ASSOCIATED HYPERBOLIC AND FIBONACCI IDENTITIES

E. EHRHART
Institut de Recherche Mathématique Avancée
7 rue René Descartes, 67084 Strasbourg Cedex, France
(Submitted August 1980)

It is well known that by using the substitutions

$$
\cos X=\cosh x, \sin X=-i \sinh x,
$$

where $i=\sqrt{-1}$, trigonometric identities give rise to hyperbolic ones and conversely. This results from Euler's formulas

$$
\cos X=\cosh i X \quad \text { and } \quad \sin X=-i \sinh i X .
$$

For instance, we have the relations

$$
\cos ^{2} X+\sin ^{2} X=1, \cosh ^{2} x-\sinh ^{2} x=1
$$

and

$$
\sin 2 X=2 \sin X \cos X, \sinh 2 x=2 \sinh x \cosh x
$$

Also, we shall see that a simple substitution automatically associates some Fibonacci identities to a class of hyperbolic ones.

This note is more original in its form than in its conclusions. Similar methods have been used by Lucas [1], Amson [2], and Hoggatt \& Bickne11 [3].

I. THE HYPERBOLIC-FIBONACCI ASSOCIATION

The following notation will be essential:*

$$
[A, B]_{n}=\left\{\begin{array}{l}
A \text { if } n \text { is odd } \\
B \text { if } n \text { is even }
\end{array}\right.
$$

We start from Binet's formulas:

$$
F_{n}=\frac{a^{n}-b^{n}}{a-b}, L_{n}=a^{n}+b^{n}
$$

[^0]
ASSOCIATED HYPERBOLIC AND FIBONACCI IDENTITIES

where $a=\frac{1+\sqrt{5}}{2}$ and $b=\frac{1-\sqrt{5}}{2}$ are the roots of the equation

$$
X^{2}-X-1=0
$$

With $\alpha=\log \alpha$, we have $\alpha=e^{\alpha}$ and $b=-e^{-\alpha}$, and therefore

$$
\frac{F_{n}}{2}=\frac{e^{\alpha n}-(-1) e^{-\alpha n}}{2 \sqrt{5}}, \frac{L_{n}}{2}=\frac{e^{\alpha n}+(-1) e^{-\alpha n}}{2}
$$

We now let $\alpha n=x$, then

$$
\frac{\sqrt{5} F_{n}}{2}=[\cosh x, \sinh x]_{n}, \frac{L_{n}}{2}=[\sinh x, \cosh x]_{n}
$$

Substituting $k n$ for n, k being an integer, we have

$$
\begin{equation*}
F_{k n}=\frac{2}{\sqrt{5}}[\cosh k x, \sinh k x]_{k n}, L_{k n}=2[\sinh k x, \cosh k x]_{k n} . \tag{1}
\end{equation*}
$$

Substituting $n+m$ for n and putting $\alpha m=y$, we find that

$$
\begin{align*}
& F_{n+m}=\frac{2}{\sqrt{5}}[\cosh (x+y), \sinh (x+y)]_{n+m^{\prime}} \\
& L_{n+m}=2[\sinh (x+y), \cosh (x+y)]_{n+m^{\circ}} \tag{2}
\end{align*}
$$

Equivalently, we have

$$
\begin{equation*}
\cosh k x=\frac{1}{2}\left[\sqrt{5} F_{k n}, L_{k n}\right]_{k n}, \sinh k x=\frac{1}{2}\left[L_{k n}, \sqrt{5} F_{k n}\right]_{k n}, \tag{3}
\end{equation*}
$$

and

$$
\begin{align*}
& \cosh (x+y)=\frac{1}{2}\left[\sqrt{5} F_{n+m}, L_{n+m}\right]_{n+m} \\
& \sinh (x+y)=\frac{1}{2}\left[L_{n+m}, \sqrt{5} F_{n+m}\right]_{n+m} \tag{4}
\end{align*}
$$

Formulas (2) and (4) also hold if we replace all the plus signs by minus signs.

Theorem 1

By substituting (1) and (2) on one side or (3) and (4) on the other, a Fibonacci identity gives one or several hyperbolic identities and conversely, provided that the indices or arguments have the form $k n \pm k^{\prime} m$ or $k x \pm k^{\prime} y$. The indices may be null or negative.

ASSOCIATED HYPERBOLIC AND FIBONACCI IDENTITIES

Remark
If we start with a Fibonacci identity, we must theoretically control the associated hyperbolic identity by other means, for then we pass from the particular to the general case. However, such an identity being true for $x=\alpha n$ and $y=\alpha m$ is probably true for all x and y, because

$$
\alpha=\log \frac{1+\sqrt{5}}{2}
$$

is a transcendental number.
Since the hyperbolic identities are classic, we can easily establish some well-known Fibonacci identities.

II. DEVELOPMENT OF FIBONACCI IDENTITIES

Example 1

$$
\sinh 2 x=2 \sinh x \cosh x
$$

For all n, the substitution of (3) gives $F_{2 n}=L_{n} F_{n}$.

Example 2

$$
\cosh ^{2} x-\sinh ^{2} x=1
$$

The substitution of (3) gives:

$$
\frac{5 F_{n}^{2}}{4}-\frac{L_{n}^{2}}{4}=1 \text {, if } n \text { is odd, and } \frac{L_{n}^{2}}{4}-\frac{5 F_{n}^{2}}{4}=1 \text {, if } n \text { is even. }
$$

Thus for all n,

$$
\begin{equation*}
L_{n}^{2}-5 F_{n}^{2}=4(-1)^{n} . \tag{5}
\end{equation*}
$$

Example 3

$$
\sinh 5 x=\sinh x \cosh \left(2 x-\sqrt{5} \cosh x+\frac{3}{2}\right)\left(\cosh 2 x+\sqrt{5} \cosh x+\frac{3}{2}\right) .
$$

By substitution

$$
\frac{L_{5 n}}{2}=4 \frac{L_{2 n}}{2}\left(\frac{L_{2 n}}{2}-\sqrt{5} \frac{\sqrt{5} F_{n}}{2}+\frac{3}{2}\right)\left(\frac{L_{2 n}}{2}+\sqrt{5} \frac{\sqrt{5} F_{n}}{2}+\frac{3}{2}\right) \text {, if } n \text { is odd, }
$$

and

$$
\frac{\sqrt{5} F_{5 n}}{2}=4 \frac{\sqrt{5} F_{n}}{2}\left(\frac{L_{2 n}}{2}-\sqrt{5} \frac{L_{n}}{2}+\frac{3}{2}\right)\left(\frac{L_{2 n}}{2}+\sqrt{5} \frac{L_{n}}{2}+\frac{3}{2}\right) \text {, if } n \text { is even. }
$$

Using $2 n-1$ in place of n if n is odd and $2 n$ in place of n if n is even, we find the following two distinct identities, which are valid for every n :

$$
L_{10 n-5}=L_{2 n-1}\left(L_{4 n-2}-5 F_{2 n-1}+3\right)\left(L_{4 n-2}+5 F_{2 n-1}+3\right)
$$

and

$$
F_{10 n}=F_{2 n}\left(L_{4 n}-\sqrt{5} L_{2 n}+3\right)\left(L_{4 n}+\sqrt{5} L_{2 n}+3\right) .
$$

Example 4

$$
(\cosh x+\sinh x)^{k}=\cosh k x+\sinh k x \quad(k \text { an integer } \geqslant 0)
$$

Examining three cases (n even, n odd and k even, n odd and k odd), we find for all n and k that

$$
\begin{equation*}
\left(\frac{L_{n}+\sqrt{5} F_{n}}{2}\right)^{k}=\frac{L_{k n}+\sqrt{5} F_{k n}}{2} . \tag{6}
\end{equation*}
$$

Application: Suppose we wish to express $L_{k n}$ and $F_{k n}$ as functions of L_{n} and F_{n}. We could do this by separating the expanded form of the left side of (6) into those terms with or without the factor $\sqrt{5}$.

Instead, we use the well-known fact that $F_{k n}$ is divisible by F_{n} to show that the integer $F_{k n} / F_{n}$ is a function of L_{n} of the form

$$
P\left(L_{n}\right)+(-1)^{n} Q\left(L_{n}\right),
$$

where $P(X)$ and $Q(X)$ are polynomials whose parities are opposite to that of k. By (6) we see that $F_{k n}$ has the form

$$
\sum c_{i} F_{n}^{i} L_{n}^{k-i}
$$

where i takes the odd values equal to k or less. Therefore, $F_{k n} / F_{n}$ has the form

$$
\sum c_{i}\left(F_{n}^{2}\right)^{k^{\prime}} L_{n}^{k-i}
$$

but, according to (5),

$$
F_{n}^{2}=\frac{1}{5}\left(L_{n}^{2}-4(-1)^{n}\right) .
$$

Thus for $k=2,3,4,5,6$, the values of $F_{k n} / F_{n}$ are, respectively:

ASSOCIATED HYPERBOLIC AND FIBONACCI IDENTITIES

$$
L_{n}, L_{n}^{2}-(-1)^{n}, L_{n}\left[L_{n}^{2}-2(-1)^{n}\right], L_{n}^{4}-3(-1)^{n} L_{n}^{2}+1, L_{n}\left[L_{n}^{4}-4(-1)^{n} L_{n}^{2}+3\right]
$$

Example 5

$$
\begin{equation*}
\frac{1}{2}+\cosh 2 x+\cosh 4 x+\cosh 6 x+\cdots+\cosh 2 k x=\frac{\sinh (2 k+1) x}{\sinh x} \tag{7}
\end{equation*}
$$

Therefore,

$$
1+L_{2 n}+L_{4 n}+L_{6 n}+\cdots+L_{2 k n}=\left[\frac{L_{(2 k+1) n}}{L_{n}}, \frac{F_{(2 k+1) n}}{F_{n}}\right]_{n}
$$

If we replace n by $2 n$, we get

$$
1+L_{4 n}+L_{8 n}+\cdots+L_{4 k n}=\frac{F_{(4 k+2) n}}{F_{2 n}}
$$

If we substitute $X+(\pi / 2)$ for X in the trigonometric identity associated with (7), we find a formula whose associated hyperbolic one is
$\frac{1}{2}-\cosh 2 x+\cosh 4 x-\cosh 6 x+\cdots+(-1)^{k} \cosh 2 k x=\frac{(-1)^{k} \cosh (2 x+1) x}{2 \cosh x}$. Hence,

$$
1-L_{2 n}+L_{4 n}-L_{6 n}+\cdots+(-1)^{k} L_{2 k n}=(-1)^{k}\left[\frac{F_{(2 k+1) n}}{F_{n}}, \frac{L_{(2 k+1) n}}{L_{n}}\right]_{n}
$$

Application: We can use these two Fibonacci identities to prove that for any odd $k, L_{k n}$ is divisible by L_{n}.

Example 6

$$
\begin{aligned}
& \sinh (x+y)=\sinh x \cosh y+\cosh x \sinh y \\
& \cosh (x+y)=\cosh x \cosh y+\sinh x \sinh y
\end{aligned}
$$

Using (3) and (4), we see that for all n and m,

$$
\left\{\begin{array}{l}
2 F_{n+m}=F_{n} L_{m}+L_{n} F_{m}, \tag{8}\\
2 L_{n+m}=L_{n} L_{m}+5 F_{n} F_{m} .
\end{array}\right.
$$

Note that for $m= \pm 1$, (8) becomes

$$
L_{n}+F_{n}=2 F_{n+1}, L_{n}-F_{n}=2 F_{n-1}
$$

Example 7

$$
\begin{aligned}
& \cosh (x+y)+\cosh (x-y)=2 \cosh x \cosh y \\
& \sinh (x+y)+\sinh (x-y)=2 \sinh x \cosh y
\end{aligned}
$$

Examining the four cases (according to the parities of n and m), we find that

$$
\begin{align*}
& L_{n+m}+L_{n-m}=\left[5 F_{n} F_{m}, L_{n} L_{m}\right]_{m}, \tag{9}\\
& F_{n+m}+F_{n-m}=\left[L_{n} F_{m}, F_{n} L_{m}\right]_{m} .
\end{align*}
$$

In particular, for $m=1$, (9) becomes $L_{n-1}+L_{n+1}=5 F_{n}$. It can also be shown that

$$
L_{n+m}-L_{n-m}=\left[5 F_{n} F_{m}, L_{n} L_{m}\right]_{m-1}
$$

and

$$
F_{n+m}-F_{n-m}=\left[L_{n} F_{m}, F_{n} L_{m}\right]_{m-1} .
$$

Application: We shall establish the following proposition using the preceding identities.

Theorem 2

A number of the form $F_{n} \pm F_{m}$ or $L_{n} \pm L_{m}$ is never prime if the indices have the same parity and a difference greater than 4.

Proof: The proof goes as follows: Let $a=n+m$ and $b=n-m$, then

$$
F_{a}+F_{b}=\left[L_{\frac{a+b}{2} F_{\frac{a-b}{2}}, F_{\frac{a+b}{2} L} \frac{a-b}{2}}\right]_{\frac{a-b}{2}} .
$$

Since $a-b>4$, we have $\frac{a-b}{2}>2$, so that there is no term

$$
L_{1}=F_{1}=F_{2}=1
$$

in the brackets. Hence, $F_{a}+F_{b}$ is composite.
A similar demonstration exists for $F_{a}-F_{b}$ or $L_{a} \pm L_{b}$.

Example 8

$$
\begin{aligned}
& \sinh (x+y) \sinh (x-y)=\sinh ^{2} x-\sinh ^{2} y \\
& \cosh (x+y) \cosh (x-y)=\cosh ^{2} x+\sinh ^{2} y
\end{aligned}
$$

By substitution, we have:
a) if n and m are even,

$$
\begin{aligned}
& F_{n+m} F_{n-m}=F_{n}^{2}-F_{m}^{2} \\
& L_{n+m} L_{n-m}=L_{n}^{2}+5 F_{m}^{2} \\
& 5 F_{n+m} F_{n-m}=L_{n}^{2}-L_{m}^{2} ;
\end{aligned}
$$

b) if n and m are odd,

$$
L_{n+m} L_{n-m}=5 F_{n}^{2}+L_{m}^{2}
$$

c) if n is even and m is odd,

$$
\begin{aligned}
5 F_{n+m} F_{n-m} & =L_{n}^{2}+L_{m}^{2} \\
L_{n+m} L_{n-m} & =5 F_{n}^{2}-L_{m}^{2}
\end{aligned}
$$

d) if n is odd and m is even,

$$
\begin{aligned}
& F_{n+m} F_{n-m}=F_{n}^{2}+F_{m}^{2} \\
& L_{n+m} L_{n-m}=L_{n}^{2}-5 F_{m}^{2} .
\end{aligned}
$$

With the help of (5) the four expressions thus obtained for $F_{n+m} F_{n-m}$ and $L_{n+m} L_{n-m}$ can be condensed into two identities:
and

$$
\begin{aligned}
& F_{n+m} F_{n-m}-F_{n}^{2}=(-1)^{n+m+1} F_{m}^{2}, \\
& L_{n+m} L_{n-m}-L_{n}^{2}=(-1)^{n+m} L_{m}^{2}-4(-1)^{n} .
\end{aligned}
$$

The first is the Catalan formula.
Letting $n=1$ and $m=2$, we see that
and

$$
\begin{aligned}
& F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n}, \quad(\text { Simson's formula) } \\
& F_{n+2} F_{n-2}-F_{n}^{2}=(-1)^{n+1} \\
& L_{n+1} L_{n-1}-L_{n}^{2}=5(-1)^{n+1} \\
& L_{n+2} L_{n-2}-L_{n}^{2}=5(-1)^{n}
\end{aligned}
$$

Example 9
Our last example is of a Fibonacci-trigonometric transposition. In [5], it is shown that if a, b, and c are even integers, then
and

$$
\begin{aligned}
L_{a} L_{b} L_{c} & =L_{a+b+c}+L_{b+c-a}+L_{c+a-b}+L_{a+b-c}, \\
5 F_{a} F_{b} F_{c} & =F_{a+b+c}+F_{a-b-c}+F_{b-c-a}+F_{c-a-b} .
\end{aligned}
$$

Using the hyperbolic transposition, (substitutions (1) and (2), we obtain $4 \cosh x \cosh y \cosh z=\cosh (x+y+z)+\cosh (y+z-x)$ $+\cosh (z+x-y)+\cosh (x+y-z)$,
and

$$
\begin{aligned}
4 \sinh x \sinh y \sinh z= & \sinh (x+y+z)+\sinh (x-y-z) \\
& +\sinh (y-z-x)+\sinh (z-x-y)
\end{aligned}
$$

Now, applying the trigonometric transposition, we have

$$
\begin{aligned}
4 \cos X \cos Y \cos Z= & \cos (X+Y+Z)+\cos (Y+Z-X) \\
& +\cos (Z+X-Y)+\cos (X+Y-Z),
\end{aligned}
$$

and

$$
4 \sin X \sin Y \sin Z=-\sin (X+Y+Z)+\sin (Y+Z-X)
$$

$$
+\sin (Z+X-Y)+\sin (X+Y-Z)
$$

III. GENERALIZATION

Let s be a positive integer with a and b the roots of the equation

$$
X^{2}-s X-1=0, \text { where } a=\frac{s+\sqrt{s^{2}+4}}{2}
$$

Consider the two generalized Fibonacci sequences given by

$$
\begin{equation*}
f_{n}=\frac{a^{n}-b^{n}}{a-b}, \quad \ell_{n}=a^{n}+b^{n} \tag{10}
\end{equation*}
$$

Let

$$
\Delta=s^{2}+4, \alpha=\log \alpha, \alpha n=x, \alpha m=y
$$

then,

$$
\frac{f_{n}}{2}=\frac{a^{n}-b^{n}}{2 \sqrt{\Delta}}=\frac{e^{\alpha n}-(-1) e^{-\alpha n}}{2 \sqrt{\Delta}}=\frac{1}{\sqrt{\Delta}}[\cosh x, \sinh x]_{n},
$$

and

$$
\frac{\ell_{n}}{2}=\frac{a^{n}+b^{n}}{2}=\frac{e^{\alpha n}+(-1) e^{-\alpha n}}{2}=[\sinh x, \cosh x]_{n}
$$

Hence,

$$
\left\{\begin{array}{l}
\cosh k x=\frac{1}{2}\left[\sqrt{\Delta} f_{k n}, l_{k n}\right]_{k n}, \sinh k x=\frac{1}{2}\left[\ell_{k n}, \sqrt{\Delta} f_{k n}\right]_{k n}, \tag{11}\\
\cosh (x+y)=\frac{1}{2}\left[\sqrt{\Delta} f_{n+m}, \ell_{n+m}\right]_{n+m}, \sinh (x+y)=\frac{1}{2}\left[\ell_{n+m}, \sqrt{\Delta} f_{n+m}\right]_{n+m} .
\end{array}\right.
$$

Theorem 3

To a hyperbolic identity with arguments of the form $k \pm k^{\prime} m$ (n and m integers), the substitution formulas of (11) associate one or several generalized Fibonacci identities (the same as for F_{n} and L_{n}, with the restriction that the factor 5 or $\sqrt{5}$ is replaced by Δ or $\sqrt{\Delta}$).

For instance,

$$
f_{2 n}=\ell_{n} f_{n}, \ell_{n}^{2}-\Delta f_{n}^{2}=4(-1)^{n}, f_{n+m}+f_{n-m}=\left[\ell_{n} f_{m}, f_{n} \ell_{m}\right]_{m}
$$

Note that the neighborly relations,

$$
\begin{aligned}
& L_{n}+F_{n}=2 F_{n+1}, L_{n}-F_{n}=2 F_{n-1}, L_{n-1}+L_{n+1}=5 F_{n} \\
& L_{n-1}-F_{n+1}=L_{n+1}-F_{n-1}=3 F_{n}, L_{n}^{2}-F_{n}^{2}=4 F_{n-1} F_{n+1} \\
& L_{n}^{2}+F_{n}^{2}=2\left(F_{n-1}^{2}+F_{n+1}^{2}\right)
\end{aligned}
$$

do not hold for f_{n} and ℓ_{n}. However, for every s :

$$
f_{n+1}+f_{n-1}=\ell_{n}
$$

The formulas of Simson and Catalan also hold for f_{n} and

$$
\ell_{n+1} \ell_{n-1}-\ell_{n}^{2}=\Delta(-1)^{n+1}
$$

Application: If we put $a=n+m$ and $b=n-m$, the formula

$$
f_{n+m}+f_{n-m}=\left[\ell_{n} f_{m}, f_{n} \ell_{m}\right]_{m}
$$

becomes

$$
f_{a}+f_{b}=\left[\ell_{\frac{a+b}{2}} f_{\frac{a-b}{2}}, f_{\frac{a+b}{2} \ell_{a-b}^{2}}\right] \frac{a-b}{2}
$$

if $a-b$ is even. Therefore:

Theorem 4

A number $f_{a}+f_{b}$ is not prime if $a-b$ is even and other than 2 , and $f_{a}+f_{a+2}$ is a prime only if ℓ_{a+1} is a prime.

Proof: Note that

$$
f_{a}+f_{a+2}=\ell_{a+1} \quad \text { and } \quad f_{a}+f_{a+4}=3 f_{a+2},
$$

so if $a-b>4$, there is no factor $f_{1}=1$ or $f_{2}=\ell_{1}=s=1$ in the brackets, and if $a-b=4$, then

$$
f_{a}+f_{b}=f_{\frac{a+b}{2}} \ell_{2}
$$

Remarks

1) Under the same conditions, $\ell_{a} \pm \ell_{b}$ is not prime. Furthermore, if $a-b$ is even other than 2 or $4, f_{a}-f_{b}$ is not prime.
2) An integer $F_{a} \pm 1$ is not prime for $n>6$. (See [6].)

The latter remark is true, since $F_{a} \pm 1$ can be considered as $F_{a} \pm F_{1}$ if α is odd and $F_{a} \pm F_{2}$ if a is even. For $a>6$, the difference $a-1$ or $a-2$ exceeds 4.

Recurrence: The generalized Fibonacci sequences can also be defined by
and

$$
f_{n+2}=s f_{n+1}+f_{n}, f_{0}=0, f_{1}=1,
$$

$$
\ell_{n+2}=s \ell_{n+1}+\ell_{n}, \ell_{0}=2, \ell_{1}=s
$$

This results directly from Binet's formulas (10). Note that for $s=2$, the f_{n} are the "Pe11 numbers."

REFERENCES

1. E. Lucas. "Théorie des fonctions numériques simplement périodiques." Amer. J. Math. 1 (1978):184-240.
2. J. C. Amson. "Lucas Functions." Eureka: The Journal of the Archimedeans (Cambridge University, October 1963), pp. 21-25.
3. V. E. Hoggatt, Jr., \& Marjorie Bicknell. "Roots of Fibonacci Polynomials." The Fibonacci Quarterly 11, no. 3 (1973):271-74.
4. E. Ehrhart. Polynômes arithmétiques et Méthode des polyèdres en combinatoire. Basel and Stuttgart: Birkhaüser (1977).
5. H. Ferns. "Products of Fibonacci and Lucas Numbers." The Fibonacci Quarterly 7, no. 1 (1969):1-11.
6. U. Dudley \& B. Tucker. "Greatest Common Divisors in A1tered Fibonacci Sequences." The Fibonacci Quarterly 9, no. 1 (1971):89-92.

[^0]: *More generally $\left[u_{1}, u_{2}, \ldots, u_{p}\right]_{n}$ is equal to the u_{i} in the brackets such that $i=n$, modulo p [4].

