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ABSTRACT. The 90-kDa molecular chaperone family (which comprises, among other proteins, the 90-
kDa heat-shock protein, hsp90 and the 94-kDa glucose-regulated protein, grp94, major molecular chaperones
of the cytosol and of the endoplasmic reticulum, respectively) has become an increasingly active subject of
research in the past couple of years. These ubiquitous, well-conserved proteins account for 1–2% of all
cellular proteins in most cells. However, their precise function is still far from being elucidated. Their
involvement in the aetiology of several autoimmune diseases, in various infections, in recognition of
malignant cells, and in antigen-presentation already demonstrates the essential role they likely will play in
clinical practice of the next decade. The present review summarizes our current knowledge about the cellular
functions, expression, and clinical implications of the 90-kDa molecular chaperone family and some

 

approaches for future research. 
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ABBREVIATIONS. BiP, grp78, a 70-kDa glucose-regulated protein of the endoplasmic reticulum; CK-II, pro-
tein kinase CK-II (previously known as casein kinase II); Cyp, Cyclosporin A-binding immunophilin; eIF-2- a,
initiation factor 2-a-subunit; ER, endoplasmic reticulum; FKBP, FK506-binding immunophilin; FKBP52, 52-kDa
immunophilin (former names: hsp56, hsp59, HBI); gp96, 94-kDa glucose-regulated protein (other names: grp94,
endoplasmin; formerly: hsp100, hsp110); grp94, 94-kDa glucose-regulated protein (other names: gp96, endoplas-
min; formerly: hsp100, hsp110); Hip, co-chaperone of hsc70; Hop, 60-kDa protein linking hsp70 and hsp90 in
the cytoplasmic chaperone complex (other names: p60, STI); hsc70, constitutively expressed 70-kDa heat-shock
protein; HSE, heat-shock element; hsp70, 70 kDa heat-shock protein, member of the 70-kDa molecular chaper-
one family; hsp75/TRAP-1, a novel eukaryotic homologue belonging to the hsp90 molecular chaperone family;
hsp90, 90-kDa heat-shock protein; HtpG protein, prokaryotic hsp90 (originally: high temperature protein G);
IME, element of the early meiotic transcriptional cascade; MHC, major histocompatibility complex; NLS,
nuclear localization signal; p23, a small, hsp90-associated chaperone; PP-5, phosphoprotein phosphatase-5, a tet-
ratricopeptide repeat containing immunophilin; TPR, tetratricopeptide repeat; TRAP-1, Type 1 tumor necrosis
factor receptor-interacting protein 1, a small cytosolic hsp90 homologue; also called hsp75; URS, upstream regu-
latory sequence.

1. INTRODUCTION: THE 90-kDa
MOLECULAR CHAPERONE FAMILY

Molecular chaperones recently have been defined as “pro-
teins that bind to and stabilize an otherwise unstable con-
former of another protein—and, by controlled binding and
release, facilitate its correct fate in vivo: be it folding, oligo-
meric assembly, transport to a particular subcellular com-
partment, or disposal by degradation” (Hartl, 1996). Chap-
erones do not determine the tertiary structure of the folding
proteins, but help them find their structure more effi-
ciently. However, only a few chaperones behave as true cat-
alysts by increasing the rate of protein folding. These spe-
cial chaperones, peptidyl prolyl isomerases and protein
disulfide isomerases, are, therefore, better called “folding
catalysts.” The majority of the chaperones prevents incor-
rect interactions of “sticky” protein-folding intermediates
and frequently helps these intermediates to refold from
folding traps, giving them a new chance for spontaneous
folding. This mechanism increases the yield, but not the
rate, of protein folding (Hartl, 1996).

Chaperones are ubiquitous, highly conserved proteins
that probably played a major role in the evolution of mod-
ern enzymes (Csermely, 1997). Chaperones are vital for our
cells during their entire lifetime. However, they are needed
even more after environmental stress, which induces pro-
tein damage. Stress (heat shock, poisoning, almost any
abrupt change in the cellular environment, and mental
stress as well) induces the synthesis of many chaperones,
which, therefore, are called heat-shock, or stress, proteins.
Chaperones play an essential role in the aetiology of nu-
merous diseases, with a rapidly increasing role in clinical
practice (Latchman, 1991; Welch, 1992; Burdon, 1993;
Snyder and Sabatini, 1995; Jindal, 1996; van Eden and
Young, 1996; Welch and Brown, 1996; Brooks, 1997).

Lacking a settled view about their exact and specific cel-
lular functions, chaperones are still best classified by their
molecular weights. The major chaperone families are listed
in Table 1. The characteristic chaperone functions of the
different families show that the 90-kDa molecular chaper-
ones are somewhat different from the others, being the
most “passive,” since in most cases, they only prevent the
aggregation of unstable protein conformers, which is a
rather general feature of almost all proteinaceous and
chemical chaperones (Welch and Brown, 1996). The speci-
ficities of chaperone functions of the 90-kDa chaperones
are further discussed in Section 3.1.

Members of the 90-kDa molecular chaperone family are
introduced in Table 2. The prokaryotic HtpG protein (after
its original name: high temperature protein G) is not as
well characterized as its eukaryotic counterparts, the 90-
kDa heat-shock protein hsp90 and the 94-kDa glucose-reg-
ulated protein grp94. hsp90 is largely a cytosolic protein,
while the majority of grp94 resides in the endoplasmic
reticulum (ER). The two proteins are 50% identical, and
their existence is most probably a result of a gene duplica-
tion that occurred at a very early stage in the evolution of
the eukaryotic cell (Gupta, 1995). Translocation of these
proteins to other organelles has been observed; however, a
bona fide nuclear, or mitochondrial, hsp90 homologue has
not been discovered yet. Recently, two highly homologous
proteins, hsp75 and TRAP-1, were reported. These proteins
differ from each other only in their N- and C-termini.
hsp75/TRAP-1 is a distant eukaryotic relative of hsp90, re-
sembling both in size and in structural organization the
HtpG protein (Song et al., 1995; Chen, C. F. et al., 1996).
Recently, Cho et al. (1997) described yet another seem-
ingly novel nuclear 90-kDa heat-shock protein; but, lack-
ing sequence data, its exact relation to existing hsp90 struc-
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tures is presently unknown. Chadli et al. (1997) purified a
440-kDa cytosolic glycoprotein having 9 peptide sequences
highly homologous to hsp90. The protein is heavily glycosy-
lated, and its peptidic moiety has a molecular mass of 78 kDa.

hsp90 has two isoforms, hsp90-a and -b, which are 76%
identical and are the consequences of a gene duplication
about 500 million years ago (Moore et al., 1989; Krone and
Sass, 1994). hsp90-b is somewhat larger than hsp90-a, and
until recently, was frequently denoted as hsp86 and hsp84.
hsp90-b is a somewhat less inducible protein than hsp90-a,
and sometimes is called hsc90, emphasising that it is the
(more or less) constitutively expressed cognate protein of
the 90-kDa chaperones (in this nomenclature hsp90-a re-
tains the hsp90 abbreviation). Here we use the “a-b” no-
menclature to better distinguish between the two proteins.
Due to the high degree of structural and functional homol-
ogy between animal and human hsp90, in most cases, we do
not discriminate between these hsp90 species.

2. STRUCTURE AND 
CHARACTERIZATION OF
90-kDa MOLECULAR CHAPERONES

The prokaryotic 90-kDa molecular chaperone, the HtpG
protein, is about 40% similar to its eukaryotic counterparts
(Bardwell and Craig, 1987). It is a dimeric phosphoprotein
(Spence and Georgopoulos, 1989) that displays chaperone
characteristics similar to hsp90, forms oligomers, has a
higher thermostability than the eukaryotic homologues (Ja-
kob et al., 1995b), and probably binds to many prokaryotic
proteins, e.g., to the prokaryotic heat-shock factor s32

(Nadeau et al., 1993). However, in contrast to hsp90, dele-
tion of HtpG is not lethal to eubacteria, and only makes
them somewhat more heat-sensitive, resulting in a slight
growth disadvantage (Bardwell and Craig, 1988). The mo-
lecular characteristics of hsp90 and grp94, much better es-
tablished than those of the HtpG protein, are summarized
in the following two sections.

2.1. Molecular Characteristics and Structure of hsp90

Like the prokaryotic HtpG protein, hsp90 is also a phos-
phorylated dimer (Rose et al., 1987; Lees-Miller and
Anderson, 1989a,b; Radanyi et al., 1989; Minami et al.,
1991) containing 2–3 covalently bound phosphate mole-
cules per monomer (Iannotti et al., 1988). Dimerization is
necessary for the vital functions of hsp90 (Minami et al.,
1994). In the presence of nonionic detergents, and after
heat treatment, it preferentially forms oligomers (Lanks,
1989; Minami et al., 1991). The tendency for oligomeriza-
tion is characteristic of “native” hsp90 as well, especially in
the presence of divalent cations, nucleotides, and higher
hsp90 concentrations (Minami et al., 1993; Jakob et al.,
1995b; Nemoto et al., 1996; Freitag et al., 1997).1 hsp90
dimers have a rather elongated structure, as indicated by
sedimentation studies (Welch and Feramisco, 1982; Rose et
al., 1987) and by electron microscopy (Koyasu et al., 1986).

Like many other chaperones, hsp90 is a rather hydropho-
bic protein and its hydrophobicity further increases after
heat shock (Iwasaki et al., 1989; Yamamoto et al., 1991).
On the other hand, hsp90 also contains two highly charged
domains: one is the hinge-domain between the N-terminal
and C-terminal domains (this structure is present only in
the eukaryotic hsp90 homologues), and the other lies in the
C-terminal domain. These structures (together with the ex-
posed hydrophobic surfaces) are probably also involved in
determining the protein binding characteristics of hsp90
(Binart et al., 1989). In agreement with this prediction, ini-
tial studies indicated that hsp90 shows a binding preference
either for positively charged, or for hydrophobic, proteins
(Csermely et al., 1997). Surface charges of hsp90 are further
increased by the heavy phosphorylation of the protein,
which forms complexes with numerous protein kinases (see
Section 3.2.2), and many of them, especially protein kinase
CK-II (previously known as casein kinase II), preferentially
phosphorylate the protein (Dougherty et al., 1987; Lees-

TABLE 1. Major Molecular Chaperone Families

Some common names of
eukaryotic chaperone family members Characteristic chaperone function Recent reviews

hsp27, crystallins, small heat-shock 
proteins

Prevent protein aggregation, release proteins 
from aggregates

Ciocca et al., 1993; Groenen et al., 1994; 
Buchner, 1996

hsp60, chaperonins Prevent protein aggregation, help protein 
folding

Hartl, 1996; Fenton and Horwich, 1997

hsp70, grp78, BiP Prevent protein aggregation, help protein 
folding

Cyr et al., 1994; Haas, 1994; Hartl, 1996

hsp90, grp94 Prevent protein aggregation Jakob and Buchner, 1994; Buchner, 1996; 
Pratt, 1997; Johnson and Craig, 1997

hsp110 Release proteins from aggregates Schirmer et al., 1996; Wawrzynow et al., 
1996

Neither the co-chaperones (chaperones that help the function of other chaperones listed, such as hsp10, dnaJ homologues, Hip, Hop, Hup, etc.), nor the so-
called folding catalysts, the peptidyl-prolyl isomerases (immunophilins) and protein disulfide isomerases, were included in this table, albeit almost all of these
proteins also possess a “traditional” chaperone activity in their own right.

1Cs. S ti, and P. Csermely, unpublished observations.0o
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Miller and Anderson, 1989a; Miyata and Yahara, 1992,
1995). Interestingly, in spite of the fact that hsp90 forms
complexes with a large number of tyrosine kinases, tyrosine
phosphorylation of the protein has not been observed. Besides
its high affinity for protein kinases, hsp90 is co-isolated with
the phosphatidylinositol-4-kinase (Flanagan and Thorner,
1992) and binds phosphoprotein phosphatases, such as the
immunophilin-like phosphoprotein phosphatase-5 (PP-5)
(Chen, M. S. et al., 1996; Silverstein et al., 1997).

hsp90 is probably one of the “stickiest” proteins of the
cytosol, a kind of “molecular glue” in our cells. Besides ki-
nases and phosphatases, hsp90 binds a wide range of other
proteins, including various nuclear hormone receptors (see
Pratt, 1997), actin (Koyasu et al., 1986; Czar et al., 1996),
tubulin (Sanchez et al., 1988; Redmond et al., 1989; Fosti-
nis et al., 1992; Williams and Nelsen, 1997), the heat-
shock factor-1 (Nadeau et al., 1993), calmodulin (Minami
et al., 1993), calpain,2 and the proteasome (Tsubuki et al.,
1994; Wagner and Margolis, 1995). hsp90 forms a large cy-
tosolic complex (designated as the foldosome) with numer-
ous other molecular chaperones, such as hsc70, immuno-
philins, CDC37, and p23 (Hutchison et al., 1994; Pratt,
1993), the functional consequences of which are described
in Section 3.9.

Earlier studies demonstrated that hsp90 possesses an
ATP-binding site and an ability to phosphorylate itself
(Csermely and Kahn, 1991). It also undergoes a large con-
formational change after ATP addition (Csermely et al.,
1993). Purified hsp90 displays ATPase activity (Nadeau et
al., 1992, 1993) and is even more active as a GTPase (Nar-
dai et al., 1996). This activity, however, either is due to an
impurity in the hsp90 preparations or its manifestation re-
quires a mandatory co-inducer protein (which may be ei-
ther a nucleotide exchanger or an ATP/GTPase activator
protein, or both) (Nadeau et al., 1994; Shi et al., 1994; Nar-
dai et al., 1996). Based on low autophosphorylating and
ATPase activities of hsp90 preparations, on the rather low
affinity of ATP-binding, and on the fact that the chaperone
activity of hsp90 does not require the presence of ATP (see
Jakob and Buchner, 1994; Buchner, 1996), ATP binding of
hsp90 recently has been questioned (Jakob et al., 1996).
However, in the interim, ATP was shown to induce the dis-
sociation of hsp90 from actin filaments (Kellermayer and
Csermely, 1995), and to be necessary for the interaction of

p23 and hsp90 (Johnson et al., 1996; Sullivan et al., 1997).
Recently, the ATP- and ADP-complexes of the N-terminal
domain of hsp90 were crystallized (Prodromou et al.,
1997a), and methods with higher resolution using spin-labeled
conformational probes also confirmed the binding of ATP
to hsp90, albeit with a rather low affinity (apparent Kd

around 200–400 mM) (Csermely and Kahn, 1991; Csermely
et al., 1993; Kellermayer and Csermely, 1995; Scheibel et
al., 1997; Grenert et al., 1997). Other nucleotides, such as
ADP (Grenert et al., 1997) or CTP (Freitag et al., 1997),
have a higher affinity for hsp90 than ATP.

Although the primary structure of hsp90 was described
many years ago (Farrelly and Finkelstein, 1984), relatively
little is known about the functional role of various seg-
ments of the protein. Biochemical and electron micro-
scopic studies indicate that it contains two clearly distin-
guishable domains attached to each other by a relatively
flexible, highly charged loop (Fig. 1A) (Koyasu et al., 1986;
Itoh and Tashima, 1993). The C-terminal domain itself
may also have a bilobular structure (Joachimiak, 1997;
Nemoto et al., 1997).

2.1.1. Structure of hsp90: the N-terminal domain. The crys-
tallization and three-dimensional structure analysis of the
N-terminal domain (Stebbins et al., 1997; Prodromou et al.,
1997a,b) is one of the most important recent developments
in the characterization of hsp90. The tertiary structure of
human (Stebbins et al., 1997) and yeast (Prodromou et al.,
1997b) N-terminal domains are almost identical: a highly
twisted, eight-stranded b-sheet covered on one side by a
helices (Fig. 1B). At the center of the helical side, a deep
pocket penetrates to the surface of the buried b-sheet and
forms a binding site for ATP/ADP (Prodromou et al., 1997a;
Grenert et al., 1997) and for the hsp90-specific antitumor
drug geldanamycin (Stebbins et al., 1997; Grenert et al.,
1997). The geldanamycin-binding site probably overlaps
with the binding site of another hsp90-binding antibiotic,
radicicol (Soga et al., 1998). The N-terminal domain is in-
volved in the binding of target proteins (Prodromou et al.,
1997b; Young et al., 1997), and it contains a 60 amino acid
stretch highly homologous with the intramolecular chaper-
one region of Vibrio cholerae cytolysin protein (Nagamune et
al., 1997).

2.1.2. Structure of hsp90: the highly charged connecting
hinge region. The central, highly charged region of hsp90,
specific to eukaryotic cells (Gupta, 1995), has been shown

TABLE 2. Members of the 90-kDa Molecular Chaperone Family

Name Characteristic localization First sequence information

HtpG Escherichia coli Bardwell and Craig, 1987
hsp75/TRAP-1 Cytoplasm Song et al., 1995; Chen, C. F. et al., 1996
hsp90-a, hsp90-b Cytoplasm Farrelly and Finkelstein, 1984
grp94 (endoplasmin, gp96) ER Kulomaa et al., 1986; Sorger and Pelham, 1987

2T. Schnaider, Cs. S ti, and P. Csermely, unpublished observations.o0

o0
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to participate in association of the protein with steroid re-
ceptors (Tbarka et al., 1993; Cadepond et al., 1993; Dao-
Phan et al., 1997) and with protein kinase CK-II (Miyata
and Yahara, 1995). Alternating lysine and glutamic acid
residues (so-called “KEKE-motifs”) may be generally in-
volved in protein-protein interactions (Realini et al.,
1994a,b) and may serve as a binding site of hsp90 for the pro-
teasome. Genetic studies, however, indicate that the region
is not essential for the life-sustaining functions of hsp90
(Louvion et al., 1996), and may be involved in some “back-
up” or regulatory functions.

hsp90 is a calcium-binding protein (Kang and Welch,
1991; Minami et al., 1993). As a part of its “KEKE-region,”
two a-helix pairs were predicted showing a high similarity
to calcium binding EF-hand structures (Nardai et al., 1996).
The putative hsp90-EF-hands contain two major in vivo
phosphorylation sites of hsp90, which account for approxi-
mately one-half of the in vivo phosphorylation of the pro-
tein and which can be phosphorylated by protein kinase
CK-II, a kinase known to form a complex with hsp90
(Dougherty et al., 1987; Lees-Miller and Anderson, 1989a;
Miyata and Yahara, 1992, 1995; Shi et al., 1994). An over-
lap of the phosphorylation sites and the putative calcium-
binding sites suggests that phosphorylation of the major
phosphorylation sites may be a requirement for calcium
binding of hsp90. As a possible consequence of this, the
Ca21-dependent autophosphorylation of hsp90 requires the
occupancy of the major phosphorylation sites (Csermely
and Kahn, 1991).

As further evidence for the regulatory role of the central,
highly charged hinge region of hsp90, Szyszka et al. (1989)
demonstrated that hsp90 is able to enhance the kinase ac-
tivity of the initiation factor 2-a-subunit (eIF-2-a) kinase
only after its phosphorylation with protein kinase CK-II.
Control experiments indicated that although the cyclic
AMP-dependent protein kinase is also able to phosphory-
late hsp90, this phosphorylation does not result in a struc-
ture of hsp90 that would be able to activate the eIF-2-a
kinase (Kudlicki et al., 1985). Experiments with the phos-
phoprotein phosphatase inhibitor okadaic acid also point to
involvement of hsp90 phosphorylation in the regulation of
the stability of hsp90/v-Src complexes (Mimnaugh et al.,
1995). hsp90 also becomes methylated on 1–3 lysine resi-
dues soon after its translation has been completed (Wang et
al., 1981, 1982), but the importance of this post-transla-
tional modification remains to be clarified.

A small portion of hsp90 is known to reside in and/or
translocate to the cell nucleus in resting cells and after heat
shock (Collier and Schlessinger, 1986; Gasc et al., 1990;
Morcillo et al., 1993; Biggiogera et al., 1996). Nuclear
transport of hsp90 may be mediated by a bipartite nuclear
localization sequence located next to the EF-hand-like
structures (Nardai et al., 1996) (Fig. 1A). Under normal con-
ditions, this signal seems to be hidden in the interior of the
protein, but its exposure in deletion mutants shifts the trun-
cated hsp90 to the nucleus (Meng et al., 1996). The hsp90
nuclear localization signal (NLS) may participate in the

nucleo-cytoplasmic shuttle of steroid receptors as well
(Csermely et al., 1995b).

2.1.3. Structure of hsp90: the C-terminal domain. The
C-terminal domain harbors the binding site for calmodulin
(Minami et al., 1993) and the hsp90 dimerization site (Mi-
nami et al., 1994; Nemoto et al., 1995; Meng et al., 1996)
(Fig. 1A). The dimerization site lies close to the epitope of
the AC-88 monoclonal anti-hsp90 antibody (Schlatter et
al., 1992; Sullivan and Toft, 1993), which also recognizes
some heterogeneous nuclear ribonucleoproteins around 40–
50 kDa (Harry et al., 1990). Binding of AC-88 to hsp90
interferes with the binding of several proteins, including
steroid receptors and actin filaments, which may indicate

FIGURE 1.  Structure of hsp90. A: Domain structure of
hsp90. The highly conserved primary sequence and the avail-
able data suggest that grp94 possibly has a quite similar struc-
tural and functional organization of its domains to that of
hsp90. For clarity, the formation of dimer structures is not
shown. For further details see the text. B: Three-dimensional
structure of the N-terminal domain of yeast hsp90, showing the
position of bound ADP/ATP. The base, ribose, and phosphates
of the bound nucleotide are colored green, red, and magenta,
respectively. B is reproduced from Prodromou et al. (1997a),
with permission of the authors and the copyright holder, Cell
Press, Cambridge.
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involvement of the C-terminal region of hsp90 in protein
binding (Sullivan et al., 1985; Schlatter et al., 1992; Cade-
pond et al., 1993; Sullivan and Toft, 1993; Kellermayer and
Csermely, 1995). In agreement with this assumption, Shue
and Kohtz (1994) localized the helix-loop-helix transcrip-
tion factor folding activity of hsp90 to a 48-amino acid seg-
ment close to the C-terminus of the protein. As further evi-
dence for the role of the C-terminal domain in the
chaperon function of hsp90, Young et al. (1997) demon-
strated that this domain binds both proteins and the anti-
genic octapeptide of the vesicular somatitis virus G-protein.

Our earlier findings (Csermely and Kahn, 1991) indi-
cated the presence of an ATP-binding consensus sequence
in the C-terminal half of hsp90. Later studies (Jakob et al.,
1996) pointed out that the degree of homology is not well
preserved, and the discovery of a rather nonconventional
ATP/ADP binding site (different from the “Walker-type”
ATP-binding sites [Walker et al., 1982] present in all ATP-
binding chaperones) in the N-terminal domain (Prodro-
mou et al., 1997a), also made it unnecessary to presume the
existence of a C-terminal ATP-binding site. However,
photoaffinity labeling of hsp90 with ATP analogues shows
rather scattered labeling of almost all tryptic fragments, and
Hill plots of ATP-dependent hsp90 activities, such as auto-
phosphorylation or the associated ATPase activity, also sug-
gest cooperativity of two binding sites3 (S ti and Csermely,
1998). Part of these observations can be explained by inter-
action of the two N-terminal ATP-binding sites of the
hsp90 dimer, but may also imply that hsp90 contains two
nucleotide-binding sites, like members of the hsp110 chap-
erone family (Wawrzynow et al., 1996).

Concluding our structural analysis of hsp90, we should
point out that some experimental data can be reconciled by
assuming that the N- and C-terminal domains of hsp90
closely interact with each other. Comparison of the rather
large and different conformational changes of hsp90 after
ATP (Csermely et al., 1993) and/or geldanamycin addition4

with the rather similar tertiary structure of the ATP- (Pro-
dromou et al., 1997a) and geldanamycin- (Stebbins et al.,
1997) complexes may indicate an N-terminal domain-trig-
gered conformational change in the C-terminal domain af-
ter the binding of various ligands. Similarly, various propos-
als involving the participation of all three major domains of
hsp90 in peptide binding, and the preference of hsp90 for
both hydrophobic and basic residues (Csermely et al.,
1997), may reflect either several different peptide-binding
sites or a concerted action of all three domains in the low-
affinity trapping of various peptide segments.

2.2. Molecular Characteristics and Structure of grp94

grp94, the most abundant protein of the ER (Koch et al.,
1986), is approximately 50% homologous with its cytoplas-
mic counterpart hsp90 (Gupta, 1995). This high degree of
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homology already suggests that many of the characteristic
features of hsp90 will be similarly expressed by grp94. How-
ever, our knowledge about the structure and characteristics
of grp94 is rather limited compared with the rapidly ex-
panding molecular data on hsp90.

Like hsp90, grp94 also forms dimers (Nemoto et al.,
1996; Wearsch and Nicchitta, 1996b) and is phosphory-
lated by numerous kinases, including CK-II (Cala and
Jones, 1994; Csermely et al., 1995a; Wearsch and Nic-
chitta, 1997). CK-II phosphorylates the protein in the mid-
dle highly charged region and at four C-terminal threonine
residues (Cala and Jones, 1994). The degree of in vivo phos-
phorylation may vary from cell type to cell type (Welch et
al., 1983; Lee et al., 1984). Various methods, including ro-
tary-shadowing electron microscopy, indicated that grp94
dimers show a trinodular elongated rod-like shape (Koyasu
et al., 1986; Wearsch and Nicchitta, 1996b). Dimerization
is promoted by hydrophobic interactions and results in a
tail-to-tail organization of two grp94 molecules (Wearsch
and Nicchitta, 1996b). Under oxidizing conditions, grp94
dimerization may be further stabilized by a disulfide-bridge
between cysteines 117 of the two monomers (Poola and Lu-
cas, 1988; Qu et al., 1994). The in vitro oligomerization of
grp94 is probably not so pronounced as that of hsp90 (Ne-
moto et al., 1996), but given the extremely high protein
concentration of the ER lumen, one may predict that in vivo,
the high degree of “molecular crowding” (Zimmerman and
Minton, 1993) leads to the appearance of grp94 oligomers.

grp94 is a hydrophobic protein and tends to associate
with the membrane of the ER and Golgi apparatus. This
avid binding to lipid structures led to the early assumption
that grp94 was a transmembrane protein (Lewis et al., 1985;
Mazzarella and Green, 1987). However, later studies sug-
gested that the majority of the protein resides in the ER lu-
men (Kang and Welch, 1991; Cala and Jones, 1994;
Wearsch and Nicchitta, 1996a). Especially if the cell en-
counters stressful conditions, grp94 tends to redistribute to
the Golgi apparatus (Booth and Koch, 1989), becomes
somewhat enriched in the nucleus (Welch et al., 1983),
and is partially secreted to the extracellular space (McCor-
mick et al., 1982; Takemoto et al., 1992), or to the outer
surface of the plasma membrane (Altmeyer et al., 1996; see
also Section 3.8 for further references). Interestingly, surface-
expressed grp94 has been reported to exist in an N- and/or
C-terminally truncated form as well (Poola and Lucas, 1988;
Poola and Kiang, 1994), which may help it “escape” from the
ER by losing the C-terminal KDEL ER retention signal.
Based on our present knowledge about the localization of
grp94, it seems to be a somewhat puzzling, but certainly an
extremely versatile, marker of the “stress-status” of the ER
and of the host cell and organism. Clearly, further studies are
needed to establish the exact causes and mechanisms of
grp94 redistribution between the various cell compartments.
Easy mobility seems to be a general phenomenon for many
proteins of the ER lumen; therefore, studies on grp94 redistri-
bution will also significantly advance our understanding
about the general function of the ER under stress.

3P. Csermely, unpublished observations.
4Cs. S ti and P. Csermely, unpublished observations.o0
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Like hsp90, grp94 associates with numerous other pro-
teins, such as protein kinases (Cala and Jones, 1994;
Csermely et al., 1995a; Ramakrishnan et al., 1997; Trujillo et
al., 1997), actin filaments, calmodulin (Koyasu et al., 1986,
1989), and other molecular chaperones of the ER, such as
grp78 (BiP) (Pouyssegur and Yamada, 1978; Melnick et al.,
1992), calreticulin, calnexin (Tatu and Helenius, 1997),
the ERp72 protein disulfide isomerase, grp170 (Kuznetsov
et al., 1997), and the collagen-specific chaperone hsp47
(Ferreira et al., 1994, 1996). The ratio of the various chap-
erones might change in the chaperone complex of different
ER subcompartments, since calreticulin is confined mainly
to the rough ER, while grp94 resides in the smooth ER (Pe-
ter et al., 1992). The ER chaperone complex is not as well
characterized as the cytoplasmic foldosome, but if one takes
into account the extremely high protein concentration of
the ER lumen (estimated to be around 100 mg/mL), it is
reasonable to assume that grp94 might be part of an even
more complex supramolecular organization than hsp90.

grp94 is a calcium-binding protein (Koch et al., 1986;
Kang and Welch, 1991; Cala and Jones, 1994) harboring 4
high-affinity (Kd, 2 mM) and approximately 10 low-affinity
(Kd, 600 mM) calcium-binding sites (Van et al., 1989; Hub-
bard and McHugh, 1996), and contains several EF-hand
structures (Csermely et al., 1995a), which may serve as
some of the calcium-binding sites of the protein. Since the
lumenal calcium concentration of the ER may reach 400 M
(Miyawaki et al., 1997), calcium may play an important
role in the regulation of grp94 functions. In accordance
with this assumption, calcium binding causes a conforma-
tional change of grp94 reflected by a decrease of its a-helix
content from 40 to 34% (Van et al., 1989).

Unlike hsp90 and many of the other ER chaperones,
grp94 is a glycoprotein. Under normal conditions, it is
N-glycosylated at Asn-196 (Qu et al., 1994), where a core
oligosaccharide, containing 8 mannose and 2 N-acetyl-glu-
cosamine residues, is attached to the protein (Lewis et al.,
1985; Van et al., 1989). Oligosaccharide side chains may
also contain minor amounts of galactose and N-acetyl-
galactosamine (Poola and Lucas, 1988). Interestingly, the
O-glycosylation of grp94 has also been reported. The O-linked
moiety most probably contains a neutral disaccharide and
sialo tri- and tetrasaccharides (Poola and Lucas, 1988;
Hayes et al., 1994; Poola and Kiang, 1994). O-glycosylation
is an important regulatory modification, which, in many
cases, has a reciprocal relationship with phosphorylation
(Hart, 1997) and thus, may play an important role in the
regulation of grp94 function. O-linked N-acetyl-glucos-
amine transferase is a tetratricopeptide repeat (TPR)-con-
taining protein in the cytoplasm and in the nucleus (Krep-
pel et al., 1997; Lubas et al., 1997). Taking into account the
intimate association of the highly homologous hsp90 with
numerous TPR-containing proteins (see Section 3.3), the
O-glycosylation of grp94 may be related to its direct associ-
ation with the respective transferase enzyme.

The glycosylation pattern of grp94 tends to change after
cellular stress, reflected by an increased resistance to en-

doglycosidase H digestion (Booth and Koch, 1989), indi-
cating processing of the glycosyl side-chains by N-acetylglu-
cosaminyltransferase I, a typical Golgi enzyme. The appearance
of endoglycosidase H resistance seems to depend strongly
on the cell type and on the type of stress experienced (Kang
and Welch, 1991). However, this change also occurs in sev-
eral diseases, such as in cancer (Feldweg and Srivastava,
1995) or in diabetes (Csermely, 1994), making it likely that
cells experience a general ER stress under these conditions,
resulting in partial translocation of ER chaperones to the
Golgi apparatus. Depending on the rate of grp94 synthesis,
hyperglycosylation may also occur at secondary, C-terminal
glycosylation site(s) of the protein (Qu et al., 1994; Wear-
sch and Nicchitta, 1996b). The existence and structure of
the attached oligosaccharide also depend on the availabil-
ity of the respective sugars (Pouyssegur and Yamada, 1978;
Lewis et al., 1985; Wearsch and Nicchitta, 1996a), making
the glycosyl side chains of grp94 a sensitive marker of aber-
rant cellular metabolism occurring, for example, in diabetes
(see Section 5.3). This raises the possibility that the status
of grp94 glycosylation may play an important role in the
regulation of ER chaperone activity after stress.

Similarly to hsp90, grp94 is also an ATP-binding protein
(Clairmont et al., 1992; Li and Srivastava, 1993; Nigam et
al., 1994; Csermely et al., 1995a) with a relatively low affin-
ity for ATP or GTP. Binding of the nucleotides leads to au-
tophosphorylation of grp94 (Dechert et al., 1989; Csermely
et al., 1995a) or an ATPase activity (Li and Srivastava,
1993). Interestingly, Anderson et al. (1994) reported a
stimulation of grp94-related ATPase and ADPase activity
after interferon-a treatment of Daudi cells. The manife-
station of ATPase activity, however (similarly to that of
hsp90), may require additional proteins and is not observed
in highly purified grp94 preparations (Csermely et al.,
1995a). This, together with the low affinity of ATP-bind-
ing, may explain why the detection of these features of
grp94 is not always straightforward (Van et al., 1989; Ni-
gam et al., 1994; Wearsch and Nicchitta, 1997; Ramakrish-
nan et al., 1997; Trujillo et al., 1997). As another similarity
to hsp90, peptide binding to grp94 is also not dependent on
the presence of nucleotides (Wearsch and Nicchitta,
1997). However, some observations suggest that the recog-
nition of larger protein substrates may be influenced by
ATP (Li and Srivastava, 1993; Melnick et al., 1994). Ni-
gam et al. (1994) observed the ATP-dependent release of
grp94 from denatured protein affinity columns, but their ex-
periments did not directly address the question as to whether
individual grp94 molecules were released or whether grp94
was eluted as part of a larger chaperone complex containing
grp78 (BiP), which is known to dissociate from its targets
upon addition of ATP.

Predictive studies indicate that the N-terminal domain of
grp94 may have a tertiary structure similar to that of hsp90
(see Fig. 1B) (Gerloff et al., 1997). If so, it may also contain a
nucleotide-binding site and a binding site for geldanamycin,
which also affects the function of grp94 (Chavany et al.,
1996). However, the C-terminus of the protein seems to be



136 P. Csermely et al.

required for its autophosphorylation to occur (Csermely et
al., 1995a). This may indicate that the C-terminal domain
also contributes to the binding of nucleotides or harbors its
“own,” independent, second nucleotide binding site.

The C-terminal domain of grp94 contains the segment re-
sponsible for dimer formation (Nemoto et al., 1996; Wearsch
and Nicchitta, 1996b) and a C-terminal KDEL sequence,
which is the common retention signal for ER proteins (Sorger
and Pelham, 1987). grp94 is able to form a heterodimer with
hsp90 (Nemoto et al., 1996), which shows that the dimeriza-
tion properties are important, and evolutionarily conserved,
features of the 90-kDa chaperone family.

3. POSSIBLE CELLULAR
FUNCTIONS OF hsp90 AND grp94

Addressing the cellular functions of hsp90 and grp94 in eu-
karyotes, we first summarize the most important aspects of
their key contributions to major cellular functions, and in
Section 3.9, we present our own view about the importance
of the various functions described.

3.1. hsp90 as a Part of Chaperone
Machines, Foldosomes in the Cytosol

Our understanding of the chaperone properties of hsp90
followed the usual path, starting from relatively simple sys-
tems (purified hsp90 itself) to the more and more complex
assemblies of chaperone complexes. Purified hsp90 suppresses
the aggregation of unstable proteins, such as guanidinium.
HCl-unfolded and partially renatured citrate synthase and
rhodanese (Wiech et al., 1992),5 heat-denatured citrate
synthase (Jakob et al., 1995a), or protein kinase CK-II at
low ionic strength (Miyata and Yahara, 1992, 1995). hsp90
is also able to disaggregate the loose aggregates of CK-II oc-
curring after low-salt treatment. However, it does not pro-
mote disaggregation of severely denatured protein kinase
CK-II aggregates (Miyata and Yahara, 1992, 1995). hsp90
also somewhat enhances the yield of refolding of denatured
citrate synthase or antibody Fab fragments (Wiech et al.,
1992). Studies with heat-denatured luciferase (Yonehara et
al., 1996) or with guanidinium.HCl-denatured b-galactosi-
dase (Freeman and Morimoto, 1996) indicated that hsp90
alone is unable to aid the refolding of these proteins. How-
ever, by binding to the partially renatured forms of these tar-
gets, hsp90 maintains the non-native substrate in a “folding-
competent” state, which can be rescued and successfully
refolded by the addition of other chaperones, such as the
hsc70/hdj1-complex (Freeman and Morimoto, 1996) or
reticulocyte lysate (Yonehara et al., 1996). The above effects
do not require the presence of nucleotides, which makes a
clear distinction between the chaperone actions of hsp90
and those of hsp60 and hsc70/hsp70 (Jakob and Buchner,
1994; Buchner, 1996). The recent study of Young et al.
(1997) demonstrated that hsp90 has two independent chap-

erone sites and, therefore, its function in the help of protein
folding might be more complex than previously thought.
The important feature that the N-terminal chaperone site
can be inhibited by the hsp90-specific drug geldanamycin
gives an excellent tool to elucidate the role of the two sites
in the complex function of hsp90.

In agreement with its conformational changes, higher hy-
drophobicity and enhanced oligomerization at elevated tem-
peratures (see Section 2.1), hsp90 displays a heat-induced
chaperone activity above 468C (Yonehara et al., 1996). Di-
valent cations, such as Mg21, greatly suppress the chaper-
one activity of the protein (Jakob et al., 1995b). Based on
kinetic studies, Jakob et al. (1995a) proposed that hsp90
recognizes early unfolding intermediates, which have a de-
fined secondary structure, but whose tertiary structure has
not been completed yet. This assumption is supported by
the fact that in contrast to the unstructured reduced car-
boxymethyl a-lactalbumin, the “stable molten globule”
casein is able to compete with hsp90-bound dihydrofolate-
reductase (Yonehara et al., 1996) and binds to hsp90 with
relatively high affinity (Csermely et al., 1997). This binding
preference places hsp90 “behind” hsc70 in a folding cas-
cade, since hsc70 recognizes unfolded proteins with a less
developed structure than hsp90 (Buchner, 1996; Johnson
and Craig, 1997).

As noted above, in most cases, hsp90 alone is insufficient
to help refolding of partially denatured proteins, and re-
quires other chaperones to complete this task. Most of our
initial understanding about the hsp90-associated chaperone
system came from the analysis of the inactive steroid recep-
tor and oncogenic protein kinase complexes (Smith and
Toft, 1993; Pratt, 1997; Pratt and Toft, 1997; Johnson and
Craig, 1997). It turned out that besides hsp90, at least nine
other proteins participate in the complete folding process.
hsc70 may initiate the process by binding of the unstruc-
tured target protein together with its co-chaperone Hip,
helped by a homologue of the prokaryotic dnaJ protein (Fig.
2). The next step is most probably the binding of Hop (for-
merly called p60), which links hsc70 with hsp90. Together
with hsp90, either of the three immunophilins, the rapamy-
cin-binding FKBP52 (formerly called hsp56), FKBP51, or
the Cyclosporin A-binding immunophilin (Cyp)40, and
p23 is added to the complex. Parallel with this, hsc70, Hip,
and Hop dissociate from the mature complex. The smallest
component, p23, plays an important role in retarding the
dissociation of the foldosome from its target, thus allowing
the completion of folding (Dittmar et al., 1997; Pratt and
Toft, 1997). Finally, the target is released, which leads to
activation of the respective protein (for more details, see
Sections 3.2.1 and 3.2.2). In the case of oncogene protein
kinases, the details of the process are not as clear as the
maturation steps of the steroid receptors outlined above.
Kinase targets are recognized (and perhaps targeted to the
plasma membrane) by a specific component of the “kinase-
foldosome” CDC37 (formerly called p50) (Stepanova et al.,
1996). The situation is made even more complex by the
fact that besides the “classical” chaperones hsc70 and5T. Schnaider, Cs. S ti, and P. Csermely, unpublished observations.o0
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hsp90, almost all the other components have chaperone ac-
tivities in in vitro assays when added alone (Duina et al.,
1996; Bose et al., 1996; Freeman et al., 1996; Kimura et al.,
1997).

Renaturation studies of heat-denatured firefly luciferase in
reticulocyte lysate also indicated the cooperation of hsc70
and hsp90 chaperone complexes in the process (Nimmesgern
and Hartl, 1993; Schumacher et al., 1996; Thulasiraman
and Matts, 1996). In this complex system, the dissection of
the role of hsp90 is greatly aided by the specific hsp90-bind-
ing drug geldanamycin (Whitesell et al., 1994; Stebbins et
al., 1997) or by the structurally related herbimycin A. Addi-
tion of these ansamycin antibiotics inhibited the release of
luciferase from hsp90 complexes, both in reticulocyte lysates
(Thulasiraman and Matts, 1996; Schneider et al., 1996) and
in in vivo whole cell studies, and resulted in an increased degra-
dation of the incompletely folded target protein (Schneider et
al., 1996). Thus, the hsp90-mediated folding cascade seems
to be connected with the proteolytic apparatus (most proba-
bly with the proteasome; see Section 3.7).

3.2. Role of hsp90 in Signalling

The in vivo chaperone activities of hsp90 hitherto reported
(see previous section) are almost exclusively related to the
folding of various nuclear hormone receptors and a number
of protein kinases, all of which are involved in signalling.
In the following section, we summarize our present knowl-
edge of the involvement of hsp90 in these signal transduc-
tion processes.

3.2.1. hsp90 in the steroid response. hsp90 is necessary
for proper steroid action in vivo (Picard et al., 1990; Bohen
and Yamamoto, 1993; Nathan and Lindquist, 1995). As de-
scribed in the preceding section, folding of steroid receptors
occurs via a sequential process, where hsp90 plays a crucial
role as a central organizer of the “early” (hsc70- and Hop-
containing) and “late” (p23-containing) chaperone com-

plexes, which aid the maturation of the receptors (see Fig. 2
and Section 3.1 for further details). hsp90 binds to the hor-
mone-binding domain of steroid receptors (Pratt, 1997;
Pratt and Toft, 1997). Such binding is conceived as a trap
for the hormone-binding domain, keeping it in a partially
unfolded state, which is for the glucocorticoid receptor the
only state where the steroid can bind with high affinity. Pres-
ence of the “early” (hsp90.Hop.hsc70) chaperone complex is
enough to achieve this hormone-binding state (Dittmar and
Pratt, 1997). If hsp90 dissociates in the absence of the hor-
mone, the glucocorticoid receptor hormone binding domain
collapses and loses its steroid binding ability (Bresnick et al.,
1989; Picard et al., 1990). The progesterone receptor be-
haves similarly, while the androgen receptor requires hsp90
only for the development of high-affinity ligand binding
(Fang et al., 1996). The estrogen receptor does not seem to
depend on hsp90 to assume a steroid-binding conformation.

Binding of the steroid destabilizes the steroid receptor-
hsp90 complex and leads to dissociation (or only low affin-
ity, transient binding) of hsp90. Upon dissociation of
hsp90, the receptor is able to bind to DNA and (in case of
the glucocorticoid and mineralocorticoid receptors) its nu-
clear translocation is also facilitated (Smith and Toft, 1993;
Pratt, 1997). Dissociation of hsp90 most probably enhances
nuclear translocation via an increased accessibility of the
NLS of the receptor. Experiments by Kang et al. (1994),
where co-expression of an hsp90-NLS fusion product with
an NLS-deleted glucocorticoid or progesterone receptor
targeted the cytoplasmic receptors to the cell nucleus with
a “piggyback” mechanism, indicated that hsp90 may be at
least transiently bound to the steroid receptor until it
reaches the nucleus. Steroid receptors constantly shuttle
back and forth between the cytoplasm and the cell nucleus
(DeFranco et al., 1995; Csermely et al., 1995b). This shuttle
can be disrupted by both geldanamycin and molybdate,
agents more or less specific to hsp90 action. Geldanamycin
prevents the receptors from entering the nucleus (Czar et
al., 1997), while molybdate facilitates the export of gluco-
corticoid receptors from the nucleus and may trap the re-
ceptors in the cytoplasm (Yang and DeFranco, 1996; Yang
et al., 1997). The immunophilin FKBP52 most probably
also participates in directing steroid receptors to the nu-
cleus (Gasc et al., 1990; Czar et al., 1994, 1995).

Besides the steroid receptors, hsp90 is also necessary for
the maturation of the aryl-hydrocarbon (dioxin) receptor
(Carver et al., 1994; Whitelaw et al., 1995), which behaves
like the glucocorticoid receptors in that its contact with
hsp90 is necessary for development of its high-affinity
ligand binding, and that the dissociation of hsp90 is a pre-
requisite for the DNA binding of the receptor (Wilhelms-
son et al., 1990; Pongratz et al., 1992; Coumailleau et al.,
1995b). The steps of aryl-hydrocarbon receptor maturation
may be similar to those of steroid receptors described for the
general folding mechanism of the hsp90-chaperone system
in the preceding section (Antonsson et al., 1995; Nair et al.,
1996). In contrast to the zinc-finger DNA-binding domains
of steroid receptors, which do not bind to hsp90 directly,

FIGURE 2. The hsp90-related folding pathway. The folding
complexes have been best elucidated in the folding process of
the steroid receptors. With protein kinases, the details of the
folding steps are not as clear, but they are most probably very
similar to the ones detailed here. Partially unfolded kinases are
recognized by a specific component of the “kinase-foldosome”
CDC37 (formerly called p50), which, for better clarity, is not
indicated in this figure (for more details see text). dnaJ, a
eukaryotic homologue of the prokaryotic dnaJ protein.
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the helix-loop-helix DNA-binding domain of the aryl-
hydrocarbon receptor can form a stable complex with hsp90
(Antonsson et al., 1995). Binding of the helix-loop-helix
domain to hsp90 occurs in addition to complex formation
of the ligand-binding domain of the receptor with hsp90,
which is a common feature of all steroid receptors (White-
law et al., 1993; Coumailleau et al., 1995b). A recent study
of Blankenship and Matsumura (1997) described the asso-
ciation of the c-Src kinase with the aryl-hydrocarbon re-
ceptor/hsp90-complex.

Holley and Yamamoto (1995) reported that a 20-fold re-
duction of hsp90 level severely compromises the activation
of retinoid receptors and impairs the development of high-
affinity retinoic acid binding, suggesting that involvement
of hsp90 in maturation/signalling may be a general phenom-
enon for all nuclear hormone receptors, involving at least a
transient interaction between the receptor and hsp90.

3.2.2. hsp90 and protein kinases. The first hsp90-kinase
complex (with the v-Src tyrosine kinase) was identified
more than 15 years ago (Brugge et al., 1981; Oppermann et

al., 1981). Since then, numerous other tyrosine and serine/
threonine protein kinases have been reported to form stable
complexes with hsp90 (summarized in Table 3). Genetic
evidence extends the list of kinases in Table 3 even further
by demonstrating that hsp90 is necessary for the activity of
the Sevenless and Torso kinases in Drosophila (Cutforth
and Rubin, 1994; Doyle and Bishop, 1993).

hsp90 is necessary for the correct folding, and thus, for
the activity of many of these kinases, such as the v-Src ki-
nase (Xu and Lindquist, 1993; Nathan and Lindquist,
1995), the Raf kinase (van der Straten et al., 1997), and the
eIF-2-a kinase (Uma et al., 1997). There is good reason to
suppose that the hsp90-related chaperone pathway (see
Section 3.1 for details) mediates the folding of many (if not
all) of the kinases forming a stable complex with hsp90.

Kinases such as v-Src or Raf bind to hsp90 via their cata-
lytic domain (Jove et al., 1986; Stancato et al., 1993).
When bound to hsp90, v-Src is hypophosphorylated and
lacks protein kinase activity. Concomitant with their disso-
ciation, both hsp90 and v-Src become multiply phosphory-
lated, v-Src gains kinase activity and associates with mem-
brane fractions (Mimnaugh et al., 1995; Hunter and Poon,
1997). Raf kinase also requires hsp90 for its membrane asso-
ciation (Schulte et al., 1995), and seems to retain hsp90 in its
membrane-bound active complex (Wartmann and Davis,
1994). hsp90 protects the kinase from phosphatase-medi-
ated inactivation (Dent et al., 1995). Both Src- and Raf-
hsp90 complexes can also be prematurely dissociated by the
hsp90-specific drugs geldanamycin and radicicol. This type
of dissociation often leads to increased degradation of the re-
spective kinase, most probably via the proteasome (Whitesell
et al., 1994; Schulte et al., 1995, 1996, 1997; Stancato et al.,
1997; Pratt, 1997; Soga et al., 1998).

Besides hsp90, a “kinase-specific” 50-kDa protein is al-
most always found in these complexes (Hunter and Poon,
1997). Its binding is completed by the same Hop (p60) pro-
tein involved in the formation of steroid receptor-folding
chaperone complexes (Owens-Grillo et al., 1996). Recent
studies demonstrated that the 50-kDa protein p50 (at least
in the cases examined so far) is identical with CDC37
(Hunter and Poon, 1997). CDC37/p50 is a chaperone
(Kimura et al., 1997) that probably is involved in directing
the immature kinase complexes to their final destination,
in most cases, to the plasma membrane (Owens-Grillo et
al., 1996; Pratt, 1997).

Interestingly, not only hsp90, but its homologue in the
ER grp94, also seems to form complexes with kinases. A re-
cent report showed that p185-erbB2 (also known as her-2/
neu, a receptor-like tyrosine kinase overexpressed in many
breast, ovarian, and prostate carcinomas and associated
with poor prognosis) could be depleted from SKBr3 human
breast carcinoma cells by geldanamycin. Geldanamycin
binds to a 100-kDa protein, shown to be grp94, forming a
stable complex with p185-erbB2 (Chavany et al., 1996).
After geldanamycin treatment, the grp94/p185-erbB2 com-
plex dissociates and the kinase is degraded by the protea-
some (Mimnaugh et al., 1996). grp94 is also known to be

TABLE 3. Protein Kinases That Form a Complex with hsp90 
and with Its “Kinase-Targeting Co-Chaperone” CDC37/p501

Protein kinase Reference

Tyrosine kinases
v-Src, c-Src2 Brugge et al., 1981; Oppermann

et al., 1981; Hutchison et al., 1992;
Blankenship and Matsumura, 1997

v-Fes, c-Fes, v-Fgr,
v-Fps, v-Ros, v-Yes

Adkins et al., 1982; Lipsich et al.,
1982; Ziemiecki, 1986; Ziemiecki
et al., 1986; Nair et al., 1996

Lck, c-Fgr Hartson and Matts, 1994; Hartson
et al., 1996

p75-v-erbA Privalsky, 1991
p185erbB23 Chavany et al., 1996
Wee1 Aligue et al., 1994
Insulin receptor Takata et al., 1997

Serine-threonine kinases
v-Raf, c-Raf, B-Raf Stancato et al., 1993; Wartmann and

Davis, 1994; Jaiswal et al., 1996
Gag-Mil Lovric et al., 1994
MEK Stancato et al., 1997
CDK4 Stepanova et al., 1996; Dai et al.,

1996
eIF-2-a kinase Rose et al., 1987; Matts and

Hurst, 1989
eEF-2-a kinase Nygard et al., 1991; Palmquist et al.,

1994
Protein kinase CK-II Dougherty et al., 1987; Miyata and

Yahara, 1992, 1995; Shi et al., 1994

1The identity of CDC37 with the 50-kDa protein (p50) of the hsp90-ki-
nase complexes has been directly established only in a few cases, and the
participation of p50 in the complexes itself has to be demonstrated in the
case of Lck, c-Fgr, Wee1, Gag-Mil, eIF, eEF, and CK-II kinases. 

2Association of c-Src and hsp90 has not been demonstrated yet, only as
part of the hsp90/aryl hydrocarbon receptor complex (Blankenship and
Matsumura, 1997), probably because of the extremely low levels of the ki-
nase. The reconstruction of the c-Src/hsp90 complex in reticulocyte lysate
was also successful (Hutchison et al., 1992; Hartson and Matts, 1994).

3Forms a complex with grp94, the hsp90 homologue in the ER.
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associated with protein kinase CK-II (Cala and Jones,
1994; Csermely et al., 1995a; Ramakrishnan et al., 1997;
Trujillo et al., 1997).

3.2.3. Other links to signalling components. Besides pro-
tein kinases, phosphoprotein phosphatases, such as the tet-
ratricopeptide domain-containing immunophilin PP-5, are
also part of hsp90 complexes. Similarly to the kinases, PP-5
seems to be rather inactivated when bound to hsp90 (Chen,
M. S. et al., 1996; Silverstein et al., 1997).

A recent review presented an interesting hypothesis
about the possible involvement of hsp90 in the folding, and
subsequent association, of the b- and g-subunits of signal-
transducing G-proteins (Pratt, 1997), based on the observa-
tions of Inanobe et al. (1994), who found that hsp90 binds
to the b/g-subunits of G-proteins. As another possible link
to receptor signalling, a novel eukaryotic homologue of
hsp90, hsp75/TRAP-1, has been identified as a binding
protein of the cytoplasmic domain of the Type 1 tumor ne-
crosis factor receptor at a site that may link it to the activa-
tion of nuclear factor-kB (Song et al., 1995).

Besides nuclear hormone receptors, hsp90 associates with
and modulates the effects of a number of other transcrip-
tion factors (see Section 3.4).

3.3. hsp90 Oligomers, 
Cytoskeleton, and the Microtrabecular Lattice

We have already briefly referred to both the oligomeriza-
tion tendency of hsp90 and its binding to microfilamentous
and microtubular structures (Section 2.1). However, to
stress the importance of these properties of hsp90, a chaper-
one constituting 1–2% of the total cytoplasmic proteins, we
now extend our earlier description.

hsp90 dimers tend to associate into tetra-, hexa-, octa-
mers, and into even higher oligomers. Oligomerization usu-
ally affects only a few percent of the total protein, but addi-
tion of divalent cations, certain nucleotides, heat treatment,
or the presence of nonionic detergents enhances oligomer
formation (Lanks, 1989; Minami et al., 1991, 1993; Jakob et
al., 1995b; Nemoto et al., 1996; Freitag et al., 1997).6 It is
important to note that oligomerization studies were usually
performed under “normal,” in vitro experimental conditions,
using a few micrograms/milliliter of purified hsp90. The in
vivo concentration of hsp90 is estimated to be around 1–5
mg/mL (Scheibel et al., 1997). This may significantly en-
hance the in vivo oligomerization tendencies of the pro-
tein. Oligomer formation of hsp90 might be further pro-
moted by the large excluded volume effect of the “molecularly
crowded” cytoplasm (Zimmerman and Minton, 1993).

hsp90 crosslinks filamentous actin in vitro (Koyasu et al.,
1986; Nishida et al., 1986; Kellermayer and Csermely,
1995). Analyzing the in vivo co-localization of actin fila-
ments and hsp90, Akner et al. (1992) and Fostinis et al.

(1992) could not demonstrate the existence of stable
hsp90-actin complexes in human fibroblasts and in human
endometrial adenocarcinoma cells, respectively. The lack
of in vivo stable hsp90-actin association in these cells might
be explained by the findings of Kellermayer and Csermely
(1995), who observed that millimolar ATP concentrations
induce the dissociation of hsp90 from actin filaments. Since
under normal conditions the intracellular ATP concentra-
tion is in this range (Scheibel et al. [1997] calculated that
70% of hsp90 is saturated with ATP under similar circum-
stances), it is likely that in vivo hsp90 forms a stable com-
plex with actin filaments only after severe stress, when cel-
lular ATP levels drop significantly.

hsp90 also binds to tubulin (Sanchez et al., 1988; Red-
mond et al., 1989; Fostinis et al., 1992; Czar et al., 1996)
and seems to be involved in the protection of microtubules
after heat shock (Williams and Nelsen, 1997). Several lab-
oratories (Fostinis et al., 1992; Czar et al., 1996) have also
described co-localization of hsp90 with non-microtubular
and non-microfilamental structures of the cytoplasm, some-
times resembling intermediate filaments.

Data about the involvement of microtubules and mi-
crofilaments in the trafficking of the steroid receptor-hsp90
complexes from the cytoplasm to the nucleus are rather con-
tradictory. Miyata and Yahara (1991) reported that in vitro,
the glucocorticoid receptor binds to actin filaments via
hsp90. Akner et al. (1990) found that the steroid receptor-
hsp90 complex co-localizes with the microtubular, but not
with the microfilamental, network. However, other authors
found that nuclear translocation cannot be inhibited by dis-
ruption of the cytoskeleton using nocodazole or the combi-
nation of colcemid and cytochalasin (Perrot-Applanat et al.,
1992).

The above contradictory findings may be rationalized by
assuming that hsp90 binds to many cytoplasmic filamentous
structures simultaneously (this would explain, if one of these
is disrupted, how the respective transport processes can utilize
the remaining elements) and that hsp90 binds to all these
structures with a relatively low affinity. This low-affinity
binding, and the presumably highly dynamic equilibrium be-
tween the bound and free forms of hsp90 complexes, may ex-
plain the difficulties in finding a stable co-localization be-
tween hsp90 and the filamentous structures, and may also be
a prerequisite for the translocation of the hsp90 complexes
along these structures.

The above model describes hsp90, and the (thousand-
and-one) hsp90-associated proteins, as a highly dynamic
“appendix” of various, and often quite poorly identifiable,
cytoplasmic filamentous structures reminiscent of the early
view (Wolosewick and Porter, 1979; Schliwa et al., 1981)
about the microtrabecular network of the cytoplasm. Al-
though a rather energetic debate has developed about the
validity of the electron microscopic evidence of the mi-
crotrabeculae, several independent findings support the ex-
istence of a cytoplasmic mesh-like structure (Clegg, 1984;
Jacobson and Wojcieszyn, 1984; Luby-Phelps et al., 1988;
Penman and Penman, 1997). The major cytoplasmic chap-6Cs. S ti and P. Csermely, unpublished observations.o0
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erones (TCP1/hsp60 and hsp90 and their associated pro-
teins) may well form a part of this network in cells. This hy-
pothesis was recently further supported by the discovery of
Trent and co-workers (1997) that TCP1/hsp60 forms ex-
tensive filaments in the archaebacterium Sulfolobus shibatae,
and may constitute a kind of cytoskeleton in this organism.
While there is very little chance for a similarity between
this “archaic” structure and the organization of eukaryotic
cells, recent observations demonstrated that archaebacteria,
in fact, are closer relatives of eukaryotes than the whole
prokaryotic kingdom (Olsen and Woese, 1997), which some-
what increases the likelihood that the highly conserved
chaperones may have a similar role in the organization of the
two organisms.

What can be the functional importance of the above dy-
namic interactions between hsp90 and the cytoskeleton?
Besides its putative role in the organization of the cyto-
plasm, hsp90 most probably protects the filamentous struc-
tures after stress. Environmental stress often leads to ATP-
depletion of the stressed cells, which is highly detrimental
to these structures (Kabakov and Gabai, 1997). By stress-
induced association to existing filaments and/or by forma-
tion of partially novel filamentous structures, hsp90 may
significantly contribute to preservation of the structural in-
tegrity of the cell after stress.

Besides the putative role of hsp90 in building and main-
taining the cytoarchitecture, several observations suggest
that hsp90 and the hsp90-related chaperone complex is not
a static, purely structural, participant/attachment of various
cytoplasmic filaments, but might also play a role in the cy-
toplasmic traffic along these trajectories. This hsp90-medi-
ated transport hypothesis has been best developed by Pratt
(Pratt, 1992, 1997; Pratt et al., 1993; Owens-Grillo et al.,
1996). Interestingly, hsp90 displays a significant homology
with the movement proteins of several plant viruses (Koo-
nin et al., 1991), which may indicate a shared mechanism
in the promotion of particle migration.

What is the mechanism that helps the putative “hsp90-
based translocator” to decide where to go? hsp90 binds to
various proteins containing a TPR domain. The (most
probably incomplete) list of these proteins includes the
hsp90-hsp70 connecting protein Hop (p60) and the hsp90-
binding immunophilins (FKBP52, Cyp-40, PP-5). FKBP52
has been suggested to participate in directing steroid recep-
tor holo-complexes to the cell nucleus (Gasc et al., 1990;
Czar et al., 1994, 1995); its dissociation from hsp90 is pro-
moted by its phosphorylation of protein kinase CK-II, a
predominantly nuclear protein kinase (Miyata et al., 1997).
The CDC37 protein, which has a binding site on hsp90 ad-
jacent to the TPR-binding portion of the protein, is proba-
bly involved in directing many hsp90-associated protein ki-
nases to the plasma membrane. Finally, association of the
TPR-containing mitochondrial import receptor with hsp90
has also been demonstrated. Binding of these “directing”
components is mutually exclusive, meaning that hsp90 can
form a complex with only one of them (Ratajczak and Car-
rello, 1996; Owens-Grillo et al., 1996; Pratt, 1997). These

findings raise the possibility that the above proteins play a
decisive role in directing hsp90 and its specific targets along
intracellular trajectories.

3.4. A Possible Role for hsp90 in the Cell Nucleus
3.4.1. Nuclear transport. The end of the previous section
summarized our present knowledge about the possible di-
recting of hsp90-related protein complexes along the cyto-
plasmic filamentous structures by various proteins binding
to hsp90 via their TPR domain. However, almost all the
initially identified members of the TPR-containing protein
family participate in mitosis, transcription, splicing, and
protein import, each a predominant function of the cell nu-
cleus (Goebl and Yanagida, 1991). Although a direct inter-
action of these “original” TPR-proteins with hsp90 has not
been demonstrated yet, they are likely to participate in the
various nuclear functions of hsp90 (Csermely et al., 1998)
summarized in the present section.

About 5–10% of cellular hsp90 is known to be localized
to the cell nucleus. An additional fraction of hsp90 translo-
cates to the nucleus after a single or repeated heat shock
(Arrigo et al., 1980; Collier and Schlessinger, 1986; van Ber-
gen en Henegouwen et al., 1987; Berbers et al., 1988; Wil-
helmsson et al., 1990; Gasc et al., 1990; Akner et al., 1992;
Morcillo et al., 1993; Biggiogera et al., 1996). At first sight, a
few percent of a protein may seem negligible; however,
hsp90 is one of the most abundant proteins in most cells, so
that even a small proportion may be significant. Although
the intranuclear localization of hsp90 may vary under differ-
ent conditions, its association with the nucleoli (van Bergen
en Henegouwen et al., 1987; Pekki, 1991) and with the per-
ichromatin ribonucleoprotein fibrils (Carbajal et al., 1990;
Vazquez-Nin et al., 1992) has also been reported.

Nuclear transport of hsp90 may be mediated by other com-
ponents of the hsp90 complex, such as FKBP52, steroid recep-
tors, or certain protein kinases. However, a bipartite nuclear
localization sequence is located in the middle, highly charged
region of hsp90 (Nardai et al., 1996; Fig. 1A; see Section 2.1).
The nuclear localization sequence is preceded by a poly-Glu
tract shown to facilitate the nuclear translocation of nucleo-
plasmin (Vancurova et al., 1997). These signals are most
probably hidden in the interior of the hsp90 dimer, but their
exposure in some deletion mutants shifts these truncated
hsp90s to the nucleus (Meng et al., 1996). Furthermore,
hsp90 harbors numerous sequences similar to other known
“traditional” or “alternative” nuclear import and export sig-
nals (Table 4). This may explain and further substantiates the
assumption that like the steroid receptors and hsp70, hsp90 is
also constantly shuttling back and forth between the cell nu-
cleus and the cytoplasm (Yang et al., 1997).

hsp90 and the hsp90-related chaperone complex most
likely participate in the transport of a subset of proteins,
characterized by certain nuclear hormone receptors and
protein kinases, to the cell nucleus. In accordance with
this, hsp90 has been suggested, and shown, to bind NLS se-
quences (Chambraud et al., 1990; Schlatter et al., 1992;
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Miyata and Yahara, 1995; Csermely et al., 1995b).7 The
hsp90-related protein complex may also play a role in the
calcium-, calmodulin-, and ATP-dependent nuclear pro-
tein import system described by Sweitzer and Hanover
(1996), which probably becomes quite significant during
calcium-dependent signalling events and under stressful
conditions. On its return to the cytoplasm, hsp90 may also
accelerate protein and/or RNA export processes from the
cell nucleus. As a proposed nuclear chaperone (Csermely et
al., 1995b, 1998), hsp90 may also modulate the structure of
DNA, RNA, and DNA/RNA-protein complexes. We now
summarize our current knowledge about these putative ac-
tivities of hsp90.

3.4.2. DNA binding and its possible consequences.
hsp90 is able to bind both DNA and RNA with relatively
low affinity (Szántó et al., 1996).8 Interestingly, a 60 amino
acid stretch around the LKVIRK epitope of hsp90 displays
significant homology with the single-stranded DNA/RNA
binding region of several plant viruses (Koonin et al.,
1991). The ability of hsp90 to bind to RNA sequences
makes it possible that it participates in the assembly of vari-
ous viral reverse transcriptase/RNA complexes (Hu and
Seeger, 1996; Hu et al., 1997; see Section 5.2), both as a
chaperone of the protein and of the respective RNA spe-
cies. As described in Section 3.4.1, hsp90 has been reported
to associate with nucleoli and with perichromatin ribonu-
cleoprotein fibrils. After heat shock, hsp90 is localized in
chromatoid bodies of mouse male germ cells (Biggiogera et
al., 1996). Thus, hsp90 can be found in nuclear structures
that are actively involved in RNA synthesis and processing.

The ATP/ADP-binding N-terminal domain of hsp90
shows a significant homology with DNA topoisomerases

and DNA gyrases (Gerloff et al., 1997; Bergerat et al.,
1997). As a possible consequence, highly purified hsp90
preparations show a topoisomerase/nuclease-like activity
(Szántó et al., 1996). hsp90 associates with specific heat-shock
puffs (hsr omega) in polytene chromosomes of Drosophila mela-
nogaster, D. hydei, Chironomus thummi, and Chironomus ten-
tans (Morcillo et al., 1993), pointing to its participation in
DNA rearrangements after heat shock, and also in embry-
onic development. The functional interaction of hsp90 and
hsr omega is also supported by genetic studies (Lakhotia
and Ray, 1996).

3.4.3. Modulation of DNA-protein interactions. hsp90 av-
idly binds histone molecules (Csermely et al., 1994, 1997).
In the presence of hsp90, both histones H1 and nucleoso-
mal core histones display a tighter, salt-resistant, binding to
DNA (Csermely et al., 1994). Comparison of hsp90 pri-
mary structure with the polyglutamic acid sequence of nu-
cleoplasmin, which plays an important role in the assembly
of nucleosomal structure (Dingwall et al., 1987), reveals its
similarity to a highly charged region in the hinge region of
hsp90 (Fig. 1A) (Nardai et al., 1996). In agreement with this
homologous sequence, circular dichroism measurements of
DNA and added histones indicated that hsp90 may have a
nucleoplasmin-like activity by promoting the assembly of
histones and DNA at physiological salt concentrations
(Csermely et al., 1994). Some of these effects may also be
caused by the relatively minor amount of hsp90 present or
translocated to the cell nucleus. However, a much better
chance for hsp90-histone or -DNA interactions occurs in
the mitotic process where the nuclear barrier for the bulk of
hsp90 is abrogated. In agreement with this, hsp90-a of Sac-
charomyces cerevisiae has been identified as an early meiotic
gene induced by the IME1-IME2 transcriptional cascade
(Szent-Gyorgyi, 1995). The cell cycle-related changes of
hsp90 are summarized in Section 3.5. Another specific oc-

TABLE 4. Similarities to Nuclear Import and Export Signals in the Primary Structure of hsp90

Nuclear import/export signals1 Sequence position2 Reference

Nuclear import signals
“Traditional” NLS
KKxxxxxKKKxK
KKdgd-kKKKKK

Consensus sequence
hsp90 268–278

Dingwall and Laskey, 1991 
Nardai et al., 1996

“Alternative” NLS-candidate
ENKR--LxRR
ENRKkknniK

hsp70 NLS sequence
hsp90 352–361

Lamian et al. 1996
Present review

Nuclear export signal
OOxxxOOxxxLxLx3

nTf--YSnkeIfLr
FYe-qFSk-nIkLg
LVi-lLYetaL-Ls

An emerging consensus sequence Fischer et al., 1996; Kim et al., 1996; Fritz and Green, 
1996; Iovine and Wente, 1997; Nigg, 1997

hsp90 34–45
hsp90 436–445
hsp90 661–672

Present review
Present review
Present review

1In the consensus sequences “x” denotes any amino acid; underlined amino acids show identical or highly similar sequences; hyphens correspond to gaps
introduced for better alignment.

2The position of the homologous sequences is given using the sequence of human hsp90-a.
3In the two “OO”-diads, the first “O” denotes any hydrophobic amino acid of L,I,F,W; the second “O” corresponds to any of the more hydrophilic amino

acids of S,T,V,P,Q,G,Y,N. The number of bridging amino acids (“x”) may be less than indicated.

7Cs. S ti and P. Csermely, unpublished observations.
8E. Nagy, T. Schnaider, and P. Csermely, unpublished observations.
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casion when a major rearrangement of the nuclear structure
occurs is in oogenesis, embryogenesis, and the differentia-
tion of various cells. In accordance with an increased de-
mand for nuclear chaperone action, nuclear translocation
of hsp90-b has been observed in amphibian embryogenesis
(Coumailleau et al., 1997). The involvement of hsp90 in
cell differentiation and development is further detailed in
Sections 3.5 and 4.5.

Segments of the middle, highly charged, domain of
hsp90 strongly resemble DNA (Binart et al., 1989). Thus, it
is not surprising that besides histones, hsp90 interacts with
other DNA-binding proteins, such as transcription factors.
A summary of presently known hsp90-binding transcrip-
tion factors is listed in Table 5. Although in most cases the
formation of the hsp90-transcription factor complex may
reflect an hsp90-mediated maturation step of the respective
transcription factor, and thus, may occur mostly in the cy-
toplasm, there are some observations that suggest a role for
hsp90 in the modulation of the nuclear functions of the
transcription factors as well. If hsp90 forms only a low-affin-
ity transient complex with the respective transcription fac-
tor, it usually enhances DNA binding. hsp90 promotes DNA
binding of several helix-loop-helix transcription factors,
such as MyoD1 or E12 (Shaknovich et al., 1992; Shue and
Kohtz, 1994) via this mechanism. The “helix-loop-helix
folding site” resides in a 48-residue region close to the
hsp90 C-terminus (Shue and Kohtz, 1994). By contrast, if
hsp90 forms a stable complex with the transcription factor,
it decreases or prevents DNA binding. Thus, a stable com-
plex with hsp90 in the absence of the respective hormone
prevents DNA binding of most nuclear hormone receptors
(Pratt, 1997). An altered dominance of the concomitant
effects of hsp90-induced folding and modification of DNA
binding may lead to seemingly opposite results, such as the
hsp90-mediated enhancement (Inano et al., 1994) and in-
hibition (Sabbah et al., 1996) of estrogen receptor binding
to the estrogen-response DNA element. As yet another
mode of hsp90 action on DNA-protein complexes, hsp90

competes with DNA in binding to protein kinase CK-II in
in vitro experiments (Miyata and Yahara, 1995). This is pro-
moted by the highly charged middle region of hsp90 resem-
bling the DNA structure (Binart et al., 1989).

Similarly to hsp90, a small fragment of grp94 is known to
be translocated to the cell nucleus after heat shock (Welch
et al., 1983). The recently described immunologically dif-
ferent hsp90 homologue is a predominantly nuclear protein
(Cho et al., 1997), and a significant portion of the novel
member of the hsp90 family, hsp76, also becomes nuclear
after heat shock (Chen, C. F. et al., 1996). However, at
present, there is practically no information about the possi-
ble role of these hsp90 homologues in the above nuclear
functions.

3.5. hsp90 and grp94 in the Cell Cycle,
in Cell Differentiation, and in Apoptosis

As already described in Section 3.2.2, hsp90 (together with
its kinase-specific co-chaperone CDC37/p50) is necessary for
the folding of several cell cycle-related protein kinases, such
as the cyclin-dependent kinase CDK4 and the cyclin-depen-
dent kinase regulator Wee1 (Aligue et al., 1994; Stepanova
et al., 1996; Hunter and Poon, 1997). The expression pattern
of several hsp90 isoforms is cell cycle-dependent, which fur-
ther substantiates their role in regulation. hsp90-a mRNA is
induced at the G1/S transition of chicken hepatoma cells
(Jerome et al., 1993), and hsp90-a has also been identified
as an early meiotic gene induced by the IME1-IME2 tran-
scriptional cascade in yeast (Szent-Gyorgyi, 1995). The
novel hsp90 homologue hsp75/TRAP-1 associates with the
retinoblastoma protein during meiosis and after stress, most
probably aiding the refolding of the retinoblastoma product
after dephosphorylation and stress-induced denaturation,
respectively (Chen, C. F. et al., 1996). Interestingly, the
ATP concentration is reported to rise from 2 to 4 mM dur-
ing mitosis of fibroblasts (Marcussen and Larsen, 1996).
Cell cycle-dependent fluctuations in ATP concentration
may affect some functions of hsp90, a low-affinity ATP-
binding protein (see Section 2.1).

Several observations describe changes in hsp90 or grp94
expression during cell differentiation. Differentiation of
embryonal carcinoma cells is paralleled by the induction of
hsp90-b (Kohda et al., 1991) and a nonidentified isoform of
hsp90 (Maruyama et al., 1996). Osteoblast and HL-60 cell
differentiation results in a reduced level of hsp90-a and
(with a delay) also in a reduced hsp90-b level (Shakoori et
al., 1992). The expression of hsp90-a increases during the
proliferative phase of the myometrium (Komatsu et al.,
1997). Finally, grp94 expression is down-regulated in quies-
cent keratinocytes (Honore et al., 1994). In brief, the regu-
lation of 90-kDa chaperone expression varies from cell to
cell, but two major trends may be fairly general: (1) expres-
sion of 90-kDa chaperones is usually lowered when the cells
leave vigorous proliferation; (2) this may be particularly true
for hsp90-a, which also undergoes the most profound
changes among the 90-kDa chaperones during the cell cycle.

TABLE 5. Transcription Factors Forming a Complex
with hsp90

Transcription factor Reference

Zinc finger proteins
Steroid receptors Pratt, 1997
v-erbA Privalsky, 1991

Helix-loop-helix proteins
Dioxin receptor Perdew, 1988; Denis et al., 1988
Single-minded

homologues
McGuire et al., 1995; Probst
et al., 1997

MyoD1 Shaknovich et al., 1992
E12 Shue and Kohtz, 1994
Hypoxia-inducible

factor 1 a
Gradin et al., 1996

Heat-shock factor 1 Nadeau et al., 1993; Nair et al., 1996
Specific DNA-binding

sequences
Mutant p53 tumor

suppressor
Selkirk et al., 1994; Sepehrnia et al., 
1996; Blagosklonny et al., 1996
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The involvement of hsp90 in the diversion of the normal
cell cycle towards apoptosis most probably depends on the
type of apoptotic signal. Reduced hsp90 levels correlate
with a protection against tumor necrosis factor-a-induced
apoptosis of U937 cells (Galea-Lauri et al., 1996). This may
be related to the possible involvement of the hsp90 homo-
logue hsp75/TRAP-1 in Type 1 tumor necrosis factor re-
ceptor signalling reported by Song et al. (1995). Induction
of grp94 helps to prevent thapsigargin-induced apoptosis.
This effect of grp94 might be a consequence of grp94-medi-
ated repair functions in the ER lumen after the calcium de-
pletion induced by the calcium-pump inhibitor thapsigar-
gin (McCormick et al., 1997). The protective effects of
hsp90 during oxidative damage may also protect the host
cell from several types of apoptosis mediated by reactive ox-
ygen species (Punyiczki and Fésüs, 1998). As is obvious
from the above, our present knowledge about the involve-
ment of the 90-kDa chaperones in the cell cycle and apop-
tosis is rather fragmentary. However, these areas may well
provide significant major advances in the understanding of
hsp90 function in the near future.

3.6. grp94 in the Quality
Control of the Endoplasmic Reticulum

The ER harbors a refined network of molecular chaperones
acting as a quality control mechanism for proteins secreted
from the cell or transported to the plasma membrane
(Hammond and Helenius, 1995; Wei and Hendershot,
1996; Brooks, 1997). ER also behaves as a fine-tuned sensor
of irregularities, stressful conditions in the calcium metabo-
lism, redox status, and level of malfolded proteins in the ER
lumen and membrane (Pahl and Baeuerle, 1997). At
present the role of grp94 in these processes is even less un-
derstood than the role of its cytoplasmic counterpart hsp90
in the maintenance of the structural integrity of the cyto-
plasm and of its constituent proteins.

grp94 associates with numerous other molecular chaper-
ones of the ER, such as grp78 (BiP), calreticulin, calnexin,
the protein disulfide isomerase ERp72, the hsp70-homo-
logue grp170, and the collagen-specific chaperone hsp47
(Melnick et al., 1992; Ferreira et al., 1994, 1996; Tatu and
Helenius, 1997; Kuznetsov et al., 1997). Overexpression of
grp94 prolongs the folding of thyroglobulin (Muresan and
Arvan, 1997). The exact order and mechanism of chaper-
one cooperation in the ER, as well as the role of grp94 in
this process, is not clear yet. However, data of Melnick et al.
(1992, 1994) suggest that grp94, the most abundant chaper-
one of the ER lumen, might act similarly to hsp90 by binding
proteins after a preceding “pre-folding” step by the ER hsp70
homologue grp78/BiP. As further support of this view, treat-
ment of cells with the grp94-binding drug geldanamycin re-
sulted in an increase in the association of unfolded proteins
with grp78 (Lawson et al., 1998). grp94 also has been re-
ported to bind an elongated mutant of protein C (Katsumi
et al., 1996). Thus, grp94 may also recognize protein seg-
ments with significant secondary structure, but with a fluctu-

ating tertiary structure, and may act as a “buffer” or “sink,”
keeping the excess of folding proteins in a folding competent
state to prevent the overload of other chaperones of the fold-
ing machinery during ER stress. The preference for struc-
tured folding intermediates may also explain why neither
grp94 (Dierks et al., 1996) nor hsp90 (Wiech et al., 1993)
seem to play a major role in protein transport to the ER.

On the other hand, grp94 is also able to bind a great vari-
ety of smaller peptides with sizes ranging from tetramers to
18-mers (Li and Srivastava, 1993; Nieland et al., 1996; Ud-
ono and Srivastava, 1997). grp94 serves as one of the recep-
tors of the peptides arriving at the ER lumen via the trans-
porter associated with antigen processing (Lammert et al.,
1997), and it is involved in peptide presentation to the ma-
jor histocompatibility complex (MHC) Class I molecules at
a 10-fold higher efficiency than hsp90 (Udono and Srivas-
tava, 1994). Peptide binding of grp94 seems to be nucle-
otide-independent (Wearsch and Nicchitta, 1997). At
present, it is not known whether structured proteins and
peptides bind to the same site on grp94 and/or if they bind
to the same subpopulation of grp94 proteins. A report of Li
and Srivastava (1993) that only casein, but not peptides, is
able to stimulate the grp94-associated ATPase activity, is
similar to the finding of Melnick et al. (1994), who showed
that after ATP depletion, grp94 was absent from grp78/im-
munoglobulin complexes. This points to some possible dif-
ferences in the mode of handling of the two types of sub-
strates by grp94.

3.7. Role of hsp90 and grp94 in Protein
Presentation to the Proteolytic Machinery

The quality control mechanism of the ER also involves the
presentation of excess malfolded proteins to the protea-
some, which is most probably attached to the outer mem-
brane of the ER (Kopito, 1997). Recent data using the 90-
kDa chaperone-selective drug geldanamycin indicate that at
least in case of some selected targets, such as the p185erbB2
protein, grp94 might be involved in the presentation of
these substrates to the proteasome. This substrate presenta-
tion occurs most probably via a retrograde transport of the
folding-arrested p185erbB2 protein through the ER mem-
brane (Chavany et al., 1996; Mimnaugh et al., 1996). The
coupling of grp94 to the proteasome is further substantiated
by the fact that only the proteasome inhibitor lactacystine
is able to induce grp94 expression, in contrast to inhibitors
of cysteine, serine, and metalloproteases, which have no ef-
fect on grp94 levels (Bush et al., 1997). Several groups have
reported the degradation of highly purified preparations of
grp94 (Srivastava et al., 1986; Anderson et al., 1994; Lam-
mert et al., 1997),9 which may also indicate an intimate as-
sociation of grp94 with proteases.

Addition of geldanamycin also induced the degradation of
several hsp90-bound proteins, such as luciferase (Schneider
et al., 1996), mutant p53 (Whitesell et al., 1997), or the Src
and Raf kinases (Whitesell et al., 1994; Schulte et al., 1995,

9T. Schnaider, Cs. S ti and P. Csermely, unpublished observations.o0
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1996; Stancato et al., 1997; Pratt, 1997). Interestingly, the
enhanced proteolysis was paralleled by an increase in the
amount of luciferase-hsp90 complexes, in contrast to the Src
and Raf kinases, where a dissociation of the hsp90-kinase
complex occurred. This different behavior probably reflects
differences in the specificity of hsp90 interaction with these
targets. The specific, stable kinase-hsp90 complexes must
dissociate to route the kinase for degradation. By contrast,
the nonspecific association of luciferase with hsp90 might
occur at a different site of the chaperone, which responds to
geldanamycin by an increase in binding affinity. As an alter-
native explanation, the presence of different co-chaperones
(such as CDC37/p50) in the two complexes might induce
opposite changes in the chaperone-target stability after
geldanamycin addition.

In agreement with the above-mentioned involvement of
hsp90 in proteasome action, hsp90 associates with the pro-
teasome (Tsubuki et al., 1994; Wagner and Margolis, 1995;
Conconi et al., 1996).10 Association may occur via the
highly charged “KEKE” motif (Realini et al., 1994a,b) of
the middle, linker region of hsp90. hsp90 inhibits the pro-
teasome-mediated proteolysis of exogenous substrates (Tsu-
buki et al., 1994; Wagner and Margolis, 1995). This may in-
dicate an hsp90-mediated shift in the preference of the
proteasome from substrates arriving by random diffusion to
substrates channeled by the heat-shock protein. The hsp90-
proteasome association seems to be age-dependent, being
more prevalent in younger than in aged animals (Wagner
and Margolis, 1995). Interestingly, the “small hsp90 homo-
logue” hsp75/TRAP-1 has also been reported to co-associate
with the Type 1 tumor necrosis factor receptor and the pro-
teasome (Song et al., 1995; Tsurumi et al., 1996; Hampton et
al., 1996; Dunbar et al., 1997). The proteasome is known to
be attached to microfilaments and microtubules (Arcan-
geletti et al., 1997). Association of hsp90, an actin- and tubu-
lin-binding protein, with the proteasome may also mediate
this structural organization of the major proteolytic apparatus
of the cytoplasm. hsp90 also associates with calpain, suggest-
ing a functional interaction of the two proteolytic systems
(Pariat et al., 1997).10 A recent genetic study, showing a
functional interaction between the p60 protein and the pro-
teasome (Yamashita et al., 1996), raises the interesting possi-
bility that the hsp90-related chaperone complex (the foldo-
some) participates not only in the regulation, but also in the
assembly and/or repair, of the proteasome complex.

3.8. Surface Expression of grp94 and
hsp90 and Their Role in Antigen Presentation

In 1986, both human grp94 (termed gp96) and mouse
hsp90 were identified as tumor-specific antigens expressed
on the surface of various tumor cells (Srivastava et al.,
1986; Ullrich et al., 1986). Expression of grp94 and hsp90
on the surface of resting or stressed cells has also been re-
ported by numerous other laboratories (Pouyssegur et al.,
1977; Shiu et al., 1977; Pouyssegur and Yamada, 1978; Mc-

Cormick et al., 1982; Hughes et al., 1983; Carbajal et al.,
1986; La Thangue and Latchman, 1988; Maki et al., 1990;
Erkeller Yuksel et al., 1992; Altmeyer et al., 1996). Surface
expressed grp94 is able to bind transferrin with relatively
high affinity (Poola and Lucas, 1988; Hayes et al., 1994;
Poola and Kiang, 1994). grp94 can be shed by human fibro-
blasts (McCormick et al., 1979, 1982), and is secreted by
exocrine pancreatic cells (Takemoto et al., 1992) and by cer-
tain calcium ionophore-treated lines of cultured fibroblasts
(Booth and Koch, 1989). Similarly, the secretion of hsp90-a
by human-human hybridoma SH-76 cells has also been re-
ported. Extracellular hsp90-a had a stimulatory effect on the
growth of some lymphoid cell lines (Kuroita et al., 1992).
Presently, neither the molecular details of the surface attach-
ment of grp94 and hsp90 nor the exact mechanism of their
secretion are known. Some evidence suggests that the ob-
served phenomena cannot be explained by a nonspecific lysis
of certain cells (Multhoff and Hightower, 1996).

The most likely major function of both the surface-
expressed grp94 and hsp90 is their role in antigen presenta-
tion, which is helped by their binding capacity for a great
variety of peptides. Surface-expressed grp94 has been iden-
tified as the major tumor rejection antigen of several tu-
mors (Srivastava et al., 1986). In some tumors, the glycosy-
lation pattern of grp94 shows some differences, but these
minor variations in grp94 glycosylation cannot account for
the major differences in the immunogenicity of surface-ex-
pressed grp94 species. This apparent discrepancy led Srivas-
tava to suggest that the grp94-related (and possibly the
hsp90-related) immunogenicity resides in a great variety of
peptides, which are noncovalently associated with grp94
and thus, “presented” by this chaperone (Srivastava and
Heike, 1991; Srivastava and Maki, 1991). In accordance
with this, later studies identified grp94 as a peptide-binding
protein (Li and Srivastava, 1993; Nieland et al., 1996; Ud-
ono and Srivastava, 1997). Later experiments also showed
that grp94 preparations from normal tissues did not elicit
antitumor immunity (Udono and Srivastava, 1994) and
that grp94 acts as one of the receptors of the peptides trans-
ported to the ER (Lammert et al., 1997). The functional
and/or physical association of both grp94 and hsp90 with
the proteasome (see Section 3.7) also supports their role in
peptide presentation.

Endogenously synthesized antigenic determinants are
generally presented on MHC Class I molecules, whereas ex-
ogenous antigens are presented by MHC Class II molecules.
Heat-shock and glucose-regulated proteins (hsp70, hsp90,
and grp94) may present their bound peptides to MHC Class
I molecules. Under normal (nonstressed) conditions, this
may be a helper mechanism for loading of the MHC Class I
molecules in the ER. However, stress proteins may carry
their immunogen peptides to MHC Class I molecules other
than those of their original cells by lysis of the original cell
and subsequent phagocytosis by macrophages, or by direct
macrophage engulfment of the whole cell. Since heat-
shock proteins are highly conserved, this phenomenon may
also occur after the lysis or phagocytosis of foreign cells10T. Schnaider, Cs. S ti, and P. Csermely, unpublished observations.o0
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with different haplotypes. Hence, foreign chaperones may
“disguise” their bound foreign peptides as self. Thus, inser-
tion of the nondiscriminating stress proteins to the peptide/
antigen-presenting “relay” may explain the phenomenon of
cross-priming, i.e., that not all the processing of the anti-
gens occurs via the haplotype-restricted MHC Class I mole-
cules of the immunized mouse, but at least some of peptide/
antigens are salvaged by the macrophages of the immunized
mouse directly from the chaperones of the immunizing cells
(having a different haplotype) (Srivastava et al., 1994).

The above hypothesis of Srivastava et al. (1994) is sup-
ported by the direct demonstration of the role of cytotoxic
T lymphocytes and macrophages in the grp94-elicited tu-
mor-specific immune response of BALB/cJ mice (Udono et
al., 1994). Later studies provided further experimental evi-
dence for the chaperone-mediated cross-priming, i.e., for
the channeling of exogenous antigens by exogenously
added grp94 to the endogenous pathway presented by
C57BL/6 mouse macrophage MHC Class I molecules and
activating cytotoxic T lymphocytes (Suto and Srivastava,
1995; Arnold et al., 1995). Reduction of grp94 levels to
10% of their original amount in P136 mastocytoma cells
did not disturb MHC Class I-mediated antigen presenta-
tion (Lammert et al., 1997). However, this finding may be
explained by the redundance of various ER chaperones or
by assuming other channeling mechanisms in MHC Class
I-restricted endogenous peptide presentation. Interestingly,
while hsp70 was equally potent in immunogenic peptide
presentation in BALB/cJ mice, like grp94, hsp90 had only
about 10% the efficiency of grp94 (Udono and Srivastava,
1994). This may reflect a difference in substrate recognition
by the two proteins, pointing to a lower affinity of hsp90 for
smaller peptides than grp94.

The involvement of grp94 and hsp70 in antigen presenta-
tion (Udono and Srivastava, 1997) also means that in an or-
ganism experiencing the stress of infection, the MHC nonre-
stricted presentation of non-self antigens becomes more
dominant: a response that increases the efficiency of immune
surveillance. Peptide-loaded chaperones (via the peptide-pre-
senting macrophage-MHC Class I molecules) may prime cyto-
toxic lymphocytes even after the lysis of the originally infected
or malignant cells, which extends the cytotoxic response and
also makes it more efficient (Srivastava et al., 1994).

The 90-kDa (and 70-kDa) chaperone-mediated “escape
route” of cytotoxic lymphocyte priming from the restrictive
self-MHC molecules described above has profound conse-
quences in vaccination. The vaccination procedure does
not necessarily have to use autologous or HLA-matched
cells, which may extend its use to shared tumor antigens or
viral antigens (Blachere et al., 1993; Srivastava et al., 1994;
Heike et al., 1996).

3.9. Speculations on the Major
Cellular Functions of hsp90 and grp94

To supplement our description of the possible cellular func-
tions of hsp90 and grp94 (Sections 3.1–3.8), we now summa-

rize our present view about the importance of the surprisingly
many possibilities as to how the 90-kDa chaperones might
help the everyday life of cells and enable them to retain their
viability after environmental stress. We first recall that de-
letion of the 90-kDa chaperones is lethal for eukaryotic
cells, and that these chaperones are one of the most abun-
dant cellular proteins. The most important questions that
arise from these facts are:

(A) What makes these chaperones so important?
(B) Why do we need constitutively so much of them?

There are several possible answers to these questions. A
recent review (Johnson and Craig, 1997) described hsp90
as a general chaperone of the eukaryotic cytosol, orchestrat-
ing the folding of many eukaryotic proteins with the help of
hsp70 and the “thousand-and-one” co-chaperones they
bind. In a summary of an elegant study investigating the in
vitro folding of four different hsp90-substrates, Nair et al.
(1996) give a somewhat more elaborate list of functions for
the hsp90-related chaperone complex involving (1) repres-
sion of the target’s activity, (2) protection of the target
from proteolysis, (3) dynamic docking of the target to regu-
late its oligomerization, and (4) providing phenotypic di-
versity for the target by stabilizing its alternative conforma-
tional states.

Although each of the above “definitions” for the cellular
function of hsp90 is correct, we would like to raise some ar-
guments suggesting that the major cellular function of
hsp90 is probably not its chaperone behavior, but its dy-
namic participation in the organization and maintenance
of the cytoarchitecture.

3.9.1. hsp90-mediated folding of nascent proteins does not
seem to be a general phenomenon. The “classical” chaper-
one function, as an aid in protein folding, is a very good
candidate to answer both questions A and B above. As-
sisted folding is a vital function that requires a large amount
of the chaperone. However, recent findings indicate that
hsp90 is probably not necessary as a general chaperone for de
novo synthesized proteins. In contrast to eukaryotic hsp90,
the eubacterial homologue, the HtpG protein, is not neces-
sary for cell survival (Bardwell and Craig, 1988). Interest-
ingly, the in vitro chaperone properties of the two proteins
are rather similar (Jakob et al., 1995b). The recent discov-
ery that the folding of nascent proteins occurs mostly co-
translationally in eukaryotes, whereas in eubacteria it is
mainly a post-translational event (Netzer and Hartl, 1997),
shows that in eukaryotes, where hsp90 has vital functions,
the need for general post-translational chaperoning is lim-
ited. In contrast, in eubacteria, where the need for chaper-
ones is much more expressed, hsp90 deletion is not lethal.
Moreover, hsp90 (in contrast to hsp70) has not been ob-
served as part of the ribosome-attached chaperone machin-
ery (Beckmann et al., 1990; Nelson et al., 1992), and in vivo
examples of hsp90-mediated protein folding are quite limited
(Johnson and Craig, 1997). The elegant data of Lindquist
and co-workers (Nathan et al., 1997) gave further evidence
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for the hsp90 independence of the de novo folding of most
proteins. Thus, the involvement of hsp90 in folding of na-
scent proteins may be restricted to a subset of eukaryotic pro-
teins, which harbor large hydrophobic surfaces for their
ligands, or for protein/membrane-binding (in the case of ste-
roid receptors and signalling kinases, respectively), and,
therefore, need a temporary stabilization of their otherwise
collapsing or aggregating structure.

Since hsp90-mediated folding of some kinases (e.g.,
CDK4) may be a good enough reason for the lethal conse-
quences of hsp90 deletion, the importance of hsp90 (ques-
tion A) most probably has been elucidated. However, these
specific folding events should not require a 1000-fold excess
(Buchner, 1996) of the respective chaperone. Question B
still remains open.

3.9.2. hsp90-mediated folding after stress. The other pos-
sibility for in vivo utilization of the in vitro chaperone activ-
ity of hsp90 is to refold damaged proteins after cellular
stress, such as heat shock. Some in vitro observations show
that, indeed, the chaperone activity of hsp90 becomes acti-
vated at higher temperatures, corresponding to the usual
range of cellular heat shock (Yonehara et al., 1996; Jakob et
al., 1995a). In vitro hsp90 was also shown to retain partially
denatured proteins in a folding-competent state (Freeman
and Morimoto, 1996), which may be an important mecha-
nism of its in vivo rescue function after cellular stress. As
further in vivo proof for the importance of hsp90-mediated
protein folding after stress, higher levels of hsp90 increase
the heat-resistance of the respective cells (Yahara et al.,
1986; Heads et al., 1995).

Thus, hsp90 may become a fairly general chaperone after
stress that requires a large amount of the protein. However,
recent data of Nathan et al. (1997) suggest that hsp90 gen-
erally does not protect proteins from thermal inactivation,
but enhances the rate at which a heat-damaged protein is
reactivated. From this perspective, 1–2% of the total cellu-
lar protein seems to behave like a “fireman” of the cell, sit-
ting quietly and doing nothing most of the time. Such a
luxury is seldom tolerated by evolution. Thus, the explana-
tion of the constitutively large amounts of the 90-kDa
chaperones (question B) most probably involves another
function that requires a large amount of the protein and
that is specific for eukaryotes.

3.9.3. hsp90 and the organization and maintenance of
the cytoarchitecture. The organizational role of hsp90 in
the foldosome (Section 3.1), in signalling events (Section
3.2), and in proteolytic degradation (Section 3.7), together
with its participation in various forms of the cytoskeletal
structure (Section 3.3), raises the possibility that hsp90
may participate in the maintenance and remodeling of the
cytoarchitecture by guiding some selected de novo synthe-
sized or damaged targets to their proper destination within
the cytoplasm. hsp90 may be similar in this respect to the
other major cytoplasmic chaperone the hsp60-TCP1 pro-
tein (Trent et al., 1997). In stressed cells, hsp90 may also

function by helping to preserve the structural integrity of
both the cytoplasm and the nucleus. These functions re-
quire constitutively high levels of hsp90, are fairly specific
to eukaryotes, are vital for the everyday life of cells, and,
therefore, represent an adequate answer to question B.

The above hypothesis suggests that the current uniform
chaperone definition may likely be reformulated in the near
future, applying the participation in protein folding as a ma-
jor principle for eubacteria (where folding of nascent pro-
teins is post-translational) (Netzer and Hartl, 1997) and de-
fining chaperones of the eukaryotic cytoplasm (where folding
of nascent proteins occurs co-translationally) (Netzer and
Hartl, 1997) as parts of the cellular structure involved in di-
rected transfer of proteins. Although our knowledge about
the function of grp94 is rather fragmentary, it may also play a
similar structural-organizational role in the lumen of the ER.

4. EXPRESSION OF hsp90 AND grp94

As also shown by its abbreviated name, hsp90 is a heat-
shock protein, while grp94 is a glucose-regulated protein;
they are induced by elevated temperatures and by glucose
starvation, respectively. In subsequent sections, we summa-
rize our knowledge about the molecular mechanism of their
induction and the various conditions known to induce
these proteins.

4.1. Gene Structure and Mechanism of Gene Expression

The human gene encoding the inducible hsp90-a has been
mapped to chromosome band 14q32.3. The chromosome
segments 1q21.2–q22, 4q35, and 11p14.1–p14.2 most prob-
ably contain pseudogenes of hsp90-a (Ozawa et al., 1992;
Vamvakopoulos et al., 1993). The constitutively expressed
hsp90-b gene family consists of a gene at chromosome band
6p21 and two pseudogenes at chromosome bands 4q21–q25
and 15pter–q21 (Durkin et al., 1993; Takahashi et al., 1994).
As a rather unique feature of hsp90, compared with the gener-
ally intronless heat-shock proteins, both the hsp90-a and -b
genes contain intron sequences. As a consequence of this,
gene structure splicing of hsp90 mRNA is inhibited after
severe heat shock in Drosophila cells (Yost and Lindquist,
1986). Interestingly, splicing of hsp90 mRNA in whole
Drosophila larvae seems to be much more resistant to heat
shock than that of the individual cells (Shen et al., 1993).

Heat-shock protein expression is regulated by a family of
specific transcription factors, the heat-shock factors. Bind-
ing of the properly activated heat-shock factor to its spe-
cific site (to the heat-shock element [HSE]) in the pro-
moter region of the heat-shock genes enhances binding
and/or allows the start of the prebound (so-called “paus-
ing”) RNA polymerase along the coding region of the gene
(for recent reviews, see Lis and Wu, 1993; Wu, 1995;
Morimoto et al., 1992, 1996). To the good fortune of those
working in the 90-kDa chaperone field, the promoter re-
gion of the yeast hsp90 genes is a favorite object of studies
on the regulation of heat-shock gene transcription. A map
of the upstream regulatory sites of yeast hsp90 is shown in
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Fig. 3. Interestingly, out of the two heat-shock factor-binding
sites, only one, HSE1, is occupied. However, upon heat
shock, a weak binding of heat-shock factor also occurs at the
HSE2 site of hsp90-a. The promoter of hsp90-b contains an
upstream regulatory sequence (URS1), which is a site for the
early meiotic cascade-induced activation of hsp90-b expres-
sion (Erkine et al., 1995; Giardina and Lis, 1995; Szent-Gy-
orgyi, 1995). Critical segments of the promoter region of the
hsp90-a gene contain two sequence-positioned nucleosomes.
This nucleosomal structure is disrupted by the yeast heat-
shock factor, alleviating the nucleosome repression of the
core promoter (Lee and Garrard, 1991; Gross et al., 1993).

The human hsp90-a promoter region contains a putative
SP1 binding site and a serum-response element, besides a
“perfect” and several “imperfect” HSEs (Hickey et al.,
1989). This suggests that the transcription of human hsp90
may be multiply regulated by cross-talk of various transcrip-
tion factors. A distal HSE of hsp90-a plays a synergistic role
with a proximal HSE in reporter-gene assays (Zhang and
Shen, 1995; Y. F. Shen, personal communication). Inter-
estingly, there are two typical HSEs in the first intron of the
human hsp90-b gene. Eighty percent of the constitutively
expressed hsp90-b is initiated from the intron promoters,
while upon heat shock, almost all the inducible transcrip-
tion is driven by the intron promoters (Liu et al., 1995;
Shen et al., 1997).

The human gene family of grp94 is similar to that of
hsp90, with one coding gene and two pseudogenes. The
coding gene has been localized to the chromosome band
12q24.2–12q24.3, while the pseudogenes are found on
chromosomes 1p22 and 15q25–15q26 (Maki et al., 1993).

Regulation of grp94 expression is highly similar and linked
to the regulation of the expression of grp78 (BiP). Deficiency
in grp94 induction also impairs induction of grp78 (Little
and Lee, 1995), while both overexpression of grp78 and an

antisense grp78 fragment reduce the induction of grp94
(Dorner et al., 1992; Liu et al., 1997). Both human grp78 and
grp94 promoter regions contain a CG/CAAT and a GC-rich
sequence motif, which are important for basal and induced
expression of the genes (Liu and Lee, 1991). The promoter
regions also contain Sp1, Ap2-binding sites, and interferon-
stimulated response elements (Chang et al., 1989; Anderson
et al., 1994). A minimum of 6 proteins bind to grp94 pro-
moter sequences, ranging from 55 kDa to 210 kDa. One of
the binding proteins is the Ku auto-antigen, a DNA helicase
subunit of the double-stranded DNA-dependent protein ki-
nase (Liu and Lee, 1991). Promoter-binding of the hetero-
meric CCAAT-binding protein (CBF) has also been identi-
fied (Ramakrishnan et al., 1995). An increase in the amount
of malfolded proteins in the ER (an “ER-overload”) induces
the expression of glucose-regulated proteins, including grp94
(see, e.g., Lenny and Green, 1991). The exact mechanism of
signal transduction from the ER to the transcriptional com-
plexes is not known. However, several pieces of evidence
suggest that serine/threonine and tyrosine phosphorylation
both play an important role in this process (Cox et al., 1993;
Mori et al., 1993; Cao et al., 1995).

4.2. hsp90 Isoforms

As mentioned in the preceding section, hsp90 has two iso-
forms: the somewhat more inducible hsp90-a (other names:
hsp90, hsp84) and the somewhat less inducible, and more
constitutively expressed, hsp90-b (other names: hsc90,
hsp86). Besides heat shock, hsp90-a can be induced by a
variety of other agents (see Section 4.3). We now summa-
rize the available data on the differences in function of
these two isoforms.

Both hsp90-a and -b form mostly homodimers. Slight
differences in the C-terminal dimerization domain render
the hsp90-b dimers less stable than the a-homodimers.
This difference in stability also explains why the majority of
hsp90 monomers comes from the b isoform (Minami et al.,
1991; Nemoto et al., 1995). Besides the differences in dimer
stability, the low abundance of hsp90 heterodimers may
also be explained by the observation of Sullivan and Toft
(1993) that the turnover of dimers is slow; therefore, newly
synthesized hsp90 does not form a dimer with the pre-exist-
ing pool of the protein.

hsp90-b was found to be unevenly distributed in the cy-
toplasm, with a larger portion of the protein localized in the
vicinity of the nuclear envelope (Perdew et al., 1993). In
agreement with this localization, hsp90-b (but not a) can
be phosphorylated by the double-stranded DNA-dependent
protein kinase at its N-terminal threonine residues (Lees-
Miller and Anderson, 1989b). The complex formations of
the two isoforms are rather similar: both a and b can be
found in nuclear hormone receptors and filamentous actin
complexes (Mendel and Orti, 1988; Minami et al., 1991;
Rexin et al., 1991; Perdew et al., 1993). hsp90-a predomi-
nates in the brain and in testis, while hsp90-b is enriched
in other peripheral organs (Vamvakopoulos, 1993).

FIGURE 3. Structure of the promoter regions of the yeast
hsp90 genes. GRF2, binding site for the ancillary yeast protein
Grf2p; HSE, binding site for the heat-shock factor 1; HSF,
heat-shock factor 1; hsp90-a, the inducible hsp90; hsp90-b,
the constitutively expressed hsp90; TATA box, thymidine- and
adenine-rich sequence forming the binding site for the general
transcription factors and for RNA polymerase-II; URS1, a site
for the early meiotic cascade-induced activation of hsp90-b
expression. Data from Erkine et al. (1995, 1996) and Szent-
Gyorgyi (1995).
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Data from the foregoing show no major differences be-
tween the molecular characteristics and functions of hsp90-a
and -b analyzed so far. On the other hand, if one takes into
account that hsp90-a is usually more inducible than hsp90-b
(see Section 4.3), it is quite likely that there must be a sub-
stantial difference in the function of the two isoforms. hsp90-
a may be a better candidate for the cytoplasmic organiza-
tional role of the chaperone described in Section 3.9.
Changes in the oligomerization/complex formation proper-
ties of hsp90-a may require a concentration threshold
reached by the slight elevation of the protein levels during
the cell cycle (Section 3.5), in embryonic development (Sec-
tion 4.5), or in cancer (Section 5.4). The elucidation of the
different functions of hsp90-a and -b at the cellular level is
an important task for the near future.

4.3. hsp90 after Heat Shock, 
Its Expression by Other Inducers

Heat shock induces the expression mainly of the a isoform
of hsp90 (Meng et al., 1993). The term “heat shock” is
highly relative, depending on the previous acclimatization
of the organism, e.g., for winter-acclimatized eurythermal
goby fish, a 288C habitat is a marked inducer of hsp90,
while for the summer-acclimatized fish of the same species,
even a 308C bath does not induce any significant synthesis
of hsp90 (Dietz and Somero, 1992). Interestingly, in spin-
ach and in Brassica napus, hsp90 mRNA is also induced by
cold shock (Krishna et al., 1995).

Heat shock increases the oligomerization and the in vitro
chaperone activity of hsp90 (Yonehara et al., 1996). The im-
proved chaperone activity is most probably derived from the
a isoform, which has a higher potential for oligomerization
(Minami et al., 1991; Nemoto et al., 1995). Heat shock also
increases the turnover of phosphate residues on hsp90
(Legagneux et al., 1991), which may reflect a greater flexibil-
ity in regulation. After heat shock, the “sticky” hsp90 most
probably displays an even higher binding efficiency than it
does in resting cells, for a variety of reasons. Heat shock in-
creases the hydrophobicity/unfolding of hsp90 (Yamamoto et
al., 1991; Lanks et al., 1992; Csermely et al., 1993), which,
by itself, may enhance its binding to various partially un-
folded target proteins, having exposed hydrophobic surfaces.
A stress-induced drop in the cellular ATP level (Kabakov
and Gabai, 1997) may also lead to the association of hsp90
with actin filaments (Kellermayer and Csermely, 1995).

In contrast to hsp70 and to other heat-shock and glu-
cose-regulated proteins, the ribosomal recognition of hsp90
mRNA does not seem to use a special mechanism (Zapata
et al., 1991). hsp90 plays an important role in inhibition of
the general translation process during heat shock by help-
ing the activation of eIF-2a kinase and the subsequent
phosphorylation of eIF-2a. The molecular details of this
process have not been fully elucidated (Pal et al., 1996).

Besides heat shock, hsp90 can be induced by a variety of
stimuli. Some of the physiologically important inducers, as
well as some pathological states that also lead to an in-

creased expression of hsp90, are listed in Table 6. Expres-
sion and role of hsp90 in some diseases of exceptional im-
portance, such as in ischaemia, in various infections, in
autoimmune diseases, and in cancer, are summarized sepa-
rately in Sections 5.1.–5.4. Since hsp90 is a stress protein, it
can be induced by almost any substances used and abused
by mankind and studied until now, exemplified by ethanol
(Miles et al., 1994), cocaine (Salminen et al., 1997), etc.
The number of various (mostly justified) animal-poisoning
experiments investigating the expression of hsp90 is in-
creasing exponentially, and the limits of the present review
do not allow us to list them. However, we refer to some tox-
icological applications of hsp90 induction in Section 5.5.

4.4. grp94 in the “Stressed” Endoplasmic Reticulum

grp94 is classically induced by glucose starvation and by cal-
cium ionophores such as A23187 (Pouyssegur et al., 1977;
Shiu et al., 1977; McCormick et al., 1979; Wu et al., 1981;
Welch et al., 1983; Lee, 1987). In contrast to our knowl-
edge about the stress-induced functional changes of hsp90,
which may be regarded as “fragmentary,” we have practi-
cally no information about the changes in the function of
grp94 following the effects of various stressors to the cells
and to the ER.

In Table 6, we have summarized a number of physiologi-
cal and pathophysiological conditions that induce grp94.
Many of these changes actually lead to an accumulation of
malfolded proteins in the ER, resulting in overexpression of
grp94 by the mechanism outlined in Section 4.1. The glyc-
osylation pattern tends to change after some types of cellu-
lar stress and also seem to occur in several diseases, e.g., in
certain types of cancer or in diabetes (Section 2.2). This
raises the possibility that the status of grp94 glycosylation
may play an important role in the regulation of ER chaper-
one activity after stress.

grp94 is involved in the recognition and folding of pro-
teins (so-called “quality control”) in the ER (Hammond
and Helenius, 1995). In several genetic disorders, such as
various forms of cystic fibrosis, or a1-antitrypsin deficiency,
this quality control mechanism is “overreacting” and re-
tains the partially malfolded, but otherwise functional, mol-
ecule in the ER (Brooks, 1997; Welch and Brown, 1996).
The changes of grp94 function in this type of stress (often
called “ER-overload”) await further investigation.

4.5. Role of hsp90 and
grp94 in Development and in Aging

As described in Section 3.2.2, hsp90 is required for the ex-
pression and functioning of several development-related
protein kinases in Drosophila, such as Torso (Doyle and
Bishop, 1993) and Sevenless (Cutforth and Rubin, 1994).
Drosophila accumulates hsp90 in the ovaries during oogene-
sis and in early stages of embryonal development (Zimmer-
man et al., 1983; Ding et al., 1993). The same is true for the
amphibian Pleurodeles waltl, where a characteristic nuclear
transfer of hsp90 occurs in Stage VI oocytes and up to the
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blastula stage (Coumailleau et al., 1995a, 1997). In Saccha-
romyces cerevisiae, hsp90 accumulates prior to sporulation
(Kurtz and Lindquist, 1984; Kurtz et al., 1986). The dor-
mant dauer larva of Caenorhabditis elegans develops a 15-
fold enriched mRNA message that decreases after recovery
(Dalley and Golomb, 1992). As a general “rule of thumb,” it
may be concluded that major changes in cellular structure
and organization during embryonal development usually
bring about an increase in the hsp90 mRNA message. Fur-
ther studies will certainly make the details of this clearer by
dissecting the role of various hsp90 isoforms in this process.

hsp90 is similarly upregulated during oogenesis or early
embryogenesis of higher organisms (Morange et al., 1984;
Barnier et al., 1987; Harry et al., 1990; Curci et al., 1991).
hsp90-b seems to participate in neural, retinal, and in bone
development (Kojima et al., 1996; Loones et al., 1997; Walsh
et al., 1997), while the other hsp90 isoform, hsp90-a, is
closely related to muscle development by activating the he-
lix-loop-helix transcription factor myoD (see also Section

3.4), both in zebrafish and in humans (Bornman et al.,
1996; Sass et al., 1996; Sass and Krone, 1997). hsp90 inter-
acts with centrin in Xenopus oocytes, and this complex dis-
sociates upon calcium-dependent activation of the oocyte
(Uzawa et al., 1995). Thus, hsp90 may modulate the assem-
bly of centrosomes in early embryonic development. grp94
is constitutively expressed in mouse embryos during early
stages of oogenesis and is localized particularly within the
developing heart, neuroepithelium, and surface ectoderm
tissues (Barnes and Smoak, 1997).

Cellular aging of fibroblasts is known to impair the in-
duction of both hsp70 and hsp90 (Liu et al., 1989a,b).
grp94 mRNA levels seem to remain unchanged in aging
mice (Spindler et al., 1990). As is clear from the above ex-
amples, despite a fairly general defect of heat-shock protein
expression in aged organisms (Heydari et al., 1994; Liu et
al., 1996), the impairment of hsp90 synthesis during aging
or age-related diseases, like various neurodegenerative syn-
dromes, has not been investigated adequately.

TABLE 6. Induction of hsp90 and grp94 by Various Physiological Agents and by Pathological Conditions

Protein/inducer Reference

hsp901

Heat shock Welch and Feramisco, 1982
Cold shock Krishna et al., 1995
Transforming growth factor-b Takenaka and Hightower, 1992, 1993
Glucocorticoids2 Kasambalides and Lanks, 1983; Patchev et al., 1994
Estradiol Olazábal et al., 1992; Shyamala, 1993
Prostaglandin A1 Pica et al., 1996
Erythrophagocytosis Clerget and Polla, 1990
T lymphocyte activation Ferris et al., 1988

hsp90-a
Heat shock Meng et al., 1993
Phorbol ester Jacquier-Sarlin et al., 1995
Serum, insulin, insulin-like growth factor-1, epidermal

growth factor, platelet-derived growth factor
Kasambalides and Lanks, 1985; Jerome et al., 1991

Estradiol Wu et al., 1996
interleukin-4 Metz et al., 1996
Glutathione depletion2 Rokutan et al., 1996

hsp90-b
Interleukin-6 Stephanou et al., 1997
Lymphocyte activation Hansen et al., 1991
Familial glucocorticoid resistance Brönnegard et al., 1995

grp94
Glucose starvation, calcium ionophores Pouyssegur et al., 1977; Shiu et al., 1977; McCormick et al., 1979; 

Wu et al., 1981; Welch et al., 1983; Lee, 1987
Geldanamycin Lawson et al., 1998
Estrogen Baez et al., 1987; Shyamala, 1993; Hayes et al., 1994; Poola and 

Kiang, 1994
Interferon-a and -g Anderson et al., 1994
Interleukin-6 Haverty et al., 1997
Lactacystine (proteasome inhibitor) Bush et al., 1997
Epileptic seizures Little et al., 1996
Congenital hypothyroid goiter Medeiros-Neto et al., 1997
Osteoarthritis Takahashi et al., 1997
CNS injury Lowenstein et al., 1994

1The up-regulated hsp90-isoform has not been specified.
2Represses the induction of the respective 90-kDa chaperone.
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5. THE 90-kDa
MOLECULAR CHAPERONES
IN DISEASE: CLINICAL APPLICATIONS

The induction and function of hsp90 and grp94 in several
pathological states have already been referred to in Sec-
tions 4.3 and 4.4. We now discuss their role in some dis-
eases of exceptional importance, such as cerebro- and car-
diovascular diseases (ischaemia and reperfusion), in various
infections, in autoimmune diseases, and in cancer.

5.1. Ischaemia and Reperfusion

Ischaemia and reperfusion are stress phenomena accompa-
nying most cerebrovascular disease states. The study of the
cellular protective mechanisms against hypoxia- or oxida-
tive stress-induced damages is of paramount importance in
therapy of heart attacks and strokes.

As a general rule, glucose-regulated proteins (such as
grp94) are mostly induced during the ischaemic period,
while heat-shock proteins (such as hsp90) are overex-
pressed during the oxidative stress of reperfusion (Sciandra
et al., 1984). hsp90 mRNA levels do not increase during a
cerebral ischaemic period (Higashi et al., 1994), and con-
trary to the protective role of hsp70, overexpression of
hsp90 is not protective against ischaemic damage (Heads et
al., 1995; Amin et al., 1996). However, existing levels of
hsp90 may play a role in ischaemic signalling by binding to
the hypoxia-inducible factor 1-a (Gradin et al., 1996), and
in contrast to hsp90, grp94 is strongly induced after acute
kidney ischaemia (Kuznetsov et al., 1996).

Reperfusion induces hsp90-a in heart (Nishizawa et al.,
1996), brain (Katsumi et al., 1996; Kawagoe et al., 1993;
Wagstaff et al., 1996), kidney (Morita et al., 1995; Turman
et al., 1997), and EL-4 thymoma cells (Gabai and Kabakov,
1994). Similarly to the effect of reperfusion, direct oxidative
damage is a strong inducer of hsp90 in kidneys (Fukuda et
al., 1996) and in lymphocytes (Marini et al., 1996). In a re-
cent study, a markedly decreased hsp90 level was found in
the interventricular septum of so-called “sudden-death pigs”
with inherited hypertrophic cardiomyopathy, which may indi-
cate the importance of hsp90 in protecting the heart muscle
from oxygen fluctuation-induced damage (Lee et al., 1996).
However, in contrast to the detailed evidence for the condi-
tioning effect of hsp70 in ischaemia, our knowledge of hsp90-
induced protection during reperfusion is rather limited.

5.2. Infections

When a parasite or bacterium enters the host organism, it
usually finds the environment highly stressful. Tempera-
ture, pH, ionic strength and milieu, and nutritional compo-
sition are all abruptly changed, not to mention the highly
hostile reception by the immune system. Thus, it is not sur-
prising that the infectious invader usually overexpresses a
large panel of various heat-shock proteins to protect itself.
Many of these proteins are also expressed on the surface of
the parasites or bacteria, providing an easy target for im-
mune recognition. Since the structure of the heat-shock

proteins has been highly conserved during evolution, the
“stress-epitope repertoire” found on the surface of a wide
variety of infecting agents is rather similar. Therefore, a
very strong and generalized immune response develops
against these proteins at an early stage of postnatal immune
maturation and acts as a “first line of defence” during later
infections (Kaufmann, 1990; Cohen and Young, 1991).

In agreement with the foregoing general picture, hsp90
overexpression protects many infectious organisms, e.g., Leish-
mania (Salotra et al., 1995; Streit et al., 1996), yeast (Hodgetts
et al., 1996), etc. Surface-expressed parasitic hsp90 also
serves as an antigen in many infections, such as Chaga’s dis-
ease (Dragon et al., 1987), ascariasis (Kumari et al., 1994),
Leishmania (Skeiky et al., 1995), and Schistosoma mansoni
(Johnson et al., 1989). Therefore, a proper antibody against
the dominant hsp90 epitope, or vaccination by the respec-
tive hsp90 protein, or by its fragment, can provide signifi-
cant protection against the infection. Protection by hsp90
antibodies, or by vaccination, has been demonstrated in in-
fections of Streptococcus oralis (Burnie et al., 1996), Plasmo-
dium falciparum (Bonnefoy et al., 1994), and Candida albi-
cans (Matthews and Burnie, 1992). There is an increasing
number of patents and applications, such as US patent
5288639, which describes the isolation of an hsp90 homo-
logue from Candida albicans and the use of an antibody
against this protein as an immune therapy against the
pathogen. A similar immune therapy might be useful in the
treatment of AIDS patients (Voellmy, 1996). The primary
Candida antigen is a 47-kDa proteolytic fragment of the
Candida hsp90, having a major epitope at the conserved
hsp90 sequence LKVIRK (Matthews and Burnie, 1992). In-
terestingly, the segment of hsp90 around the LKVIRK se-
quence is highly similar to the RNA-binding region of sev-
eral plant virus proteins (Koonin et al., 1991; Section
3.4.2). Antibodies against this sequence were found to be
useful in controlling other infections with hsp90-related
immunodominance (Burnie et al., 1996). However, as ex-
pected, cross-reactivity is only limited, since recombinant
Leishmania hsp90 is recognized by sera of patients with
leishmaniasis, but not by sera of patients with Chaga’s dis-
ease (de Andrade et al., 1992).

Early stages of viral infections and intracellularly growing
bacteria are stressful not only for the infecting organism,
but also for the infected cells. This is reflected by an in-
creased expression of heat-shock proteins, including hsp90
(Garry et al., 1983; Khandjian and Turler, 1983; Cheung
and Dosch, 1993; Schwan and Goebel, 1994; Cho et al.,
1997). hsp90 may also be expressed on the surface of in-
fected cells, as in the case of herpes simplex virus infection
(La Thangue and Latchman, 1988), where it may serve as a
signal for elimination of the infected cell. Relatively little is
known about the role of heat-shock proteins in the devel-
opment of infection. The situation is especially interesting
in the case of viral infections, where the virus has to “steal”
the chaperones of its host to facilitate its own assembly.
hsp90 has been reported to associate with the capsid pro-
tein of Sindbis virus and with the nucleocapsid protein of
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vesicular stomatitis virus (Garry et al., 1983). As another
example of the viral use of host hsp90, hsp90 is necessary
for the assembly of the reverse transcriptase/RNA complex
of hepatitis B virus (Hu and Seeger, 1996; Hu et al., 1997).
In some interesting cases, chaperones of microorganisms
themselves are structurally related to hsp90, as in the case
of the intramolecular chaperone of Vibrio cholerae cytolysin
(Nagamune et al., 1997) or in the case of movement pro-
teins of several plant viruses (Koonin et al., 1991).

5.3. Autoimmune Diseases, Diabetes

The general immune response against the conserved and, in
many cases, surface-expressed, heat-shock proteins of the in-
vading organisms described in the preceding section some-
times recognizes a similar sequence of proteins of the host or-
ganism that leads to development of an autoimmune disease
(Cohen and Young, 1991). Auto-antibodies against both
hsp90 and grp94 have been detected in systemic lupus erythe-
matosus (Minota et al., 1988; Dhillon et al., 1993; Boehm et
al., 1994; Latchman and Isenberg, 1994), where the usually
constitutive hsp90-b becomes overexpressed (Twomey et al.,
1993). Antibodies against surface-expressed hsp90 of infec-
tious organisms (such as systemic candidiasis, invasive as-
pergillosis, etc.) frequently cross-react with the highly homol-
ogous human hsp90 and behave as an auto-antibody. The
epitopes of these (auto)antibodies are usually different from
those of systemic lupus erythematosus (al-Dughaym et al.,
1994).

Several aspects of the aetiology of diabetes are related to
autoimmune processes. Although recurrent findings invoke
various heat-shock proteins as target auto-antigens, as well
as heat-shock protein-related immune responses as autoim-
mune attacks leading to diabetes, so far neither hsp90 nor
grp94 have been demonstrated as diabetes-related auto-
antigens. Since diabetes is a chronic disease, changes in the
chaperone-related repair mechanisms may be crucial for the
onset of chronic effects of diabetes, such as angiopathy and
neuropathy (Vígh et al., 1997; Bíró et al., 1997). In spite of
the intimate link between changes in the extracellular glu-
cose level and the regulation of the synthesis of glucose-reg-
ulated proteins, our knowledge of their function in diabetes
is rather limited. Our initial studies show a diabetes-related
decrease in grp94 mRNA. There is a similar decrease in the
immunorecognizable grp94 by the 9G10 monoclonal anti-
body, which is not reflecting the decrease of the total grp94
protein and may be related to changes in the glycosylation pat-
tern of diabetic grp94 (Csermely, 1994; Szántó et al., 1995).

5.4. Cancer

Both hsp90 and grp94 are frequently up-regulated in tumor
cells experiencing various types of stress, such as acidic pH,
a scarcity of nutrients, and fluctuations of oxygen supply
(Gabai and Kabakov, 1994). Thus, constitutively elevated
levels of hsp90 (including most of the time the otherwise
not constitutively expressed a isoform) were found in ras-
transformed cells (Lebeau et al., 1991), in other malignant

cell lines (Legagneux et al., 1989; Ferrarini et al., 1992; Gabai
et al., 1995), in acute leukemias (Yufu et al., 1992; Chant et
al., 1995), in melanomas (Pia Protti et al., 1994), in gas-
trointestinal cancers (Ehrenfried et al., 1995), in ovarian
cancers (Mileo et al., 1990), and in pancreatic and endome-
trial carcinomas (Gress et al., 1994; Nanbu et al., 1996).
grp94 was found to be up-regulated in colon adenocarcinoma
(Menoret et al., 1994) and in large, radiation-induced mouse
fibrosarcomas (Cai et al., 1993). Both hsp90 and grp94 are
overexpressed in human breast cancer (Jameel et al., 1992;
Franzen et al., 1996, 1997; Haverty et al., 1997), where over-
expression of hsp90-a is usually associated with poor progno-
sis (Yano et al., 1996). Complementing these changes, the
down-regulation of hsp90-b has been observed in the inva-
sive and tumorigenic BC-61 subline of 8701-BC breast carci-
noma cells (Luparello et al., 1997). The “take-home thumb-
rule” of Section 3.5 on cell cycle, differentiation, and apopto-
sis seems to be valid for malignant transformation as well: a
higher level of heat-shock proteins, particularly hsp90-a,
seems to be closely correlated with the overall proliferative
potential of malignant cells. Elevated levels of heat-shock
proteins may participate in the reorganization of chromatin
structure, help in the maintenance of steroid- (especially es-
trogen-) dependent growth, and confer a significant advan-
tage on tumor cells to survive in a hostile environment. In-
creased amounts of hsp90 may also lead to an increased drug
resistance of certain tumors (Bertram et al., 1996).

Interestingly, Kojika et al. (1996) reported some low-
molecular mass (80 and 43 kDa), “aberrant” forms of hsp90
in human leukemic cells. Some tumor types show a varia-
tion in grp94 glycosylation detected by a change in the en-
doglycosidase H-sensitivity and by a different recognition
by the 9G10 anti-grp94 antibody (Feldweg and Srivastava,
1995). These changes most probably reflect the versatile
behaviour of grp94 in cells experiencing various degree of
stress described in Section 2.2. The putative heparanase
and protease (aminopeptidase) activities of grp94, together
with its frequent expression on the surface of tumor cells
(Srivastava et al., 1986; De Vouge et al., 1994; Graham,
1994; Srivastava, 1994; Lammert et al., 1996),11 may enable
grp94 to act as a mediator of metastasis generation. How-
ever, the testing of the putative role of grp94 in promotion
of metastasis formation is a task for future research.

More than 10 years ago, both grp94 and hsp90 were iden-
tified as tumor-specific antigens expressed on the surface of
various tumor cells (Srivastava et al., 1986; Ullrich et al.,
1986). Tumor immunogenicity resides not in the chaper-
ones themselves, but in the great variety of associated tu-
mor-specific peptides they carry. Tumor-specific, grp94-pre-
sented peptides are taken up by macrophages and presented
by the macrophage MHC Class I molecules. These mac-
rophages are able to prime cytotoxic T lymphocytes for an
antitumor attack (Srivastava et al., 1994; Udono et al.,
1994; Suto and Srivastava, 1995; Arnold et al., 1995; see

11T. Schnaider, Cs. S ti, and P. Csermely, unpublished observations.o0
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Section 3.8 for details). The involvement of grp94 (and of
the other peptide-presenting chaperones hsp70 and hsp90)
in peptide presentation offers new and more flexible routes
for antitumor vaccination by circumventing the strict re-
quirements for autologous or HLA-matched cells (Blachere
et al., 1993; Srivastava et al., 1994; Heike et al., 1996; Ud-
ono and Srivastava, 1997; Tamura et al., 1997).

5.5. Stress Monitoring in
Toxicology and in Public Health

Heat-shock (stress) proteins are often used as biomarkers in
environmental toxicology and in public health (Ryan and
Hightower, 1996). hsp90 was found to be overexpressed after
a treatment with pesticides (Bagchi et al., 1996), antibiotics
(Ohtani et al., 1995), anticancer drugs (Satoh et al., 1994),
etc. grp94 was induced after cadmium exposure (Goering et
al., 1993). Due to their relatively minor inducibility, moni-
toring induction of hsp90 (or grp94) alone is not enough to
judge the extent of stress in most cases. However, hsp90 ex-
pression in Xenopus laevis has been proposed as a potential
additional biomarker besides the expression of hsp70 mRNA
(Ali et al., 1996). Following the expression of the 90-kDa
chaperones in blood cells of workers in high-risk environ-
ments may also provide useful additional information to
judge their exposure to the harmful effects.

6. CONCLUSIONS AND PERSPECTIVES

Bearing in mind the more than 500 references cited, it may
seem rather provocative to state that we do not know too
much about the cellular functions of the 90-kDa molecular
chaperones. This recalls the well-known Indian story about
the elephant and the blind men. We touch it, we smell it,
but we still do not see it. We do have many of the impor-
tant specific elements of the action of both hsp90 and
grp94, but the frame is missing. Novel approaches are re-
quired to explore the “secret life of hsp90,” the highly dy-
namic and rather low-affinity protein complexes of the pro-
tein. These approaches may shed light on the details of its
association with the cytoskeleton and its possible involve-
ment in protein targeting, in nuclear and in mitotic events.

The discovery of the “small brother,” hsp75/TRAP-1, as
a member of the 90-kDa chaperone family, further increases
the number of open questions about the possible similarities
and dissimilarities in the action of hsp90-a and -b isoforms.
The elucidation of their role in various signalling events, in
cell proliferation, in cell differentiation, and in develop-
ment certainly will be a fruitful area of intensive research in
the near future.

The crystallization of the N-terminal domain of hsp90
has significantly improved our understanding of the struc-
ture/function relationships of the protein. Further explora-
tion of the three-dimensional structure of 90-kDa chaper-
ones may elucidate the nature of their protein-binding sites
and provide some clues to the versatile nature of the local-
ization of grp94. Regulation of the 90-kDa chaperone func-

tion is also a highly unexplored area of hsp90- and grp94-
related basic research.

Among clinical applications, hsp90-based vaccination or
antibody treatment certainly will be a powerful tool in our
fight against many infectious diseases. The grp94-mediated
peptide presentation, which circumvents the self/nonself
restrictions imposed by the MHC (see Section 3.8), offers
new areas for antiviral and antitumor vaccination.
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Note Added in Proof
During the printing process of this review, an excellent
overview has been published from Lindquist’s laboratory on
the possible in vivo functions of hsp90. Their data are in
agreement with our assumption detailed in Section 3.9,
suggesting that “hsp90 is not required for the de novo fold-
ing of most proteins, but it is required for a specific subset of
proteins that have greater difficulty reaching their native
conformations. Under conditions of stress, hsp90 does not
generally protect proteins from thermal inactivation, but
does enhance the rate at which a heat-damaged protein is
reactivated (Nathan et al., 1997). An elegant study of
Nemoto and Sato (1998) lists suggestive evidence that
hsp90 forms higher oligomers in vivo, an assumption in
agreement with our proposal that hsp90 is involved in the
organization of the cytoplasm as a possible constituent of a
microtrabecular lattice-type meshwork.

hsp90 was shown to be esssential for the activation of the
endothelial nitric oxide synthase by vascular endothelial
growth factor, histamine, and fluid shear stress (Garcia-
Cardena et al., 1998). A recent report from Toft’s labora-
tory provided experimental evidence for ATP binding to
the N-terminal domain of hsp90 and showed that binding
of its co-chaperone, p23, probably requires an interaction of
both the N- and C-terminal domains (Grenert et al., 1997).
Hop, the co-chaperone of hsp90 and hsp70, binds to the
ADP form of both proteins, and its binding to hsp90 is mu-
tually exclusive with the binding of p23 (Johnson et al.,
1998). Recently, the existence of two target-binding sites
located in its N- and C-terminal domains of hsp90 (Young
et al., 1997) were confirmed (Scheibel et al., 1998). The
protein and peptide binding specificity of the two sites are
different, and binding to the N-terminal site can be com-
pleted with geldanamycin or ATP.

Recent studies provided a better identification of the
binding elements of the grp94 promoter. The element con-
tains a consensus repeat of CCAAT-N9-CCACG called
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“ERSE” after the name “ER stress response element,” which
binds various transcription factors, including the CCAAT
binding protein, nuclear factor Y, Yin-Yang factor 1, and
possibly the homologues of the transcription factor for the
yeast “unfolded protein response” Hacl (A. Lee, H.
Yoshida, and T. Yura, personal communication).
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