,

where h = (h1, . . . , hk). Since X is minimal, h : Ω → M is a harmonic map from Ω to the
complete Riemannian manifold M , and f is a real harmonic function. If (U, σ 2(z)|dz|2) is a
local parametrization of M , the harmonic map equation in the complex coordinate z = x+ iy
of M (see [16, page 8]) is written as

hww̄ + 2(log σ ◦ h)zhwhw̄ = 0 .(1)

In the theory of harmonic map there are two important classical objects to investigate.
One is the holomorphic Hopf quadratic differential associate to h:

Q(h) = (σ ◦ h)2hwh̄w(dw)2 := φ(w)dw2 .(2)

The other is the complex coefficient of dilatation (see Ahlfors [2]) of a quasiconformal map:

a(w) = hw̄

hw
.

Since we consider a conformal immersion, we have (fw)2 = −φ(w) from (see [15]):

|hu|2σ + (fu)
2 = |hv |2σ + (fv)

2 ,

〈hu, hv〉σ + fu · fv = 0 .

We define η as the holomorphic one-form η = ±2i
√
φ(w)dw, when φ has only even zeros.

The sign is chosen so that we have

f = Re
∫
w

η .(3)

Assume that X is a conformal immersion and let N be the Gauss map in M × R. Then,
settingN = N1∂/∂x+N2∂/∂y+N3∂/∂t , where x+ iy are isothermic coordinates of M and
t is a coordinate of R, we have (see [15]):

N := (N1, N2, N3) = ((2/σ)Reg, (2/σ)Img, |g|2 − 1)

|g|2 + 1
,(4)

where

g := fwhw̄ − fw̄hw

σ |hw̄|(|hw| + |hw̄|) .(5)

We remark that

g2 = −hw
hw̄

= − 1

a
.(6)

Using Equations (2), (3) and (6), we can express the differential dh as follows:

dh = hw̄dw̄ + hwdw = 1

2σ
g−1η − 1

2σ
gη .(7)
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The induced metric ds2
X = λ2|dw|2 is given by [15]:

ds2
X = (|hw|σ + |hw̄|σ )2|dw|2 .(8)

Thus, combining these equations together, we derive the metric in terms of g and η:

ds2
X = 1

4
(|g|−1 + |g|)2|η|2 = (|√a| + |√a|−1)2|φ||dw|2 .(9)

In the case of minimal surfaces X conformally immersed in R3 = R2 × R, the data
(g, η) are classical Weierstrass data:

X(w) = (h, f ) =
(

1

2

∫
w

g−1η − 1

2

∫
w

gη,Re
∫
w

η

)
.(10)

In particular g is the Gauss map.
The main difference is in the fact that g is no more a meromorphic map when the ambient

space is M×R. In order to study g , it is more convenient occasionally to consider the complex
function ω + iψ defined by

g := −ieω+iψ ,(11)

whereω andψ are R-valued functions. It is a well-known fact (see [16, page 9]) that harmonic
mappings satisfy the Bochner formula:

�0 log
|hw|
|hw̄| = −2KMJ (h) ,(12)

where J (h) = σ 2(|hw|2 − |hw̄|2) is the Jacobian of h with |hw|2 = hwhw and �0 denotes
the Laplacian in the Euclidean metric. Hence, taking into account of (2), (6), (11) and (12),
we have

�0ω = −2KM sinh(2ω)|φ| .(13)

With these conventions, notice that the metric and the third coordinate of the Gauss map N
are given respectively by

ds2
X = 4 cosh2 ω|φ||dw|2 and N3 = tanhω .(14)

On account of the discussion above, we deduce the following

PROPOSITION 1. Let h : Ω → M be a harmonic mapping from a simply connected
domain Ω ⊂ C such that the holomorphic quadratic differential Q(h) does not vanish or
has zeros with even order. Then there exists a complex map g = −ieω+iψ and a holomorphic
one-form η = ±2i

√
Q(h) such that, setting f = Re

∫
η, the mapX := (h, f ) : Ω → M ×R

is a conformal and minimal (possibly branched ) immersion. The third component of the unit
normal vector is given by N3 = tanhω. The metric of the immersion is given by (8) or (9):

ds2
X = cosh2 ω|η|2 ,

where ω is a solution of the sinh-Gordon equation

�0ω = −2KM sinh(2ω)|φ| .
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REMARK 2. We remark that the branch points of X are among the zeros of Q(h).
Therefore, the branch points are isolated. Note also that the poles of ω are among the zeros of
Q(h).

PROOF OF PROPOSITION 1. We deduce from the hypothesis that we can solve in f the
equation (fw)2 = −(σ ◦h)2hwh̄w, (sinceΩ is simply connected). Therefore the real function
f is harmonic and the mapX := (h, f ) : Ω → M ×R is a conformal and minimal (possibly
branched) immersion.

Observe that X∗ := (h,−f ) also defines a conformal and minimal (possibly branched)
immersion into M × R, which is isometric to X with g∗ = −g and η∗ = −η. �

REMARK 3. Denote the quadratic differential of Abresh and Rosenberg [1] by QA−R
and keep the notation in Proposition 1. Then, using the relation (fw)2 = −(σ ◦ h)2hwh̄w , a
straightforward computation shows that we have QA−R = −2Q(h).

LEMMA 4. Let X = (h, f ) : Ω → M × R be a conformal immersion. Let N =
(N1, N2, N3) be the Gauss map of X. Let K (resp. Kext) be the intrinsic (resp. extrinsic)
curvature of X. Denote by KM the Gaussian curvature of M . Then the Gauss equation of X
reads as

(Gauss Equation) K(w)−Kext(X(w)) = KM (h(w))N
2
3 (w)

for each w ∈ Ω .

PROOF. As usual, z = x + iy are local conformal coordinates of M and t is the coordi-
nate on R. We denote by R̄ the curvature tensor of M × R, that is,

R̄(A,B)C = ∇̄A∇̄BC − ∇̄B ∇̄AC − ∇̄[A,B]C

for any vector fields A,B,C on M × R, where ∇̄ is the Riemannian connection on M × R.
As X is a conformal immersion, the induced metric on Ω has the form ds2

X =
λ2(w)|dw2| with λ = (σ ◦ h)(|hw| + |h̄w|). The Gauss equation is given by

K(w)−Kext(X(w)) = 〈R̄(Xu,Xv)Xv ;Xu〉
λ4 (w) ,

where 〈 ; 〉 is the scalar product on M × R, Xu = ∂X/∂u = (Re h)u∂x + (Imh)u∂y + fu∂t

and so on. A tedious but straightforward computation shows that

R̄(∂x, ∂y)∂x = �0 log(σ )∂y ,

R̄(∂x, ∂y)∂y = −�0 log(σ )∂x ,

R̄(∂x, ∂x)∂∗ = R̄(∂y, ∂y)∂∗ = 0 ,

R̄(∂t , ∂∗)∂∗ = R̄(∂∗, ∂t )∂∗ = R̄(∂∗, ∂∗)∂t = 0 ,

where ∂∗ stands for any vector field among ∂x, ∂y or ∂t , and �0 is the Euclidean Laplacian.
We deduce that

〈R̄(Xu,Xv)Xv;Xu〉 = −σ 2�0 log(σ )(|hw|2 − |hw̄|2)2.
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Let us observe thatKM = −�0 log(σ )/σ 2, so that we deduce from Equations (4) and (6) that
N3 = (|hw| − |hw̄|)/(|hw| + |hw̄|). Now, using the expression of λ, we obtain the result. �

Notice that given a geodesic Γ ⊂ H 2 × {0}, the vertical cylinder C over Γ defined by
C := {(x, y, t) ; x+ iy ∈ Γ, t ∈ R} ⊂ H 2 ×R is a minimal surface with Gaussian curvature
K ≡ 0. We now deduce the following.

COROLLARY 5. Let X = (h, f ) : Ω → H 2 × R be a conformal and minimal immer-
sion. Let w ∈ Ω be such that K(w) = 0, where K stands for the Gaussian curvature of X
(that is, the intrinsic curvature).

Then the tangent plane of X(Ω) at X(w) is vertical. Therefore, if K ≡ 0, then X(Ω)
is part of a vertical cylinder over a planar geodesic plane of H 2 × R, that is, there exists a
geodesic Γ of H 2 × {t} such that X(Ω) ⊂ Γ × R.

PROOF. As M = H 2, we have KM ≡ −1. Using the Gauss equation in Lemma 4, we
deduce that if K(w) = 0 at some point w ∈ Ω , then

(∗) Kext(X(w)) = N2
3 (w) .

Recall that the extrinsic curvature Kext is the ratio between the determinants of the second
and the first fundamental forms of X. Therefore, as X is a minimal immersion, we have
Kext(X(w)) ≤ 0 at any point w. Using (∗), we obtain that N2

3 (w) = 0, that is, the tangent
plane is vertical at X(w).

Furthermore, if K ≡ 0, we deduce that at each point the tangent plane is vertical. Using
this fact, we get that at any point X(w) the intersection of X(Ω) with the vertical plane at
X(w) spanned by N(w) and ∂t is part of a vertical straight line. We deduce that there exists
a planar curve Γ ⊂ H 2 × {0} such that X(Ω) ⊂ Γ × R. Again, as X is minimal, we obtain
that the curvature of Γ always vanishes, that is, Γ is a geodesic of H 2. �

2.1. Harmonic maps and CMC surfaces in Minkowski space. We now make some
comments about an existence theorem of spacelike CMC surfaces in Minkowski 3-space and
their relation with harmonic maps, inferred by Akutagawa and Nishikawa [3].

We denote by R2,1 the Minkowski 3-space, that is, R3 equipped with the Lorentzian
metric ν̄ = dx2

1 + dx2
2 − dx2

3 , where (x1, x2, x3) are the coordinates in R3. We consider the
hyperboloid H in R2,1 defined by

H = {(x1, x2, x3) ∈ R2,1; x2
1 + x2

2 − x2
3 = −1} .

Since H has two connected components, we call H+ the component for which x3 ≥ 1, and
H− the other component. It is well-known that the restriction of ν̄ to H+ is a regular metric
ν+ and that (H+, ν+) is isometric to the hyperbolic plane H 2. We define in the same way
the metric ν− on H− and (H−, ν−) is also isometric to the hyperbolic plane H 2. Throughout
this paper, we always choose as model for H 2 the unit disk D equipped with the metric
σ 2|dz|2 = (4/(1 − |z|2)2)|dz|2. The isometries Π+ : H+ → D and Π− : H− → D are
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given by

Π+(x1, x2, x3) = x1 + ix2

1 + x3
for any (x1, x2, x3) ∈ H+ ,

Π−(x1, x2, x3) = x1 + ix2

1 − x3
for any (x1, x2, x3) ∈ H− .

Indeed, Π+ (resp. Π−) is the stereographic projection from the south pole (0, 0,−1) ∈ H−
(resp. from the north pole (0, 0, 1) ∈ H+). Observe that in [3], keeping their notation, ψ2 is
the conjugate of the stereographic projection from the south pole, that is, ψ2 = Π+.

Let Ω ⊂ C be a connected and simply connected open subset with w = u + iv as
the coordinates on Ω . An immersion X : Ω → R2,1 is said to be a spacelike immersion
if for every point p ∈ Ω the restriction of ν̄ at the tangent space TpX(Ω) is a positive
definite metric. In this paper we only consider spacelike immersions. Since we are concerned
with CMC spacelike surfaces in Minkowski 3-space, observe that, up to a dilatation, we can
consider only spacelike mean curvature 1 surfaces.

Let X : Ω → R2,1 be a spacelike immersion. For each p ∈ Ω there is a unique vector
N(p) ∈ H such that (Xu,Xv,N)(p) is a positively oriented basis and N(p) is orthogonal to
Xu(p) and Xv(p). This defines a map N : Ω → H called the Gauss map.

Let h : Ω → H 2 be a harmonic map, that is, h satisfies (1):

hww̄ + 2h̄

1 − |h|2hwhw̄ = 0 .

We assume that neither h nor h̄ is holomorphic. It is shown in [3, Theorem 6.1], that given
such h there exists an (possibly branched) immersion X+ : Ω → R2,1 such that the Gauss
map is N+ = Π−1+ ◦ h. Furthermore, the mean curvature is constant and equals to 1, and the
induced metric on Ω is

ν+ = 4|hw|2
(1 − |h|2)2 |dw|2 .

We remark the correspondence between our notation and the notation of [3]: N+ = G and
h = Ψ2. The map X+ is unique up to a translation. In the same way there exists a unique, up
to a translation, (possibly branched) immersion X− : Ω → R2,1 such that the Gauss map is
N− = Π−1− ◦ h. Furthermore, the mean curvature is constant and equals to 1 and the induced
metric onΩ is

ν− = 4|h̄w|2
(1 − |h|2)2 |dw|2 ,

withN− = G and h = Ψ1. Let us note that these two (branched) immersions are not isometric
and that the Gauss map ofX+ (resp. X−) takes values in H+ (resp. H−). In this paper we are
only concerned with the immersion X+.

3. Minimal immersions in M × R. Next, we suppose that M = R2,H 2 or S2. In
the case where M = R2, we have σ(z) ≡ 1. If M = H 2, we consider the unit disk model D,
and then σ(z) = 2/(1 − |z|2) for every z ∈ D. Finally, if M = S2, we can choose coordinate
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charts R2, given by the stereographic projections with respect to the north pole and the south
pole, and in both cases we have σ(z) = 2/(1 + |z|2) for every z ∈ R2.

THEOREM 6. Let Ω ⊂ C be a simply connected open set and consider two conformal
minimal immersions X,X∗ : Ω → M × R which are isometric each other. Let us call h
(resp. h∗) the horizontal component of X (resp. X∗). Assume that h and h∗ share the same
Hopf quadratic differential. Then X and X∗ are congruent.

PROOF. We set X = (h, f ), where h : Ω → M is the horizontal component and
f : Ω → R is the vertical component. Similarly, let us set X∗ = (h∗, f ∗). We use the map
g = −ieω+iψ (resp. g∗ = −ieω∗+iψ∗

) associated to h (resp. h∗) defined in (11) and the
one-form η (resp. η∗) defined in (3). As X and X∗ are mutually isometric, we infer from (9)
that

1

4
(|g| + |g|−1)2|η| = 1

4
(|g∗| + |g∗|−1)2|η∗| .

Also, as h and h∗ share the same Hopf quadratic differential Q = φdw2, we have

|η| = 2|φ|1/2 = |η∗| .
We deduce that

(∗) |g| = |g∗| ,
or

(∗∗) |g| = |g∗|−1 .

If the case (∗∗) happens, we consider the new immersion X∗∗ : Ω → M × R defined
by X∗∗ = (h∗, f ∗). Now, the case (∗) happens, since the immersion X∗∗ has data g∗∗ =
−(g∗)−1 by (5) and η∗∗ = η∗ by (3). Note that X∗∗ and X are immersions isometric each
other with the same Hopf quadratic differential. Therefore, up to an isometry of M × R, we
can assume that the case (∗) happens and then ω = ω∗.

Let us assume now that M = H 2. The case M = S2 is similar, and the case M = R2

(which is easy to show by Weierstrass representation) will be considered later.
Let us consider the Minkowski 3-space R2,1. As h : Ω → H 2 is a harmonic map and

Ω is simply connected, it is known that there exists a CMC 1 (possibly branched) immersion
X̃ : Ω → R2,1 such that the Gauss map is Π−1+ ◦ h. Furthermore, the induced metric onΩ is
given by

ds2
X̃

= ((σ ◦ h)|hw|)2 |dw|2 = e2ω|φ||dw|2 ,
see Subsection 2.1. Notice that φ can vanish only at isolated points, so there exists a simply
connected open subset V ofΩ such that X̃ defines a regular immersion from V into R2,1 and
ds2
X̃

defines a regular metric.
Furthermore, we deduce from Theorem 3.4 of [3] that the second fundamental form of

X̃ is given uniquely in term of Q and ds2
X̃

. To see this, observe first that, setting φ̃(X̃) :=
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(1/2)(buu − bvv − i2buv), where buu, bvv and buv are the coefficients of the second funda-
mental form, we get from the relation (3.12) of [3] that

φ̃(X̃) = (σ ◦ h)2hwh̄w = φ ,(15)

that is, φ̃(X̃)dw2 = Q. Pay attention to the fact that our convention is not the same as that
in [3]. More precisely, considering the notation h11, h12, h22 and Ψ2 of [3], we have Ψ2 = h̄,
buu = ((σ ◦ h)|hw|)2 h11 and so on. Therefore, φ̃(X̃) = (1/2) ((σ ◦ h)|hw|)2 (h11 − h22 −
i2h12).

Now, using the fact that buu + bvv = 2 ((σ ◦ h)|hw|)2 (because the mean curvature is 1),
we deduce that

buu(X̃)= ((σ ◦ h)|hw|)2 + Re Q/dw2 = e2ω|φ| + Re φ ,(16)

bvv(X̃)= ((σ ◦ h)|hw|)2 − Re Q/dw2 = e2ω|φ| − Re φ ,(17)

buv(X̃)= −ImQ/dw2 = −Im φ.(18)

In the same way, there exists a unique (up to a translation) CMC 1 (possibly branched)
immersion X̃∗ : Ω → R2,1 such that the Gauss map is Π−1+ ◦ h∗. We can assume that X̃∗
defines a regular immersion on V . Notice that we have Q(h∗) = Q and the identity (∗) as
well. We deduce from the previous discussion that X̃ and X̃∗ share the same induced metric on
V and the same second fundamental form. Therefore, we infer from the fundamental theorem
of surface theory in Minkowski 3-space that X̃ and X̃∗ are equal up to a positive isometry Γ
in R2,1, that is, X̃∗ = Γ ◦ X̃. The restriction of Γ on H 2 defines an isometry γ of H 2, and
we get h∗ = γ ◦ h on V . By an argument of analyticity we have h∗ = γ ◦ h on the entire Ω .

Let us return to H 2 × R. As f ∗
w = ±fw in view of (3), we get that f ∗ = ±f + c, where

c is a real constant. Hence we obtain X∗ := (h∗, f ∗) = (γ ◦ h,±f + c), that is, X∗ and X
differ from an isometry of H 2 × R.

In the case where M = S2, the proof is similar: We use the fact that any harmonic map
fromΩ into S2 is the Gauss map of a unique (up to a translation) CMC 1 (possibly branched)
immersion into R3, see [9].

Finally, let us consider the case where M = R2. Let (g, η) (resp. (g∗, η∗)) be the
Weierstrass representation of X (resp. X∗). Therefore X is given by X = (

(1/2)
∫

g−1η −
(1/2)

∫
gη,Re

∫
η
)
. As |g∗| = |g|, we deduce that there exists a real number θ such that

g∗ = eiθg . Furthermore, we have η = ±η∗, since (fz)2 = (f ∗
z )

2 = −φ. In consequence,
we have (g∗, η∗) = (eiθg,±η) and we deduce that X∗ differs from X by an isometry of
R2 × R. �

There is also an existence result of minimal immersions into M×R, where M = H 2,S2

or R2.

THEOREM 7. Let Ω ⊂ C be a simply connected domain. Let ds2 = λ2(w)|dw|2 be a
conformal metric on Ω and Q = φ(w)dw2 a holomorphic quadratic differential on Ω with
zeros (if any) of even order. Assume that M = H 2,S2 or R2.
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Then there exists a conformal and minimal immersion X : Ω → M × R such that,
setting X := (h, f ), the Hopf quadratic differential of h is Q (that is, Q(h) = φ(w)dw2)

and such that the induced metric ds2
X is

ds2
X = ds2 = λ2(w)|dw|2

if and only if λ satisfies λ2 − 4|φ| ≥ 0 and

�0ω = −2KM sinh 2ω|φ|(19)

in which φ �= 0, where KM is the (constant) Gaussian curvature of M , �0 is the Euclidean
Laplacian and

ω := log
λ+ √

λ2 − 4|φ|
2

− 1

2
log |φ| .

PROOF. Observe that each zero of φ corresponds to a pole of ω and that e2ω|φ||dw|2
is positive definite on the whole Ω . We first consider the case where KM = −1, that is,
M = H 2. Let us assume that λ satisfies (19). Consider the symmetric 2-tensor II := buudu

2+
2buvdudv + bvvdv

2 on Ω , where buu, buv and bvv are given by

buu + bvv = 2e2ω|φ| ,
buu − bvv = 2Re(φ) ,

buv = −Im(φ) .

(20)

The Gauss equation for the pair (e2ω|φ||dw|2, II) in R2,1 is written as

�0ω = 2 sinh(2ω)|φ| ,
which is satisfied by our assumption. The Codazzi-Mainardi equations are also satisfied,
since φ is holomorphic. Therefore the fundamental theorem of surface theory in R2,1 as-
sures that there exists an immersion X̃ : Ω → R2,1 such that the induced metric on Ω is
ds2
X̃

= e2ω|φ||dw|2 and the second fundamental form is II. Now Equations (20) show that
the immersion has constant mean curvature 1.

Up to an isometry of R2,1 we can assume that the Gauss map N of X̃ takes values in
H+. Therefore, h := Π+ ◦N : Ω → H 2 is a harmonic mapping such that its Hopf quadratic
differential is the same as X̃ so that Q(h) = φ̃(X̃)dw2, as we have seen in the proof of
Theorem 6, see the relation (15). Equations (20) show that

Q = 1

2
(buu − bvv − i2buv)dw

2 := Q̃(X̃) .

That is, Q is the classical Hopf quadratic differential of CMC surfaces in R2,1. Therefore, we
obtainQ(h) = Q. Moreover, we have

ds2
X̃

= ((σ ◦ h)|hw|)2 |dw|2 ,
deducing that e2ω|φ| = ((σ ◦ h)|hw|)2.
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Now, we apply Proposition 1 which states that there exists a conformal and minimal
immersion X = (h, f ) : Ω → H 2 × R, with the induced metric

ds2
X = (σ 2 ◦ h)(|hw| + |h̄w|)2|dw|2 .

Finally, using the fact that (σ ◦ h)|h̄w| = |φ|/(σ ◦ h)|hw|, we easily compute that

(σ 2 ◦ h)(|hw| + |h̄w|)2 = 4 cosh2 ω|φ||dw|2 = λ2 ,

that is, ds2
X = λ2|dw|2 as desired.

Conversely, suppose that such an immersion exists. Then, by (14), we have

λ2 = 4 cosh2 ω|φ| .
A simple computation shows that we have

ω = ω1 := 1

2
log

|h̄w|
|hw| or ω = −ω1 = 1

2
log

|hw|
|h̄w| .

Note that Equation (19) is the Bochner formula (12). This completes the proof in the
case where M = H 2.

If M = S2 (and then KM = 1), the proof is analogous: We use the fact that for any
constant mean curvature 1 immersion X̃ : Ω → R3, its Gauss mapN : Ω → S2 is harmonic,
and conversely any harmonic map fromΩ into S2 is the Gauss map of an (possibly branched)
immersion into R3 with constant mean curvature 1 [9].

If KM = 0, that is, M = R2, assume first that ω satisfies (19), that is, ω is a harmonic
function. As Ω is simply connected, ω is the real part of a holomorphic function ψ on Ω :
ω = Re(ψ). We set

η := −2i
√
φdw and g := eψ .

Let X = (h, f ) : Ω → R2 × R be the conformal and minimal immersion given by
the Weierstrass representation (g, η), see (10). It is straightforward to verify that we have
hwdw = −(1/2)gη and h̄wdw = (1/2)g−1η. Hence we obtain

Q(h) := hwh̄wdw
2 = −1

4
η2 = Q,

and the induced metric is given by

ds2
X := 1

4
(|g−1| + |g|)2|η|2 = λ2(w)|dw|2 .

Conversely, assume that such a minimal immersion X = (h, f ) : Ω → R2 × R exists.
Let us denote by (g, η) its Weierstrass representation. Since |φdw| = |η|2, we easily verify
that λ2 − |φ| ≥ 0. Moreover, we compute that we have |g| = (λ− √

λ2 − 4|φ|)/(2√|φ|) or
|g| = (λ+ √

λ2 − 4|φ|)/(2√|φ|). In both cases, ω is a harmonic function and then satisfies
(19). �

Observe that in the case where KM = 0 the result can be found in [6, Section 10.2]. We
gave the proof for the sake of completeness. The cases where KM = 1 and KM = −1 were
proved by Daniel [4], using different methods.
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DEFINITION 8. Let M be a Riemann surface. Let X,X∗ : Ω → M × R be two
conformal minimal immersions, and set X = (h, f ) and X = (h∗, f ∗). For any θ ∈ R we
say that X and X∗ are θ -associate (or simply associate) if they are isometric each other and
if their Hopf quadratic differentials are related byQ(h∗) = e2iθQ(h). Namely, X and X∗ are
associate if and only if we have

(σ ◦ h)(|hw| + |h̄w|) = (σ ◦ h∗)(|h∗
w| + |h∗

w|) and

(σ ◦ h∗)2h∗
wh

∗
w = e2iθ (σ ◦ h)2hwh̄w ,

where, in a local coordinate z, the metric on M is given by σ 2(z)|dz|2.
In the case where M = R2,H 2 or S2, we deduce from Theorem 6 that given a conformal

minimal immersion X, the θ -associate minimal immersion is uniquely determined up to an
isometry of M × R. Furthermore, if θ = π/2, we say that X and X∗ are conjugate.

REMARK 9. Two isometric immersions X and Xθ are associate up to an isometry if
ηθ = eiθη and by (9) |gθ | + |gθ |−1 = |g| + |g|−1 (or equivalently, coshωθ = coshω). Then
ωθ = ω or ωθ = −ω. In particular, X and Xθ are associate if and only if N3(X) = N3(X

∗)
or N3(X) = −N3(X

∗) (recall that N3(X) = tanhω) and ηθ = eiθη.

In fact, Daniel [4] proved that the associate family always exists in H 2 × R and S2 ×
R. In this situation, he gave an alternative definition of associate and conjugate isometric
immersions, which turns out to be equivalent to our definition. We are going to give another
proof of the existence of the associate family.

COROLLARY 10. Let X := (h, f ) : Ω → M × R be any conformal and minimal
immersion, where M = H 2, S2 or R2. Then, for any θ ∈ R, there exists a θ -associate
immersion Xθ := (hθ , fθ ) : Ω → M × R. Furthermore, X0 = X and Xθ is unique up to
isometries of M × R.

PROOF. Set Q(h) = φ(w)dw2, and let ds2
X be the conformal metric induced on Ω by

X. We deduce from Theorem 7 that the pair (ds2
X, φ) satisfies Condition (19). Therefore, for

any θ ∈ R, the pair (ds2
X, e

2iθφ) also satisfies Condition (19). Finally, we infer with Theorem
7 that there exists a θ -associate immersion. �

4. Vertical minimal graph. In this section, we study geometric properties of minimal
graphs and their associate family. Recall from Introduction that we introduce some “Weier-
strass” data for minimal surfaces (g, η) with g = −ieω+iψ and η = −2i

√
φ. When X is a

minimal surface of R3, ω+ iψ is meromorphic. In the other cases ω satisfies the sinh-Gordon
equation (13). In the following Lemma, we determine how the function ω + iψ deviates
from being meromorphic (since ω can have infinite value at each zero of φ). We express the
same expression for the associate family. In this case (Remark 9), up to an isometry, we have
gθ = −ieω+iψθ and ηθ = eiθη (ωθ = ω).

LEMMA 11. Let h : Ω → (U, σ 2|dz|2) be a harmonic map with holomorphic Hopf
quadratic differential Q = φ(w)(dw)2 with zeros (if any) of even order and coefficient of
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dilatation a(z) = e−2(ω+iψ) = g−2. If we define
√
φ = |φ|1/2eiβ and identify σ with σ ◦ h,

then

(ω + iψ)w̄ = |φ|1/2e−iβ
(

sinhω

〈∇ log σ

σ
, eiψ

〉
+ i coshω

〈∇ log σ

σ
, ieiψ

〉)
.(21)

COROLLARY 12. Let X = (h, f ) be a minimal surface and Xθ = (hθ , ηθ ) the as-
sociate family of X defined in Definition 8. If we define the map ωθ + iψθ and denote
σθ = σ ◦ hθ , then we have ωθ = ω (up to an isometry) and

(ω + iψθ )w̄ = |φ|1/2e−i(β+θ)
(

sinhω

〈∇ log σθ

σ θ
, eiψ

θ

〉
+ i coshω

〈∇ logσθ

σ θ
, ieiψ

θ

〉)
.

PROOF. In complex coordinate w, using (7) and (11) and assuming η = −2i
√
φ, we

derive

hw =
√
φeω+iψ

σ
and hw̄ =

√
φe−ω+iψ

σ
,

while

hθw = eiθ
√
φeω+iψθ

σ θ
and hθw̄ = e−iθ

√
φe−ω+iψθ

σ θ
.

Inserting these expressions in the harmonic equation (1), we obtain

(ω + iψ)w̄ = −σ
(

1

σ ◦ h
)
w̄

− 2(logσ)zhw̄ ,

(ω + iψθ )w̄ = −σθ
(

1

σθ

)
w̄

− 2(log σθ )zhw̄ .

Now note that

−σ
(

1

σ

)
w̄

= (log σ)w̄ = (log σ)zhw̄ + (log σ)z̄h̄w̄ ,

where 2(log σ)z = (log σ)x − i(logσ)y and h̄z̄ = hz. Collecting these equations, we obtain

(ω + iψ)w̄ = (log σ)z̄h̄w̄ − (log σ)zhw̄ ,

which yields

(ω + iψ)w̄ = |φ|1/2e−iβ
σ

(sinhω(cosψ(log σ)x + sinψ(log σ)y)

+ i coshω(cosψ(log σ)y − sinψ(log σ)x)) .

Since Xθ is isometric to X, as in the proof of Theorem 6, we can assume, up to an isometry,
that |g| = |gθ |, that is, ωθ = ω. Then the same equation applied to hθ yields that

(ω + iψθ )w̄ = (log σθ )z̄h̄θw̄ − (log σθ )zhθw̄.
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Therefore, we obtain

(ω + iψθ )w̄ = |φ|1/2e−i(β+θ)

σ θ
(sinhω(cosψθ (log σθ )y + sinψθ (log σθ )y)

− i coshω(cosψθ (log σθ )y − sinψθ (log σθ )y)) . �

We consider the projection F : M ×R → M ×{0}, thus F ◦X = h. Now, let us consider
a curve γ : [0, l] → Ω ⊂ C parametrized by arclength such that γ ′(t) = eiα(t) in Ω ⊂ C.
We will compute in the following the curvatures in M of the planar curves F ◦X(γ ) = h(γ )

and F ◦ Xθ(γ ) = hθ (γ ). Analogous computation appears in [8] in the particular case where
α = 0 and α = π/2.

PROPOSITION 13. Let γ be a curve in Ω and consider the images h(γ ) and hθ (γ ) in
M . Then the curvatures of h(γ ) and hθ (γ ) are given respectively by

k(h(γ )) = sinαωu − cosαωv +Gt

2|φ|1/2R ,(22)

k(hθ (γ )) = sin αωu − cosαωv +Gθt

2|φ|1/2Rθ ,(23)

where

ReiG = cos(α + β) coshω + i sin(α + β) sinhω ,

RθeiG
θ = cos(α + β + θ) coshω + i sin(α + β + θ) sinhω .

PROOF. We apply Formula (7) with g = −ieω+iψ and η = −2i
√
φdz for X, and

gθ = −ieω+iψθ and ηθ = eiθη = −2ieiθ
√
φdz for Xθ . Recall that

√
φ = |φ|1/2eiβ . Then

we get

dh(γ )

dt
= 2|φ|1/2

σ
cosh(ω + iα + iβ)eiψ

= 2|φ|1/2
σ

(cos(α + β) coshω + i sin(α + β) sinhω)eiψ ,

dh(γ )

dt
= 2|φ|1/2

σ
Rei(ψ+G) ,

dhθ (γ )

dt
= 2|φ|1/2

σ
cosh(ω + iβ + iα + iθ)eiψ

θ

= 2|φ|1/2
σ

(cos(α + β + θ) coshω + i sin(α + β + θ) sinhω)eiψ
θ

,

dhθ

dt
= 2|φ|1/2

σ
Rei(ψ

θ+Gθ ) .

If k is the curvature of a curve γ in (U, σ 2(z)|dz|2) and ke is the Euclidean curvature in
(U, |dz|2), we get by a conformal change of the metric:

k = ke

σ
− 〈∇σ, n〉

σ 2 ,
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where n is the Euclidean normal to the curve γ such that (γ ′, n) is positively oriented. If s
denotes the arclength of h(γ ) and sθ the arclength of hθ (γ ), both for the Euclidean metric,
we have

ke(h(γ )) = ψs +Gs = σ

2|φ|1/2R(cosαψu + sinαψv)+Gs .(24)

The Euclidean normal of h(γ ) (resp. hθ (γ )) is given by

n = (− sin(α + β) sinhω + i cos(α + β) coshω)
eiψ

R
,

nθ = (− sin(α + β + θ) sinhω + i cos(α + β + θ) coshω)
eiψ

θ

Rθ
,

and

〈∇σ, n〉
σ 2

= 〈∇ log σ, n〉
σ

= − sin(α + β)
sinhω

R

〈∇ log σ

σ
, eiψ

〉

+ cos(α + β)
coshω

R

〈∇ log σ

σ
, ieiψ

〉
.

Using Lemma 11 and the expression of n, we obtain

〈∇σ, n〉
σ 2

= 〈∇ log σ, n〉
σ

= − 1

2|φ|1/2R (sinαωu − sin αψv − cosαωv − cosαψu) .

Hence we deduce that
ψs

σ
− 〈∇σ, n〉

σ 2
= sin αωu − cosαωv

2|φ|1/2R .

The same computation with Xθ yields that

ψθ
sθ

σ θ
− 〈∇σθ , n〉

(σ θ )2
= sinαωu − cosαωv

2|φ|1/2Rθ .

This completes the proof of the proposition, since Gs = (σ/(2|φ|1/2R))Gt . �

Now, we prove the generalization of Krust’s theorem for minimal vertical graphs and
associate family surfaces. Let U ⊂ M be an open set and f (z) a smooth function on U. We
say that F is a vertical graph in M × R if F = {(z, t) ∈ M × R ; t = f (z), z ∈ U}. The
graph is an entire vertical graph if U = M .

THEOREM 14. Let X(Ω) be a vertical minimal graph on a convex domain h(Ω) in
M . Then the associate surface Xθ(Ω) is a graph provided that KM ≤ 0.

When KM ≡ 0, this is a result of Krust (see [5, page 188] and application therein).

PROOF. The proof is a direct application of the Gauss-Bonnet theorem with the fact that
ω has no zero (X is a vertical graph). If we consider a smooth piece of an embedded curve Γ
in M with end points p1 and p2, then if p1 = p2, Γ encloses a region A and∫

A

KMdVσ +
∫
Γ

k(s)ds + α = 2π ,(25)
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where α is the exterior angle at p1 = p2, −π ≤ α ≤ π . The Gauss-Bonnet formula (25)
gives us, in the case where KM ≤ 0, that

π ≥ α ≥ 2π −
∫
Γ

kds .

Now, if we assume that Xθ(Ω) is not a graph, then there exist two points p1 and p2 of
Ω with hθ (p1) = hθ (p2). Since h(Ω) is convex, there is a geodesic in h(Ω) which can be
lifted by a path γ inΩ . In summary, we assume that the curve γ (t), t ∈ [0, l], is parametrized
by Euclidean arclength, γ ′(t) = eiα , h(γ ) is a piece of a geodesic of M , p1 and p2 are the
end points of γ and hθ (p1) = hθ (p2). We assume that hθ (γ ) is a closed embedded curve. If
not, we can consider a subarc of γ with end points p′

1 and p′
2, with the image by hθ smooth,

embedded and hθ (p′
1) = hθ (p′

2). In the case where this embedded subarc does not exist, it
follows that all points are double, like a path where we go and back after an interior end point
q . At q , hθ (γ ) is not immersed, so that the derivative at q is zero and then the tangent plane
of Xθ is vertical. Then ω would have an interior zero (a contradiction with the vertical graph
assumption).

We will apply the Gauss-Bonnet formula to prove that
∫
hθ (γ )

kds∗ < π under the hy-
pothesis that h(γ ) is a geodesic. It yields a contradiction with α ≤ π and then the horizontal
curve hθ (γ ) is an embedded arc with hθ (p1) �= hθ (p2).

Since h(γ ) is a geodesic, using Formula (22) of Proposition 13, we have sinαωu −
cosαωv +Gt = 0. Thus we obtain

k(hθ (γ )) = Gθt −Gt

2|φ|1/2Rθ .

Since ds∗ = 2|φ|1/2Rθdt , we have∫
hθ (γ )

kds∗ = (Gθ(l)−G(l))− (Gθ(0)−G(0)) .

Now, we remark by a direct computation of the real and imaginary parts of

Rθ

R
ei(G

θ−G) = cos(α + β + θ) coshω + i sin(α + β + θ) sinhω

cos(α + β) coshω + i sin(α + β) sinhω

that

tan(Gθ(t)−G(t)) = sinh(2ω) sin θ

2 cos θR2 − sin θ sin 2(α + β)
.

Since X is a graph, ω has no interior zero, so that sinh(2ω) sin θ cannot be zero for
θ ∈ (0, π/2]. This implies that modulo π we have Gθ(t)−G(t) ∈ (0, π) modulo π . �

The Example (16) shows that the conjugate surface of an entire vertical minimal graph in
H 2 × R (which is a graph by Theorem 14) is not necessarily an entire graph. In this direction
we obtain the following criterion in H 2 × R.
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THEOREM 15. Let X : D2 → H 2 × R be an entire vertical graph on H 2. Assume
that for any divergent path γ of finite Euclidean length in D we have∫

γ

|φ|1/2dt < ∞ .

Then the conjugate graph X∗ is an entire graph.

PROOF. Recall that f + if ∗ = −2i
∫ z √

φ is holomorphic. We consider a divergent
path γ (t) in D2 and its image X(γ ) = Γ in the graph (recall that γ ′(t) = eiα)). Since X is a
proper map, the length of Γ is infinite in X and

�(Γ ) =
∫
γ

2 coshω|φ|1/2dt = ∞ .(26)

Now, we show that the length of h∗ ◦ γ is infinite, which proves the theorem. If X∗ is
not entire, one can find a diverging curve in D2 with h∗ ◦ γ of finite length. To this end, we
compute

�(h∗ ◦ γ ) =
∫
γ

2|φ|1/2R∗dt ,

where R∗2 = sin2(α + β) cosh2 ω + cos2(α + β) sinh2 ω (recall R∗ = Rπ/2). Remark that

R∗2 = cosh2 ω − cos2(α + β) .

Then, using (26) together with the hypothesis, we have

�(h∗ ◦ γ ) ≥ �(Γ )−
∫
γ

| cos(α + β)||φ|1/2dt = ∞ . �

5. Examples.

EXAMPLE 16. Let us consider the Figure 1, where the left side shows the Scherk type
surface in H 2 × R invariant by hyperbolic translations. It is a complete minimal graph over
an unbounded domain in H 2 defined by a complete geodesic γ in H 2 ×{0}. In particular, it is
not an entire graph. The graph takes values ±∞ on γ and value 0 on the asymptotic boundary.
In the upper half-plane model of H 2 = {(x, y) ∈ R2 ; y > 0}, there is a nice formula for the
graph in H 2 × R as

t = ln

(√
x2 + y2 + y

x

)
, y > 0 , x > 0 .

The right side of Figure 1 represents Scherk’s conjugate minimal surface in H 2 ×R (see
Theorem 4.2 of [14]) which is given by the equation t = x.

It is invariant by parabolic screw-motions. It is an entire graph over H 2. The second and
third authors proved that in H 2 × R, a catenoid is conjugate to a helicoid of pitch � < 1, see
[15]. Surprisingly, a helicoid of pitch � = 1 is conjugate to a surface invariant by parabolic
translations, see [4] or [14]. Furthermore, any helicoid with pitch � > 1 is conjugate to a
minimal surface invariant by hyperbolic translations, see [14].
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FIGURE 1. Scherk minimal surface invariant by hyperbolic
translation and its conjugate in H2 × R.

REMARK 17. Assume that M = R2, and consider X,X∗ : Ω → R2 × R two con-
formal minimal immersions. Let (g, η) (resp. (g∗, η∗)) be the Weierstrass representation of
X (resp. X∗). We know that X and X∗ are associate in the usual sense, that is, in the Eu-
clidean space R3, if and only if g∗ = g and η∗ = eiθη for a real number θ . Set X = (h, f )

and X∗ = (h∗, f ∗). Since Q(h) = −(η)2/4, we see that if X and X∗ are associate in the
usual sense, then there are associate in the meaning of Definition 8. Conversely, assume that
X andX∗ are associate in the sense of Definition 8. Then we have η∗ = ±eiθη and |g∗| = |g|
or |g∗| = 1/|g|. Therefore, there exists an isometry Γ of R3 such that X and Γ ◦ X∗ are
associate in the usual sense.

For example, the Weierstrass representations (g, η) and (eiθg, eiθ η) for θ �= 2kπ, k ∈ Z,
are associate in the sense of Definition 8, but are not in the usual sense.

In consequence, in R2 ×R these two notions of associate minimal immersions are equiv-
alent only up to an isometry of R2 × R.

It is known that any two isometric conformal minimal immersions in R3 are associate
up to an isometry. Also, it is shown in [15] that any two isometric screw motion minimal
complete immersions in H 2 × R are associate. The following example shows that this is no
longer true for isometric immersions in H 2 × R.

EXAMPLE 18. There is given in [15] an example of a complete minimal surface in
H 2 × R with intrinsic curvature constant and equals to −1,K ≡ −1. Namely, from Formula
(49) in Corollary 21 of [15], setting H = 0, l = m = 1 and d is any positive real number
(keeping the same notation), we obtainU(s) = √

1 + d2 cosh(s), s ∈ R. Consequently, from
Theorem 19 in [15] we obtain (see (36), (37) and (38))

ρ(s)= arcosh(
√

1 + d2 cosh s) ,

λ(ρ(s))= d

∫
U(s)

U2(s)− 1
ds ,

ϕ(s, τ )= τ − d

∫
1

U(s)(U2(s)− 1)
ds .

Now, let us consider the map T : R2 → H 2 × R defined for every (s, τ ) ∈ R2 by

T (s, τ ) = (tanh(ρ(s)/2) cosϕ(s, τ ), tanh(ρ(s)/2) sinϕ(s, τ ), λ(ρ(s)) + ϕ(s, τ )) ,
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FIGURE 2. Embedded minimal screw motion surface in
H 2 × R with Gaussian curvature K ≡ −1.

see Figure 2 (where d = 1).
It is shown that T is a regular minimal embedding with induced metric

ds2
T = ds2 + U2(s)dτ 2 = ds2 + (1 + d2) cosh2(s)dτ 2.

A straightforward computation shows that the intrinsic curvature is given by K = −U ′′/U .
Therefore, we have K ≡ −1. By construction the surface T (R2) is invariant by screw mo-
tions. The immersion T is not conformal, but, setting r := ∫

(1/U(s))ds, the new coordinates
(r, τ ) are conformal, that is, the immersion T̃ (r, τ ) := T (s, τ ) is conformal. Thus, the sur-
face T (R2) is isometric to the hyperbolic plane (D, σ 2(z)|dz|2). Therefore, there exists a
conformal minimal immersion X : D → H 2 × R such that the induced metric on D is the
hyperbolic one and X(D) = T (R2). Clearly, the canonical immersion Y : D → H 2 × R

defined by Y (z) = (z, 0) is isometric to X. According to Remark 9, we deduce that X and Y
are not associate, since the third component of the Gauss map of X is never equal to ±1, as it
is the case for Y .

It should be remarked that in [8] one can find other examples of complete minimal sur-
faces in H 2 × R with intrinsic curvature equal to −1.

REMARK 19. The second author has constructed in [14] new families of complete
minimal immersions in H 2 × R invariant by parabolic or hyperbolic screw motions. It is
shown (see Theorem 4.1) that any two minimal isometric parabolic screw motion immersions
into H 2 × R are associate. However, this is no longer true for hyperbolic screw motion
immersions. Indeed, there exist isometric minimal hyperbolic screw motion immersions into
H 2 × R which are not associate, see Theorem 4.2.
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