
1

Associating Synchronization Constraintswith Data in an
Object-Or iented Language∗

MandanaVaziri Frank Tip Julian Dolby
IBM T.J. WatsonResearch Center, P.O. Box 704, Yorktown Heights, NY 10598, USA

{mvaziri,ftip,dolby}@us.ibm.com

Abstract
Concurrency-related bugs may happen when multiple threads ac-
cess shared data and interleave in ways that do not correspondto
any sequential execution. Their absence is not guaranteed by the
traditional notion of “data race”freedom. Wepresent anew defini-
tion of dataraces in termsof 11 problematic interleavingscenarios,
and prove that it i scomplete by showing that any execution not ex-
hibiting thesescenarios is serializable for a chosen set of locations.
Our definition subsumes the traditional definition of a data race as
well as high-level data races such as stale-value errors and incon-
sistent views. We also propose alanguagefeature called atomic sets
of locations, which lets programmers specify the existenceof con-
sistency propertiesbetween fieldsin objects, without specifyingthe
properties themselves. Weusestatic analysis to automatically infer
those points in the code where synchronization is needed to avoid
data races under our new definition. An important benefit of this
approach is that, in general, far fewer annotations are required than
isthe casewith existingapproaches such as synchronized blocksor
atomic sections. Our implementation successfully inferred the ap-
propriatesynchronizationfor asignificant subset of Java’sStandard
Collections framework.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming-parallel programming; D.2.4
[Software Engineering]: Software/Program Verification-reliabilit y;
F.1.3 [Logics And Meanings of Programs]: Specifying and Verify-
ingand Reasoning about Programs

General Terms Languages, Theory

Keywords Concurrent Object-Oriented Programming, DataRaces,
Serializabilit y, ProgrammingModel

1. Introduction
Writing correct concurrent programs is hard, because inconsistent
results may be computed when two threads access shared data
concurrently. In particular, a data race is said to occur when two
threads concurrently access some data, where one of these ac-
cesses is a write, and where no synchronization exists between the

∗ This work has been supported in part by the Defense Advanced Research
Projects Agency (DARPA) under contract No. NBCH30390004.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without feeprovided that copies are not made or distributed
for profit or commercial advantage andthat copiesbear thisnotice andthefull citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permissionand/or a fee.

POPL ’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006ACM 1-59593-027-2/06/0001. . .$5.00.

threads. Current techniques for preventing data races involve ob-
taining locks prior to any access to the shared data using mech-
anisms such as Java’s synchronized blocks, or using language
constructs such as atomic sections [11] and transactional memory
[2, 24, 23] that ensure that a sequence of statements is executed
atomically.

One disadvantage of such code-centric approaches for avoiding
data races is that it involves non-local reasoning: Shared data may
be accessed throughout theprogram and dataracesmay occur if the
programmer forgets to obtain the appropriate locks at any of these
points. A second problem is that, even if every access to shared
data isprotected, datamay still end upin an inconsistent state. This
situation—sometimes referred to as “high-level data races” [3] —
occurs if a consistency property exists between multiple pieces of
shared data, and if the synchronization constructs do not ensure
that this property is maintained at all ti mes. Avoiding such high-
level data races requires the same kind of non-local reasoning
as for ordinary data races, but is further complicated by the fact
that multiple locks may have to be acquired in a specific order. If
the programmer accidentally fails to obey this locking discipline,
deadlock or inconsistent data may result.

This paper presents an alternative, data-centric approach for
avoiding both high-level and low-level data races. In thisapproach,
theprogrammer specifiesthat a consistency property existsbetween
a given set of fields, but without specifying the property itself.
We will call such a set an atomic set of fields, indicating that the
elements of such a set must be updated atomically. Accesses to
fields in an atomic set are assumed to take placein a unit of work,
which indicates a logical operation onshared data, and preserves
consistency when executed sequentially. In thispaper, unitsof work
are assumed to coincide with method bodies. Choosing portions of
object state as atomic sets and methods as units of work exploits
the encapsulation mechanism of objects.

Given a pair of fields that occur in an atomic set, we have iden-
tified 11 problematic interleavingscenarios that capturethevarious
ways in which inconsistent data may occur when two threads up-
date these fields non-atomically. The problematic interleaving sce-
narios include traditional data races, stale-value errors [10], incon-
sistent views of data [3], and several other forms of high-level data
races. We prove this list of problematic interleaving scenarios to
be complete, in the sense that if an execution does not display any
of these scenarios, then its projection oneach atomic set is serial-
izable, i.e., equivalent to an execution in which the units of work
occur in a serial order.

We also present an interprocedural static analysis that deter-
mines, for agiven atomic set of fields, theplaces in the code where
synchronizationmust beperformed in order to ensurethat there are
no data races under our new definition. This is implemented by in-
serting reader-writer locks from the java.util.concurrent li -
brary of Java 1.5 [31] at the appropriate places. We implemented

2

class Customer {
String city;
int zipcode;
Date date;
Item item;

void updateAddress(String c, int z){
atomic { city = c; zipcode = z; }

}
void newPurchase(Date d, Item i){

atomic { date = d; item = i; }
}

}
class PreferredCustomer extends Customer {

void newStoreGift(Date d, Item i){
atomic { date = d; item = i; }

}
}

class Customer {
atomic(address) String city;
atomic(address) int zipcode;
atomic(purchase) Date date;
atomic(purchase) Item item;

void updateAddress(String c, int z){
city = c; zipcode = z;

}
void newPurchase(Date d, Item i){
date = d; item = i;

}
}
class PreferredCustomer extends Customer {

void newStoreGift(Date d, Item i){
date = d; item = i;

}
}(a) (b)

Figure 1. Customer example.

the analysis and conducted experiments with classes from the Java
Standard Collections Framework. Our experiments indicate that
our data-centric approach is sufficient to infer the correct synchro-
nization in a significant portion of the collections framework. Fur-
thermore, one of our constructs can effectively replacesynchro-
nization wrappers such as Collections.synchronizedList().
The experiments indicate that the number of atomic location sets
is generally far smaller than the number of synchronized blocks,
hence reducing the burden on the programmer and creating fewer
opportunities for errors. In summary, thispaper make thefollowing
contributions:

• A list of problematic interleaving scenarios that subsumes the
traditional notion of a data race as well as stale-value errors,
inconsistent views and other high-level data races. We prove
this list to be complete, in the sense that if a program execution
does not exhibit these scenarios, then its projection onto each
atomic set is serializable.

• A set of data-centric language constructs that allow the pro-
grammer to express synchronization constraints succinctly and
declaratively.

• A static analysis that infers automatically where synchroniza-
tion needs to be performed. This relieves the programmer from
thenon-local reasoningandcumbersomelocking disciplinesas-
sociated with current code-centric approaches.

• Experiments on the Java Standard Collection Framework that
ill ustrate the practicality of the work.

2. Motivating Examples
This section gives some examples that ill ustrate the shortcomings
of the traditional, code-centric approaches for avoiding data races.
At the same time, we will i ntroduce the language constructs that
are part of the data-centric approach wepropose.

2.1 Example 1: Customers

Figure 1(a) shows a classCustomer, which contains fields city
andzipcode that storepartsof a customer’saddress, anddate and
item that record the item and date of his last purchase. Methods
updateAddress() andnewPurchase() serveto update customer
information. PreferredCustomer is a subclassof Customer that
models certain aspects of a customer loyalty program using a
methodnewStoreGift() that also updatesdate anditem.

If methods such as updateAddress(), newPurchase(), and
newStoreGift() are executed concurrently by multiple threads,
care must be taken to ensure that no inconsistent results can arise.

For the purposes of this example, we will assume that low-level
data races involving any of the four fields are undesirable (e.g.,
we want to preclude situations where one thread reads the value
of date while another thread is updatingdate simultaneously). In
addition, we want to disallow high-level data races involving the
related fields city and zipcode and involving date and item.
For example, we want to disallow the situation where one thread
intends to read first city and then zipcode, but where asecond
thread writes a new value into city before the first thread has
completed both reads. In the example of Figure 1(a), atomic sec-
tionsareused to prevent these low-level and high-level data races1.
Conceptually, each atomic sectionisexecuted without interruptions
by other threads. Atomic sections can be implemented using locks
[11] or using transactional memory [2, 24, 23]. The use of atomic
sections for preventing data races has the following drawbacks:

• In general, the number of atomic sections may be proportional
to thenumber of accessesto shared fields. In the above example,
each method contains an atomic section because it accesses
shared data.

• There is a lack of modularity in the sense that the burden is
placed on the programmer to remember that accesses to fields
in superclasses may have to be protected.

Figure 1(b) shows the approach we propose, in which synchro-
nizationconstraintsare associated with data. Here, all theprogram-
mer needs to do is indicate that city and zipcode are part of an
atomic set called address, and that date and item are part of an
atomic set called purchase. In this framework, the compiler in-
fers where locks must be obtained so as to prevent low-level and
high-level data races. Observe that the number of annotations is
proportional to the number of fields, and that noadditional work is
required in the presence of subclassing, thus reducing the amount
of work and limiting opportunities for programmer errors.

Informally, the semantics of atomic sets can be stated as fol-
lows. Associated with each atomic set A is a set of code blocks
that represent logical operations on the set. We will refer to these
code blocks as the units of work for A, denoted by Units(A).
By default, the units of work associated with an atomic set de-
clared in classC consist of the methods of C and its subclasses
(we will shortly discuss a mechanism for associating additional
units of work with a given atomic set). For a given atomic set A
and unit of work u ∈ Units(A), the guarantee is that any pair

1 One could also use explicit locking mechanisms such as Java’s
synchronized blocks to prevent the low-level and high-level data races
in this example.

3

of accesses to fields in A that occur in u will be executed with-
out being interleaved by another thread that operates on fields
in A. For example, methods Customer.newPurchase() and
PreferredCustomer.newStoreGift() are units of work for
atomic set purchase. Therefore, it i s guaranteed that the exe-
cution of these methods will not be interleaved, thus preventing
high-level data races. However, it is allowed for the execution
of either of these methods to be interleaved with that of method
Customer.updateAddress(), because thelatter doesnot operate
on the same atomic set.

2.2 Example 2: Vector

The default units of work for a given atomic set are well -suited to
accommodate situationswheresome consistency property between
a set of fields must be maintained by the methods of the classthat
declaresthosefields. However, there aresituationswhere additional
synchronization on parameters isneeded.

Figure 2(a) shows a fragment of class java.util.Vector
from the Java Standard Collections Framework. Specifically, the
figure shows the declaration of a field elementData, which
refers to the array that stores the vector’s contents, and a field
elementCount, which counts the number of array elements that
are currently in use. Also shown is a constructor for creating a
new Vector that is initialized to contain the elements of a given
collection c. Wang and Stoller [35] reported a high-level data race
that occurs in this code when this constructor is invoked with a
collection of length k. The raceoccurs if a thread that executes
the constructor’s code is interrupted after executing the statement
elementCount = c.size() by another thread that is calli ng the
removeAllElements() method onthe collection pointed to by
c. Then, when the first thread resumes, and executes the statement
c.toArray(elementData), the resulting vector will contain k
elements that are null. This result is inconsistent with any serial
execution of the two threads.

Figure 2(b) shows how this high-level data race can be avoided
using our new language constructs. The fieldselementCount and
elementData have been placed in an atomic set vec, and the
constructor has been designated as a unit of work for its parameter
c. Note that only the field elementData is in the atomic set and
not the vector. The unitfor construct used in this example is a
mechanism for specifying client-side synchronization constraints,
and declares that the scope of parameter c is a unit of work for all
atomic sets of c. Hence, the body of the constructor is not only a
unit of work for all the atomic setsof this but also for those of c.

When a unit of work is declared on multiple atomic sets, as
is the case here, the atomic sets are combined to form a larger
atomic set for the duration of that unit of work. The guarantee is
that accesses to any location within that enlarged set will not be
interleaved. Similarly, a method that accesses fields belonging to
multiple atomic sets of the receiver object is a unit of work for the
union of these sets.

2.3 Example 3: Bank Accounts

Figure 3 shows an example program containing classes Account
andBank. Account hasafieldchecking andmethodswithdraw()
and deposit() that manipulate this field. The checking field
has been placed in a singleton atomic set account to prevent
low-level data races involving this field. Bank provides a method
transfer() for transferring money between accounts, and de-
claresfieldslog andlogCount for maintaininga log of completed
transfers. Observe that log and logCount have been placed in
an atomic set logging to prevent other threads from observing
intermediate states in which only one of the two has been updated.

To make the example slightly more interesting, we will as-
sume that a distinction needs to be made between local trans-

class Account {
atomic(account) int checking;
public void deposit(int n) { · · · }
public void withdraw(int n) { · · · }

}
class Bank {

atomic(logging) Log log;
atomic(logging) int logCount;

void transfer(Account a, Account b, int n){
log.add(a,b,n);
a.withdraw(n);
b.deposit(n);
logCount++;

}
public void localTransfer(unitfor Account a,

unitfor Account b,
int n){

transfer(a, b, n);
}
public void longDistanceTransfer(Account a,

Account b,
int n){

transfer(a, b, n);
}

}

Figure 3. Bank account example.

fers, for which intermediate states (in which the money has been
withdrawn from one account, but not yet added to the other)
should not be visible, and long-distance transfers, for which the
exposure of intermediate states can be tolerated. This distinc-
tion has been encoded by two methods, localTransfer() and
longDistanceTransfer(), both of which invoke the previously
discussed transfer() method. In essence, we would like to ex-
pressthat localTransfer() is a unit of work for its parameters
a and b, and this is accomplished using the unitfor construct.
As localTransfer() reads both a and b, synchronization will
be inserted to ensure that the call to transfer() will be executed
atomically.

Observe that this solution allows for more concurrency than a
traditional solutionwhere thebody of thetransfer() method has
been placed in an atomic sectionin order to preservetheloggingin-
formation. This is ill ustrated byFigures4 and 5, which show where
calls a’.deposit(m) and log’.add(c,d,m) can be interleaved
with calls to localTransfer() andLongDistanceTransfer(),
respectively. Note that calls to deposit() can be interleaved with
calls to longDistanceTransfer() while preserving the consis-
tency of log andlogCount.

2.4 Example 4: Synchronization Wrappers

The Java Collections Framework provides synchronization wrap-
pers for creating synchronized versions of collections that are not
thread-safe. For example, classjava.util.ArrayList provides
array-based liststhat arenot thread-safe. An applicationthat wishes
to use athread-safeArrayList typically executes code such as:

List myList =
Collections.synchronizedList(new ArrayList())

Here, the synchronizedList() method from the utilit y class
java.util.Collections createsadecorator object of typeList
that wraps the ArrayList that was passed in as a parameter,
and that forwards all methods to this ArrayList. All forwarding
methods are synchronized, thus preventing low-level data races
that might otherwise be caused by concurrent accesses to methods
such asget() andset(). Note that this only prevents races when

4

public class Vector {
Object[] elementData;
int elementCount;

public Vector(Collection<? extends E> c) {
elementCount = c.size();
// 10% for growth
elementData = new Object[
(int)Math.min((elementCount*110L)/100,

Integer.MAX VALUE)];
c.toArray(elementData);

}
}

public class Vector {
atomic(vec) Object[] elementData;
atomic(vec) int elementCount;

public Vector(unitfor Collection<? extends E> c) {
elementCount = c.size();
// 10% for growth
elementData = new Object[
(int)Math.min((elementCount*110L)/100,

Integer.MAX VALUE)];
c.toArray(elementData);

}
}(a) (b)

Figure 2. Vector example.

localTransfer()

log’.add(c,d,m)

log.add(a,b,n)

a.withdraw(n)

b.deposit(n)

logCount++

a’.deposit(m)

Figure 4. Allowable interleavings for localTransfer. Arrows
indicate where a’.deposit(m) and log’.add(c,d,n) can be
interleaved, assuming that a and a’ and log and log’ may point
to the same objects, respectively.

longDistanceTransfer()

log’.add(c,d,m)

log.add(a,b,n)

a.withdraw(n)

b.deposit(n)

logCount++

a’.deposit(m)

Figure 5. Allowable interleavings for longDistanceTransfer.
Arrows indicate where a’.deposit(m) and log’.add(c,d,n)
can be interleaved, assuming that a anda’ and log andlog’ may
point to the same objects, respectively.

using a single synchronized wrapper; it i s possible to have races if
other threads have references to underlying collection object.

Wepresent an alternative to synchronization wrappers—atomic
class—which addresses these shortcomings. In essence, making a
classatomic is equivalent to putting all of its fields and the fields
in its superclasses in a single atomic set. In addition, anonymous
atomic classes can be created by inserting the keyword atomic
at allocation sites. For example, a thread-safe ArrayList can be
created as follows:

List myList = new atomic ArrayList(){};

This eliminates the need for the synchronization wrapper classes
that contain large numbers of boilerplate forwarding methods, ex-
cept for those few that need unitfor parameters.

class LinkedList {
owned(entry) atomic(list) Entry header;
atomic(list) int size;
public set(int index, Object value) {

Entry e = entry(index);
oldVal = e.value;
e.value = value;
return oldVal;

}
}
class Entry {

atomic(entry) Object value;
owned(entry) atomic(entry) Entry next;

}

Figure 6. Linked List Example

value value
next next next

header
valuesize

atomic set

Figure 7. A linked list. Only the objects in the representation of
linked list are contained in an atomic set, not the objects contained
in the list (shaded).

2.5 Example 5: Owned Fields

The atomic set construct is used to include fields in an atomic
set. Sometimes it is useful to reason about atomic sets of objects
referred to by a field. In the example of Figure 6, a linked list class
has two fields header and size that belong to atomic set list.
Field header is of type Entry, which declares its own atomic set
entry. Method set() takes an index in the list, finds the proper
placement in the list (using a method entry(), not shown) and
inserts a given object at that position. We need to declare that all
the objects that are part of the representation of the linked list are
part of the same atomic set, to protect the entire list, especially in
methods such as set() which accesses the list in the middle. To
achieve this, we apply the construct owned(entry) to theheader
field, which states that the entry set of the object pointed to by
that field is to be included in the atomic set of that field. This is
ill ustrated in Figure 7. The set list owns the entry set pointed
to by field header, which includes the value and next field of
the first object. This set in turn includes the entry set of the next
object, and so on. Observe that the state of objects pointed to by
the value field are not included because this field does not have
an owned annotation. Hence, updates to objects in listscan happen
concurrently with operations on the list itself.

5

W(this.log) R(a.checking) W(a.checking) R(b.checking) W(b.checking) R(logCount) W(logCount)

u (localTransfer)

u1 (add) u2 (withdraw) u3 (deposit)

Figure 8. Units of work and accesses in localTransfer

While this construct could, in general, be expensive to imple-
ment with explicit locks, an ownership type system can be lever-
aged to provide an efficient implementation since owned—that
is, private—state does not need additional locks. Integrating our
scheme with ownership types ispart of future work.

3. New Definition of Data Races
The current definition of a data raceis two accesses to the same
memory location, one of which is a write with nosynchronization
between them. This is not sufficient in that the absence of races
does not imply the absenceof concurrency-related bugs, i.e., bugs
caused solely by interleavings of otherwise-correct code. Our ob-
jective in providing a new definition for data races is to bridge the
gap between traditional data races and a property related to serial-
izabilit y.

Our definition is given as a set of non-serializable interleaving
scenarios in Section 3.2. If an execution does not display any of
these scenarios, then it satisfiesa property related to serializabilit y.
We refer to this fact as completenessof the definition, and prove it
in Section 3.3.

3.1 Formal Model

This section presents a dynamic formal model of code in terms of
sequences of accesses to memory locations, atomic sets, and units
of work.

Let L be the set of all memory locations. A subset L ⊆ L may
bedesignated asatomic. An event isan accessto amemory location
l ∈ L. Accesses can be aread R(l) or a write W (l). We assume
that accesses to a single memory location are uninterrupted. If l
denotes locations l1 or l2 in L, we use the notationL− l to denote
the other location.

A unit of work u is a sequence of events, and is declared on
a set of atomic sets. We write sets(u) for the set of atomic sets
corresponding to u. We say that

S

L∈sets(u) L is the dynamic
atomic set of u. Unitsof work may benested, andwewriteu← u′

to indicate that u′ isnested in u. Unitsof work form aforest via the
← relation.

An access to a location l ∈ L appearing in unit of work u
belongs to thetop-most unit of work withinu such that L∈ sets(u).
ThenotationRu(l) denotesaread belonging to u, andsimilarly for
writes.

As an ill ustration consider again the example of Figure 3. Fig-
ure 8 shows the accesses and units of work in localTransfer().
Unit of work u contains threenested units u1, u2, and u3, corre-
spondingto callstomethodsadd(), withdraw(), anddeposit(),
respectively. Unit of work u isdeclared onatomic setslogging of
this, account of a, and account of b, and preserves the consis-
tency of their union. All accessesin this sequencemust beprotected
inside u, and we say that all these accesses belongto u. This ill us-
trates how, in general, an access belongs to the topmost unit of
work declared onit.

A thread isasequenceof unitsof work. Thenotation thread(u)
denotes the thread corresponding to u. An execution is a sequence
of events from one or more threads. Given an execution E and an
atomic set L, theprojection of E onL isan executionthat hasevery
event onL in E in the same order.

Interleaving scenar io Description

1. Ru(l) W
u
′ (l) Wu(l) Value read is staleby the

time an update ismade in u.

2. Ru(l) W
u
′ (l) Ru(l) Two readsof the same location

yield different values in u.

3. Wu(l) R
u
′ (l) Wu(l) An intermediate state is

observed byu′.

4. Wu(l) W
u
′ (l) Ru(l) Value read isnot thesame as

the onewritten last in u.

5. Wu(l) W
u
′ (l) Wu(l) Valuewritten byu′ is lost.

6. Wu(l1) W
u
′ (l) W

u
′ (L−l) Wu(l2) Memory is left in an

inconsistent state.

7. Wu(l1) W
u
′ (l2) Wu(l2) W

u
′ (l1) same asabove.

8. Wu(l1) R
u
′ (l) R

u
′ (L−l) Wu(l2) State observed is inconsistent.

9. Ru(l1) W
u
′ (l) W

u
′ (L−1) Ru(l2) same asabove.

10. Ru(l1) W
u
′ (l2) Ru(l2) W

u
′ (l1) same asabove.

11. Wu(l1) R
u
′ (l2) Wu(l2) R

u
′ (l1) same asabove.

Figure 9. Problematic InterleavingScenarios. These scenarios are
complete provided that each unit of work that writes to an atomic
set, writesall l ocations in that set.

Observation 1 For any pair of accesses belonging to units of work
u and u′ that appear in the projection of an execution E on an
atomic set L, if thread(u) = thread(u′) then we have neither
u ← u′, nor u′ ← u; i.e. the projection does not contain nested
units of work.

This observation follows from the fact that each accessbelongs to
the topmost unit of work declared onit.

An interleaving scenario is also a sequence of events. For ex-
ample, Ru(l) Wu′(l) Wu(l) isan interleavingscenario where unit
of work u first reads l, then another unit of work u′ performs a
write, followed by awrite by u.

An execution is in accordancewith an interleavingscenario if it
contains the events in the interleavingscenario, and these appear in
thesame order. The atomic setsof an executionE, atomicSets(E),
consists of all atomic sets for which there is an access in E, as
well as the dynamic atomic set of all units of work in E. When the
execution isclear from context, we writeatomicSets.

3.2 Definition

Figure 9 shows the interleavingscenarios that are non-serializable.
Serializabilit y is obtained by preserving data consistency, so these
scenarios capture when the data may be read or written inconsis-
tently.

Definition 1. Data Races Let L be an atomic set of locations,
l1, l2 ∈ L, l one of l1 or l2, and u and u′ two units of work for L,
such that thread(u) 6= thread(u′). An execution hasadataraceif it
is in accordancewith one of the interleavingscenarios of Figure9.

We now describe informally why these scenarios are problematic.
In the first scenario, unit of work u reads one location l, followed
by an update to l. If another update to l is interleaved between the
two, then theread operation yieldsastalevalue and thesubsequent
update may be inconsistent. This scenario captures common “ low-
level” data races, such as two threads executing x++. Scenario 1
correspondsroughly to the “lost update” [37] anomaly in databases:

6

Wu(l1)

scenario 6

Wu’(l2) Wu’(l1) Wu(l2)

scenario 9

Ru(l1) Ru(l2)Wu’(l1) Wu’(l2)

l1 l2

l1 l2

Figure 10. Problematic interleavingscenarios

a transaction T1 reads a data item, then another transaction T2

updates the item, then T1 updates the item based onthe value read
and commits. The update of T2 is then lost.

Scenario 2 shows two consecutive reads of location l in a unit
of work that do not yield the same value. It roughly corresponds
to the “fuzzy read” anomaly in databases, where atransaction T1

reads a data item, then a second transaction T2 modifies that item
and commits. If T1 attempts to re-read the same item, it receives a
different value.

In scenario 3, an intermediate value of l is read, when a unit of
work writes it multiple times. In scenario 4, the value read for l is
not the same as the one last written in the same unit of work. In
scenario 5, a write to l is lost, or hidden by the writes from some
unit of work.

Scenarios 6 (Figure 10) and 7 ill ustrate cases where memory
is updated inconsistently. Recall that l denotes one of l1 or l2,
and that L − l denotes the other. In scenario 6, a unit of work
updates some location in the set, followed by an update to another
location. Thus the whole set is updated in multiple steps. If a write
to the set is interleaved between the two, then memory is left in
an inconsistent state since individual locations have values from
different operations. A reader may then observe what appears to be
intermediate states of various updates. Scenario 7 is similar.

Scenarios8 through 11(Figure10) ill ustrate cases wheremem-
ory is read inconsistently, even if it may never have been written
incorrectly. In scenario 9, one unit of work reads l1 followed by
reading l2. Thus one thread is observing the state of multiple parts
in the atomic set. If an update to the whole set is interleaved, then
the values observed belong to different operations. The rest of the
scenarios are problematic for a similar reason. These scenarios are
similar to the “read skew” database anomaly.

All scenarios that only manipulate one memory location are
marked as having a data race by the common definition. How-
ever, there are threescenarios missingRu(l) Ru′(l) Ru(l), Wu(l)
Ru′(l) Ru(l), and Ru(l) Ru′(l) Wu(l). None of these are prob-
lematic, but the common definition marks the last two as having a
race. Our definition avoids these benign cases. An example of the
third scenario is a thread performing x++ and another printing the
valueof x, wherethewriteof x isatomic. This isnon-deterministic
but serializable, so there is no data race.

Not all database anomalies are applicable in this context. Some
are concerned with an erroneousbehavior when atransactionaborts
and rolls back: e.g. “dirty read” and “dirty write”. Others refer to
reading a set of memory locations that satisfy a search condition:
“phantom read” . Finally the “write skew” anomaly is covered by
several of our scenarios.

3.3 Completeness

Wenow show that theinterleavingscenariosare complete, meaning
that if an execution does not display them, then its projection on
each atomic set is serializable, a concept that we define precisely
below. To this end, we introduce aformal model of timestamps.
Units of work can be totally ordered by the occurrence of their

first write events in an execution. We associate aunique timestamp
with each unit of work, respecting thisorder. A write event gets the
timestamp of the unit of work to which it belongs. A read event
gets the timestamp of themost recent write to thememory location
it is reading. If a memory location gets written more than onceby
a unit of work, we mark the location as temporary, until the last
write is completed. We use timestamps and temporary locations to
capture consistency: if two readswithin aunit of work get different
timestamps, they are observing an inconsistent state. Likewise,
observing a location marked as temporary by another unit of work
is undesirable. We make the following assumption in our proof of
completeness:

Assumption 1. We assume that each execution is such that every
unit of work that writes somelocationin an atomic set, writesevery
location in that atomic set.

This assumption is not restrictive because we can always add
“dummy writes” to any unit of work that does not satisfy it, and
they are only needed conceptually.

In the rest of this section, we consider an execution E and its
projection onsome atomic set L in atomicSets(E). We call these
“ the execution” and “ the projected execution” , respectively.

If the execution is not in accordance with the interleaving sce-
narios of Definition 1, then neither is the projection, and we show
that the timestamp of writes to a given memory location in L are
monotonically increasing (Lemma 1), and that no unit of work
observes an inconsistent state (Lemma 2). These two properties
suffice to show that the projected execution is serializable (The-
orem 1), using the Serializabilit y Theorem from database theory
[8].

Weuse indices to refer to atotal order of events in theprojected
execution2. The function event(i) gives the event at index i. If u is
aunit of work, then firstWrite(u) isthe index of thefirst write event
of u.

We assume that timestamps are drawn from the natural num-
bers, and that the indices in an execution start at 1. We use ts(u)
to denote the timestamp of a unit of work that performs writes. We
allocate timestamps to units of work in such away that:

ts(u) < ts(u′)⇔ firstWrite(u) < firstWrite(u′).

So aunit of work u, whosefirst writehappens before thefirst write
of another unit of work u′ in an execution, gets a lower timestamp.
Given a total order of timestamps thus allocated, let prev(t) be the
timestamp immediately preceding t in thisorder (prev(t) < t).

We associate atimestamp, ts(i), with an event at index i in the
execution. Write events get the timestamp of the unit of work to
which they belong, and read events get the timestamp of the most
recent write to the memory location read. ts(i) is computed as
follows:

ts(i) =

8

>

>

>

>

>

<

>

>

>

>

>

:

ts(u) if event(i) = Wu(l)
ts(j) if event(i) = Ru(l)

∧ j < i ∧ event(j) = Wu′(l)
∧ 6 ∃k, j < k < i | event(k) = Wu′′(l)

0 if event(i) = Ru(l)
∧ 6 ∃j, j < i | event(j) = Wu′(l)

So far ts(u) isonly defined for unitsof work u that perform writes.
For a unit of work that consists entirely of read events, let ts(u) =
ts(i) for somei such that event(i) = Ru(l). Wewill seeinLemma2
that all such i have the same timestamp.

2 A total order of events is natural for a sequentially consistent architec-
ture. However, events happen in some total order even onweaker memory
models, so our conceptual model is still applicable.

7

temp(u1, i, l2)
index i event ts(i) temp(u1, i, l1) temp(u2, i, l1)

temp(u2, i, l2)

1 Wu1
(l1) 1 true false

2 Ru2
(l1) 1 true false

3 Ru2
(l2) 0 true false

4 Wu1
(l2) 1 true false

5 Wu2
(l1) 2 true false

6 Wu2
(l2) 2 true false

7 Wu1
(l1) 1 false false

Figure 11. Sample execution and timestamps

The predicate temp(u, i, l) is true if location l is temporary for
unit of work u at index i, meaning that there will be another write
to l in u beyond index i. It is false for unit of work u at index i if
i represents the index of the last write to l in u. For reads, we take
the value of temp(u, i, l) to be the value temp(u, i− 1, l). Initially,
temp(u, 0, l) = false for all u and l. It is computed as follows:

temp(u, i, l) =

8

>

>

>

<

>

>

>

:

true if event(i) = Wu(l) ∧
∃ j > i | event(j) = Wu(l)

false if event(i) = Wu(l) ∧
6 ∃ j > i | event(j) = Wu(l)

temp(u, i− 1, l) otherwise.

Figure 11 gives a sample execution and its timestamps. In this
example, there aretwo unitsof work u1 andu2 in different threads,
and two locations l1 and l2. We have ts(u1) = 1 and ts(u2) = 2.
At index 2, unit of work u2 reads an intermediate value of location
l1. This is captured by temp(u1, 2, l1) being true.

The following lemma states that the timestamps of write events
on the same memory location l are monotonically increasing.

Lemma 1. If the projected execution is not in accordance with
the interleaving scenarios of Definition 1, and i and j are such
that i < j, event(i) = Wu(l) and event(j) = Wu′(l) for some
l, u 6= u′, then ts(i) < ts(j).

The proof of Lemma 1 can be foundin Appendix A.
The following lemma states that the state observed in a unit of

work is consistent, by giving threeproperties of read events in an
execution that is not in accordance with any of the scenarios in
Definition 1. First, no temporary value is ever read. Second, reads
in aunit of work that also writesthesame atomic set do not get stale
values. Third, two reads in aunit of work that doesnot perform any
writes to same atomic set get consistent values.

Lemma 2. If the projected execution is not in accordancewith any
of the interleavingscenarios of Definition 1:

1. No event from one unit of work reads a memory location
marked as temporary by another unit of work in a different
thread.
∀u, i, l | event(i) = Ru(l) ⇒ 6 ∃u′ | u′ 6= u ∧ thread(u) 6=
thread (u′) ∧ temp(u′, i, l).

2. A read in a unit of work that also contains a write to the same
atomic set does not get a stale value, i.e. it gets the timestamp
corresponding to the unit of work or the previous one.
∀ i |(event(i) = Ru(l) ∧ ∃ j | event(j) = Wu(l)) ⇒ ts(i) ∈
{ts(u), prev(ts(u))}.

3. Reads in a unit of work u that does not contain writes, get the
same timestamp.
∀ i, j | (event(i) = Ru(l) ∧ event(j) = Ru(l′) ∧
6 ∃ k | event(k) = Wu(l))⇒ ts(i) = ts(j) = ts(u).

The proof for Lemma 2 can be foundin Appendix B.

Finally, we show that for an execution that is not in accordance
with any of the interleavingscenariosof Definition 1, itsprojection
oneach atomic set is serializable, which wedefineprecisely below.
We can think of a unit of work as being a single-threaded transac-
tion that always commits, and this allows us to use concepts from
serializabilit y theory [8]. Given indices i and i′ such that i < i′, the
pair (event(i),event(i′)) isaconflicting pair of events, if they areon
the same memory location, and one of them isa write. We say that
two executions are equivalent if they consist of the same units of
work and the same events, and have the same pairs of conflicting
events. An execution is serial if for every two units of work u and
u′ that appear in it, either all events in u happen before all events
in u′, or viceversa. We say that an execution is serializable if it i s
equivalent to an execution that is serial.

The conflict graph of an execution is a directed graph, with
nodes consisting of units of work. There is an edge between units
of work u and u′, if u and u′ have events e and e′, respectively,
such that (e,e′) is a conflicting pair. The Serializabilit y Theorem
[8] states that an execution is serializable, if and only if its conflict
graph isacyclic. Wewill use this fact to prove Theorem 1 below.

Theorem 1. Serializabili ty If the execution is not in accordance
with any of the interleavingscenariosof Definition 1, itsprojection
oneach atomic set in atomicSets(E) is serializable.

Proof. Assume that the execution is not in accordance with any
of the interleaving scenarios of Definition 1, and that there exists
an atomic set L in atomicSets, such that the projection of the
execution on L is not serializable. We have that the projected
execution is also not in accordancewith the interleaving scenarios
of Definition 1. By the Serializabilit y Theorem [8], the conflict
graph for the projected execution has a cycle: u1 → u2 → · · · →
un → u1. Note that for any pair u and u′ in this cycle, it cannot
be the case that thread(u) = thread(u′), because otherwise one of
them would benested insidetheother, contradictingObservation 1.
Consider two consecutiveunitsof work u andu′ in thiscycle. Let i
be the index of an event of u that conflicts with an event of u′ with
index j (i < j). We show by cases that ts(u) ≤ ts(u′):

1. event(i) = Wu(l) and event(j) = Wu′(l). By Lemma 1, ts(i)
< ts(j). Since ts(i) = ts(u) and ts(j) = ts(u′), we have ts(u)
< ts(u′).

2. event(i) = Wu(l) and event(j) = Ru′(l). We have ts(i) ≤
ts(j). By Lemma 2, Part 2 and 3, ts(j) is either equal to ts(u′)
or prev(ts(u′)). Also ts(i) = ts(u). Therefore we have either
ts(u) ≤ ts(u′), or ts(u) ≤ prev(ts(u′)). Note that in the latter
case ts(u) ≤ ts(u′), by the definition of prev.

3. event(i) = Ru(l) and event(j) = Wu′(l). We show by contra-
diction that ts(i) < ts(j). Assume first that ts(i) = ts(j). Then
there must have been a k < i such that event(k) = Wu′(l).
So temp(u′, i, l) is true. By Lemma 2, Part 1, we know that no
event reads a location marked as temporary, so this is a con-
tradiction and ts(i) 6= ts(j). Assume now that ts(i) > ts(j). In
this case, there exists a k < i, such that event(k) = Wu′′(l)
for some u′′, which is the write responsible for the read at i.
We have k < j, and ts(k) > ts(j), which is a contradiction
by Lemma 1. Therefore ts(i) < ts(j). Moreover, by Lemma 2,
Part 2 and 3, ts(i) is either ts(u) or prev(ts(u)). Since ts(j)
= ts(u′), then we have either ts(u) < ts(u′), or prev(ts(u)) <
ts(u′). Note that in the latter case ts(u) ≤ ts(u′), by the defini-
tion of prev.

So in all three cases, ts(u) ≤ ts(u′). So for our cycle u1 →
u2 → · · · → un → u1, we have ts(u1) ≤ ts(u2) ≤ · · · ≤ ts(un)
≤ ts(u1). Therefore ts(u1) = · · · = ts(un). We know that the
conflictingeventsof u1 throughun must contain at least two writes

8

Construct Usage

atomic(s) fields that have a consistency property or
fields whose intermediate states should not bevisible

unitfor parameter that must bemanipulated atomically

atomic classthat needs to be thread-safe

owned(s) similar to atomic(s) but with one level of indirection
throughfield dereference

Figure 12. Summary of language constructs

from different units of work. This is the case because interleaving
scenarios 2 and 3 do not happen in the execution, due of our initial
assumption. Thus by the definition of ts(u), the fact that ts(u1) =
· · · = ts(un) is a contradiction. Therefore such a cycle does not
exist and the projection of the execution onL is serializable.

4. Implementation
This section presents an overview of the language constructs and
their implementation for Java.

4.1 Overview of Language Constructs

In our approach, each classis responsible for its own synchroniza-
tion by declaring one or more atomic sets. An atomic set decla-
ration in a classmeans that each instanceof that classhas its own
separate atomic set. These declarations are inherited via subclass-
ing, and subclasses may extend existing sets and/or introducetheir
own. The public and protected methods of a classare assumed to
be units of work for its atomic sets, meaning that they preserve
consistency when executed sequentially. We assume that each ac-
cessto a location in an atomic set isdone within a unit of work for
that atomic set3. If a unit of work accesses the elements of more
than one atomic set in the same class, then it is guaranteed that no
interleavings will occur in which other threads accessany data in
theunion of thesesets(thoughinterleavingswith other threads that
only access unrelated data are allowed). The unitfor construct
enables a client of a classto specify that a parameter needs to be
manipulated atomically for the duration of its scope. If amethodis
already a unit of work for an atomic set S, then a unitfor decla-
ration on parameter p effectively makes the methoda unit of work
for the union of the set S and the atomic sets of p.

The owned(s) construct is similar to atomic(set) but pro-
vides one level of indirection. It guarantees that the atomic set s
of the object pointed to by a field is included in the atomic set of
the field. This mechanism allows transitively defined sets, and en-
ables fine-grained concurrent access to recursive data structures.
For example, the representation of a linked list may be included
in an atomic set without also including the objects contained in
the list. As part of future work, we will provide two variants of
owned for arrays, one which includes the array itself, and the other
which additionally includes the elements. Finally, a utilit y mecha-
nism, theatomic classconstruct, helpsmakinga classthread-safe,
by declaring that all it sfieldsare in asingle atomic set. Thisavoids
the need for synchronization wrappers in Java. Figure 12 summa-
rizes the language constructs.

4.2 Synchronization Inference

Wewill now discussan approach for generatingcodewith synchro-
nizationthat guarantees that the consistency propertiesdeclared us-
ing atomic set constructs are respected. In other words, that the

3 This assumption means that our system expects client-side field accesses
to be donevia getter/setter methods.

In(v) ← {Out(vi)| v → vi ∈ EG∨
(∃vi = v.f ∧ ∃s owned(s) f)}

Out(v) ← In(v) ∪ reads(v) ∪ writes(v)
reads(v) ← {read(s) |∃x = v.f ∈ n ∧ f ∈ s}
writes(v) ← {write(s) |∃v.f = x ∈ n ∧ f ∈ s}

Figure 13. Dataflow equations for determining atomic sets ac-
cessed from pointers.

problematic interleaving scenarios do not occur. First, we define
a dataflow analysis over a program’s call graph that infers which
locks need to be held for each unit of work. Then, we discusshow
that informationcan be used to insert synchronization constructs.

Determining Atomic-Set Usage. The atomic sets that may be ac-
cessed bya unit of work can be determined by examining the code
in themethodthat denotes theunit of work and in all methods tran-
sitively called by that method. In this set of methods, all field ac-
cesses are directly evident4. The containment of fields in atomic
sets is declared explicitl y, so that computing the atomic sets ac-
cessed byeach unit of work is straightforward. The analysiscan be
formulated as a standard dataflow problem using Kildall ’s graph-
based dataflow framework [26]. Recall that this framework asso-
ciates sets In(n) andOut(n) with each noden and definesthevalue
In(n) to betheunion of valuesof all Out(x) wherethegraph hasan
edge from x to n. Node transfer functions define Out(n) in terms
of In(n). Weformulate astandard bit-vector problem, in which the
bitsareread(s) andwrite(s) for each atomic set s in theprogram.

We define the dataflow problem across a standard dataflow
graphG =< NG, EG > that captures the dataflow among pointer
values in the program. There is an In and an Out set for each value
in NG. The edges in our problem consist of: (i) theinverseof edges
in EG and (ii) edges derived from reads of owned fields. The latter
edges ensure that accesses to objects that are owned are treated
as accesses of the owner set.The dataflow equations are shown in
Figure 13, where the notation f ∈ s is used to denote the fact that
field f is declared to be in atomic set s, and statement ∈ n to
mean that astatement occurs in themethodassociated with noden.
Theresult of the analysis is, for each pointer valuev in theprogram,
a set Out(v) of all atomic sets accessed from v and from any v′ to
which objects might transitively flow from v.

Adding Synchronization. We associate alock with each atomic
set. For each method m, we acquire locks for all atomic sets that
m may access according to the above analysis and for which m
is a unit of work5. This includes atomic sets that are accessed by
methodsm′ transitively called bym aswell asatomic setsaccessed
from fields transitively owned by elements in atomic sets accessed
by m. Note that atomic sets accessed transitively from m may
include atomic setsdeclared in subclasses of the classthat declares
m.

Various kinds of locks can be used for synchronization. The
most conservative strategy is to use exclusion, which prevents all
problematic interleaving scenarios. We initially implemented this
strategy using Java’s synchronized blocks. However, our prob-
lematic interleaving scenarios enable more aggressive implemen-
tations. In particular, we implemented the use of reader-writer
locks [31] in which multiple readers are permitted concurrent ac-
cess, but where writers must have exclusive access. Since all sce-
narios of Figure9 involve at least one writer, this scheme isclearly

4 Weignore the issueof fieldsaccessed viamechanisms such as Java reflec-
tion. In such cases, we would need to use a conservative approximation of
what fields might be accessed.
5 We assume some abilit y to atomically acquire multiple locks, which is
straightforward for locks that support POSIX-style trylock.

9

correct. Potentially, we could analyzeunitsof work for occurrences
of problematic interleavingscenariosand generate customized syn-
chronization that prohibits possible bad interactions.

Assumptions like having call graphs or global dataflow graphs
make this implementation most suitable for whole-program com-
pilation where relatively precise graphs can be constructed. How-
ever, it i s possible to use approximations of unknown portions of
the graph when the whole program is not available.

Deadlock When attempting to acquire locks for all the atomic
sets that a methodaccesses, our approach consists of trying to ac-
quirethem all , andreleasethem all i f at least oneisunavailable, and
then trying again. This mitigates deadlock to some extent. Dead-
lock may still occur in the generated code if there are (transitive)
cyclical dependences between thesetsof locksneeded bytwo units
of work. This can be detected throughstatic analysis. Future work
includes buildingsuch an analysis to warn the programmer.

4.3 Experimental Results

We have implemented a prototype for synchronization inference
using the Eclipse refactoring framework [6]. The inference engine
isbased onDomo [16], an analysis infrastructuredeveloped at IBM
Research.

Our language constructs are sufficient to correctly addsynchro-
nization to a significant subset of the the Java Collections Frame-
work6. Figure 14 shows, for several classes in that framework, the
number of original synchronized blocks, the number of atomic
sets needed, the number of owned fields, and the number of meth-
odsfor which unitfor wasneeded. All experiments took lessthan
one minute on a 1.7GHz Pentium III with 768MB of memory. The
first four lines refer to classes such as Vector which had exist-
ingsynchronization. For each such class, wemanually removed all
synchronization blocks, and then added a single atomic set. There
were5 methods in Vector that needed theunitfor construct, and
most of these correspondto published high-level data racesthat are
easily avoided using our constructs. Observethat our approach gen-
erally requires far fewer annotations than the traditional approach.
For example, Vector requiresonly 1 atomic set, 1 owned field, and
5 unitfor constructs instead of the original 37 synchronized
blocks.

The rest of the benchmarks are classes that did not have
synchronization. As the figure indicates, very few annotations
are needed to make each of them thread-safe. This is to be
contrasted with Java’s synchronization wrappers, such as e.g.
SynchronizedSet, which wrap each method of the base class
in a synchronization block. These wrappers are long and error-
prone classes, sincethere isan explicit lock that must beheld at the
right places. With our constructs, synchronization wrappers are no
longer needed.

5. Related Work
Most static [15, 28] and dynamic racedetectors [30, 33], aswell as
typesystems [9, 19] and languages [5] that guaranteeracefreedom
are based onthe common definition of data races and therefore do
not handle high-level races. Type systems use redundant annota-
tions to verify that data races do not occur. In contrast, our system
infers the appropriate synchronization to prevent high-level aswell
as low-level data races, and does not require the programmer to
keep track of locks explicitl y.

An extension to ESC/Java detects a class of high-level data
races, called “stale-value errors” [10, 4]. The value of a local

6 Somelimitations in our current implementation (most notably in handling
inner classes) prevent us for performing the experiment on the entire Col-
lections Framework.

or ig. added data-centr ic constructs
Benchmark sync. sets owned unitfors

Vector(unitfor Collection)
addAll (unitfor Collection)

Vector 37 1 1 addAll (int,unitfor Collection)
removeAll (unitfor Collection)
retainAll (unitfor Collection)

Hashtable 17 1 3 void putAll (unitfor Map)
Observable 8 1 1
Random 3 1 0

ArrayList(unitfor Collection)
ArrayList n/a 1 1 addAll (unitfor Collection)

addAll (int,unitfor Collection)
LinkedList n/a 1 3 addAll (int,unitfor Collection)
SubList n/a 1 0 addAll (int,unitfor Collection)
HashSet n/a 1 0 HashSet(unitfor Collection)
TreeSet n/a 1 1 addAll (unitfor Collection)
HashMap n/a 1 3
LinkedHashMap n/a 1 3
IdentityHashMap n/a 1 1 putAll (unitfor Map)

equals(unitfor Object)
TreeMap n/a 1 4 putAll (unitfor Map)

intersects(unitfor BitSet)
equals(unitfor Object)

BitSet n/a 1 0 and (unitfor BitSet)
or (unitfor BitSet)
xor (unitfor BitSet)
andNot (unitfor BitSet)

Figure 14. For each benchmark the table shows the number of
original synchronization blocks, the number of atomic sets added,
the number of owned fields and the methods requiring the unitfor
construct. The notation n/a is used for classes that had no original
synchronization because they werenot intended for concurrent use.

variable is stale if it i s used beyond the criti cal section in which
it was defined. Scenario 1 of our definition of data races addresses
stale-value errors. View consistency [3] is a correctness criterion
that ensures that multiple reads in a thread observe a consistent
state. A view is defined to be the set of variables that a lock
protects. Two threads are view consistent if all the views in the
execution of one, intersected with the maximal view of the other,
form a chain under set inclusion. View consistency can be checked
dynamically [3] or statically [34]. Scenarios 8 through 11 of our
definition of data races addressthe issue of multiple reads getting
an inconsistent state. In our approach, however, the programmer
indicates explicitl y what sets of locations form an atomic set, so
this information does not need to be extracted from the locking
structure of the code, which may not be correct.

Atomicity [21] is a non-interference property used to reason
about multi -threaded programs. An atomic sectioncan be assumed
to execute serially without interleaved steps from other threads. A
number of tools have been developed for checking atomicity vio-
lations, including type systems [21, 22, 18, 32]; dynamic analysis
such as the Atomizer [20] which combines the theory of reduction
[29] and ideas from dynamic racedetectors; and model checking
techniques [25, 17]. These approaches require atomicity annota-
tions in addition to synchronized blocks from the programmer.
In contrast, we have aimed at minimizing the amount of anno-
tation required to specify synchronization constraints. Units of
work are different from atomic code blocks in that they are re-
lated to the sequential, rather than concurrent, behavior of code
and preserve the consistency of data when executed sequentially.
They correspond naturally to method bodies in a well -designed
object-oriented program. They are also data-centric because they
are declared on specific atomic sets, which sometimes allows
more concurrency than an atomic code block (see, e.g., method
longDistanceTransfer() in Example 3).

Our definition of data races differs from the theory of reduction
[20, 18], which provides a single pattern for atomicity, that is a

10

sequence of right movers, followed by at most one atomic action,
followed byasequenceof left movers. Lock acquires (releases) are
considered right (left) movers. Consider the following fragment of
code, wherex isa shared variable andt is local:

synchronized(lock){ t = x; }

t++;

synchronized(lock){ x = t; }

This fragment of code isnon-atomic, andcan be fixed as follows:

synchronized(lock) {
synchronized(lock){ t = x; }
t++;

synchronized(lock){ x = t; }
}

Even thoughthis fragment is now atomic, the theory of reduction
would reject it, since it consists of a right mover, followed by two
atomics, followed by a left mover. To overcome shortcomings of
the underlying theory, the Atomizer tool [20] performs additional
analysis to determine reentrant locks, as well as protected locks.
The type system of [18] remedies this problem by providing more
precision via conditional atomicities. In contrast, our definition of
data races is a complete set of non-serializable patterns, and is not
based on locking structures. A tool based on our definition would
not consider the above fixed code asproblematic, because it would
observe accesses to data rather than locks.

Language-level atomic sections [11] and software transactional
memory [2, 24, 23, 36] are methods for removing the burden on
the programmer in determining which locks to hold, by allowing
codeblocksto bemarked asatomic. These code-centric approaches
still requirenon-local reasoning from theprogrammer as ill ustrated
in Section 2. A correct implementation of these methods needs to
guaranteethat there exists aglobal serial order of execution for the
atomic sections. This is in general hard to implement efficiently in
an imperative language, andrequires specialized hardware [2]. The
requirement for our units of work is that there exists a serial order
only with respect to each atomic set, and there may not be aglobal
serial order. By weakening the guarantee, while still maintaining
correctness (preservation of data consistency), we have amethod
that ismuch easier to implement.

Our problematic interleavingscenariosaresimilar to thoseused
by Wang and Stoller [35] to provide run-time analyses for atomic-
ity. Our scenarios are simpler, and more importantly they are com-
plete, meaning that an execution not displaying them is guaranteed
to have aproperty related to serializabilit y.

The scenarios in our definition of data races are analogous to
anomalies used to characterizelevels of isolation in databases, and
defined in the ANSI SQL standard [37, 7]. Commercial databases
allow programmers to trade off consistency for performanceby of-
fering different levels of isolation. Each level is characterized by
the set of anomalies it does not allow. The highest level of iso-
lation is serializabilit y. Our problematic interleaving scenarios are
similar to the schedules used to express the database anomalies.
Some of these are not directly applicable in the context of concur-
rent programming, because they explicitl y talk about a transaction
committing or aborting.

Atomic sets share characteristics with data groups [27]. Data
groups help in the specification of methods whose overrides may
modify additional state introduced in subclasses. A methodthat is
allowed to modify adatagroup, isallowed to modify itsdownward
closure, consisting of all member variables added in subclasses.
Atomic setsaresimilar in that subclassesmay add locationsto aset
declared in a parent class. They differ in that, unlike data groups,
they are not hierarchical and non-overlapping.

The Serializabilit y Violation Detector (SVD) [38] is a tool that
dynamically infers atomic sections (called Computation Units or

CUs), based on data and control dependences, and then detects if
theseCUsarenon-serializable by checkingarulebased onstrict 2-
PhaseLocking. Oneof itskey features isthat it doesnot rely onthe
possibly buggylocking structure of the program to infer CUs. We
share asimilar viewpoint by having a definition of data races that
doesnot rely on locks. SVD produces both falsepositivesandfalse
negatives, depending onthe precision of the inferred CUs. It does
not consider some of our interleaving scenarios to be problematic.
This is always the case for Scenario 2, and some of the time for
other scenarios because accesses can end upin different CUswhen
there isno data or control dependencebetween them.

Deng et al [14] present a methodthat allows the user to specify
synchronization patterns that are used to synthesize synchronized
code. The generated code can then be verified using the Bandera
toolset. The user must specify explicitl y the regions of code that
need synchronization, but we do not require this. Unlike them,
we only focus on one kind of synchronization pattern: exclusion
between two regions that accessthe same atomic set.

TheActor model [1] definesobjects that areupdated atomically
by individual methods. The Actor model shares our focus on using
objects to manage consistency, but there are some crucial differ-
ences. First, it hasamorerestrictivenotion of state changes, with a
singlebecome operation. Second, it i s asynchronous, and does not
have the notion of nesting of units of work. Third, this model does
not support our notion of multiple consistency properties within a
single object. Fourth, these languages lack a compositional struc-
ture like our owned. Fifth, these languages do not support a con-
struct such as unitfor for customizing consistency. Some Actor-
based languages address some of these issues—Concurrent Aggre-
gates [13] added synchronous calls and nesting, and ICC++ [12]
had a limited form of composition with integral.

6. Conclusions
We presented a new definition of a data race as a collection of 11
problematic interleavingscenarios, which subsumes the traditional
notion of a data race as well as high-level data races such as stale-
value errors and inconsistent views. We have proved it complete
by demonstrating that any execution that does not exhibit any of
the 11 scenarios is equivalent to a serial execution, when projected
onto each atomic set.

We have proposed a small number of language constructs that
allow programmers to specify atomic sets, andasimplestatic anal-
ysis to determine the places in the code where synchronization is
needed in order to avoid dataracesaccording to our new definition.
Our data-centric approach isa declarative andsuccinct way for the
programmer to specify synchronization constraints, in a way that
maps naturally to the encapsulation provided by objects. It is less
error-prone because the constructs are easy to use andthe synchro-
nization is inserted automatically.

The experiments indicate that these constructs sufficefor much
of the Java Collections Framework, and they also show greatly
reduced annotations compared to synchronized blocks.

Acknowledgments
We thank David Bacon, Rastislav Bodik, Stephen Fink, Robert
O’Callahan, andVivek Sarkar for very useful discussions.

References
[1] Gul Agha. An overview of actor languages. In Proceedingsof the1986

SIGPLAN workshop onObject-oriented programming, pages 58–67,
New York, NY, USA, 1986.

[2] C. S. Ananian and M. Rinard. Language-level transactions. In High-
PerformanceEmbedded Computing (HPEC), 2004.

11

[3] C. Artho, K. Havelund, and A. Biere. High-level data races. In Proc.
NDDL/VVEIS’03, pages 82–93, 2003.

[4] C. Artho, K. Havelund, and A. Biere. Using block-local atomicity to
detect stale-value concurrency errors. In ATVA’04, pages 150–164,
2004.

[5] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: A dialect of Java
without data races. In Proc. OOPSLA’00, pages 382–400, 2000.

[6] D. Bäumer, E. Gamma, and Adam Kieżun. Integrating refactoring
support into a Java development tool. In Object-Oriented Program-
ming, Systems, Languages, andApplications (OOPSLA) Companion,
October 2001.

[7] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil , andP. O’Neil .
A critique of ANSI SQL isolation levels. In Proc. ACM SIGMOD
Conf., pages 1–10, 1995.

[8] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control
andRecovery in Database Systems. Addison-Wesley, 1987.

[9] C. Boyapati andM. Rinard. A parameterized typesystem for race-free
Java programs. In Proc. OOPSLA’01, October 2001.

[10] M. Burrows and K. R. M. Leino. Finding stale-value errors in
concurrent programs. Technical Report 2002-004, SRC, May 2002.

[11] Phili ppe Charles, Christopher Donawa, Kemal Ebcioglu, Christian
Grothoff , Allan Kielstra, Vijay Saraswat, Vivek Sarkar, and Christoph
von Praun. X10: An object-oriented approach to non-uniform cluster
computing. In Proc. OOPSLA’05, San Diego, CA, 2005. To appear.

[12] A. Chien, U. Reddy, J. Plevyak, and J. Dolby. ICC++ — A C++
dialect for high performance parallel computing. Lecture Notes in
Computer Science, 1049:76–95, 1996.

[13] Andrew A. Chien and Willi am J. Dally. Concurrent aggregates (ca).
In Proc. PPoPP’90, pages 187–196, 1990.

[14] X. Deng, M. Dwyer, J. Hatcli ff , and M. Mizuno. Invariant-
based specification, synthesis, and verification of synchronization
in concurrent programs. In Proc. ICSE’02, May 2002.

[15] D. Engler and K. Ashcraft. Racerx: Effective, static detection of race
conditions and deadlocks. In Proc. SOSP’03, pages 237–252, October
2003.

[16] S. Fink, J. Dolby, , and L. Colby. Semi-automatic J2EE transaction
configuration. Technical Report RC23326, IBM T.J. Watson Research
Center, March 2004.

[17] C. Flanagan. Verifying commit-atomicity using model checking. In
Proc. SPIN’04, pages 252–266, 2004.

[18] C. Flanagan, S. Freund, and M. Lifshin. Type inference for atomicity.
In Proc. TLDI’ 05, pages 47–58, 2005.

[19] C. Flanagan and S. N. Freund. Type-based racedetection for Java. In
Proc. PLDI’ 00, pages 219–232, 2000.

[20] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity
checker for multithreaded programs. In Proc. POPL’04, pages 256–
267, 2004.

[21] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In
Proc. PLDI’ 03, pages 338–349, 2003.

[22] C. Flanagan and S. Qadeer. Types for atomicity. In Proc. TLDI’ 03,
pages 1–12, 2003.

[23] T. HarrisandK. Fraser. Languagesupport for lightweight transactions.
In Proc. OOPSLA’03, pages 388–402, 2003.

[24] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable
memory transactions. In Proc. PPoPP’05, 2005.

[25] J. Hatcli ff , Robby, and M. B. Dwyer. Verifying atomicity specifica-
tions for concurrent object-oriented software using model checking.
In Proc. VMCAI’ 04, pages 175–190, 2004.

[26] Gary A. Kildall . A unified approach to global program optimization.
In Proc. POPL’73, pages 194–206, 1973.

[27] K. R. M. Leino. Datagroups: Specifying themodification of extended
state. In Proc. OOPSLA’98, pages 144–153, 1998.

[28] K. R. M. Leino, J. B. Saxe, and R. Stata. Checking Javaprograms via
guarded commands. Technical Report 002, Compaq SRC, 1999.

[29] R. J. Lipton. Reduction: A method of proving properties of parallel
programs. CACM, 18(12), 1975.

[30] R. O’Callahan and J.-D. Choi. Hybrid dynamic data racedetection.
In Proc. PPoPP’03, pages 167–178, 2003.

[31] Java Community Process. JSR 166: Concurrency utiliti es. Seehttp:
//gee.cs.oswego.edu/dl/concurrency-interest/index.
html., September 2004.

[32] A. Sasturkar, R. Agarwal, L. Wang, and S. Stoller. Automated type-
based analysis of data races and atomicity. In Proc. PPoPP’05, 2005.

[33] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: a dynamic data racedetector for multi -threaded programs. In
Proc. SOSP’97, pages 27–37, October 1997.

[34] C. von Praun and T. Gross. Static detection of atomicity violations in
object-oriented programs. Journal of Object Technology, 3(2), 2004.

[35] Liqiang Wang and Scott D. Stoller. Runtime analysis for atomicity
for multi -threaded programs. Technical Report DAR-04-14, State
University of New York At Stony Brook, May 2005.

[36] A. Welc, S. Jagannathan, and A. Hosking. Transactional monitors for
concurrent objects. In Proc. ECOOP’04, pages 519–542, 2004.

[37] ANSI X3.135-1992. In American National Standard for Information
Systems – Database Language – SQL, November 1992.

[38] M. Xu, R. Bodik, and M. Hill . A serializabilit y violation detector for
shared-memory server programs. In Proc. PLDI’ 05, pages1–14, 2005.

A. Proof of Lemma 1
Assume that the projected execution is not in accordancewith any
of the problematic interleaving scenarios of Definition 1. Assume
that there exist i and j such that i < j, event(i) = Wu(l), and
event(j) = Wu′(l) for some l andu 6= u′, but ts(i) ≥ ts(j). Since
u 6= u′, then ts(i) and ts(j) could not be equal. So wehave ts(i) >
ts(j).

Since ts(i) = ts(u), and ts(j) = ts(u′), it must be that the first
write of u occurs after the first write of u′. Let i′ = firstWrite(u)
and j′ = firstWrite(u′). Then we have that j′ < i′ ≤ i < j.

Case1. event(j′) = Wu′(l). It must bethat thread(u) 6= thread(u′),
because otherwiseu andu′ would be nested units of work and this
would contradict Observation 1 (two non-nested units of work of
thesamethread do not haveinterleaved events). Then theprojected
execution is in accordancewith the interleaving scenario 5 of Def-
inition 1, which isa contradiction.

j′ i j
Wu′(l) Wu(l) Wu′(l) (scenario 5)

Case 2. event(j′) = Wu′(l′), l′ 6= l. Since unit of work u also
writes l′, by Assumption 1, the index k of such a write is greater
than i′, since i′ is the index of the first write of u. We have that
thread(u) 6= thread(u′) for thesamereasonasabove. Thereforethe
projected execution is in accordance with one of the interleaving
scenarios 6 or 7, which is a contradiction.

j′ k i j
Wu′(l′) Wu(l′) Wu(l) Wu′(l) (scenario 6)

j′ i k j

Wu′(l′) Wu(l) Wu(l′) Wu′(l) (scenario 6)
j′ i j k

Wu′(l′) Wu(l) Wu′(l) Wu(l′) (scenario 7)

Therefore ts(i) < ts(j) as required.

B. Proof of Lemma 2
Table 1 ill ustrates the different cases appearing in this proof.

Part 1. Assume that the projected execution is not in accordance
with the interleaving scenarios of Definition 1. Consider an index
i such that event(i) = Ru(l), and temp(u′, i, l) = true for some
u′ 6= u such that thread(u) 6= thread(u′). Then there must be aj
and k, j < i < k, such that event(j) = event(k) = Wu′(l). But
the projected execution would be in accordance with interleaving

12

scenario 3 (Table 1), which is a contradiction. So temp(u′, i, l) =
false.

Part 2. Assume that the projected execution is not in accordance
with the interleaving scenarios of Definition 1. Consider a unit of
work u that contains at least a read and a write event. Assume
that there is an i, such that event(i) = Ru(l), and ts(i) 6∈ {ts(u),
prev(ts(u))}. Let k, k < i, betheindex of thewriteresponsible for
the value of ts(i). So event(k) = Wu′(l) for some u′.

Case 1. ts(i) > ts(u). Since unit of work u must also write l by
Assumption 1, let j the index of this write, event(j) = Wu(l).
Note that we cannot have k < j < i, since the write at index k
is responsible for the value of ts(i).

Subcase1a. j < k < i

Wu(l) Wu′(l) Ru(l)

We have that thread(u) 6= thread(u′), because otherwise u and u′

would have to be nested units of work, and this would contradict
Observation 1. Then the projected execution is in accordancewith
interleavingscenario 4 (Table 1), which is a contradiction.

Subcase1b. k < i < j

Wu′(l) Ru(l) Wu(l)

We have that ts(i) = ts(k) > ts(u) = ts(j), which contradicts
Lemma 1.

Case2. ts(i) < prev(ts(u)). Theremust be aj such that event(j) =
Wu′′(l) by Assumption 1, and ts(j) = prev(ts(u)). Since ts(k) =
ts(i) < prev(ts(u)), then it cannot be the case that j < k, because
otherwise that would contradict Lemma 1. Therefore we have:

k < i < j

Wu′(l) Ru(l) Wu′′(l)

There must be and index i′ such that event(i′) = Wu(l) by As-
sumption 1. Wehavethat i′ > j, becauseotherwisethat would con-
tradict Lemma 1. We have that thread(u) 6= thread(u′′), because
otherwise that would contradict Observation 1. Thus the execu-
tion is in accordancewith the interleavingscenario: Ru(l) Wu′′(l)
Wu(l) (Table 1), which is scenario 1 from Definition 1. This is a
contradiction.
Therefore ts(i) ∈ {ts(u), prev(ts(u))}.

Part 3. Assume that the projected execution is not in accordance
with any of the interleavingscenarios of Definition 1. Assume that
there existsaunit of work u, and i < j, such that event(i) = Ru(l),
event(j) = Ru(l′), and ts(i) 6= ts(j). Suppose that theunit of work
u does not contain any writes. Let i′ and j′ be the indicesof writes
responsible for the values of ts(i) and ts(j). We have that i′ < i
and j′ < j, and event(i′) = Wu′(l), event(j′) = Wu′′(l′).

Case 1. l = l′. Then it must be that:

i′ < i < j′ < j

Wu′(l) Ru(l) Wu′′(l) Ru(l)

We have thread(u) 6= thread(u′′) because otherwise that would
contradict Observation 1. But then the execution is in accordance
with interleaving scenario 2 of Definition 1 (Table 1), which is a
contradiction.

Case 2. l 6= l′ and ts(i) < ts(j).

Case 2a. i′ < i < j′ < j

Wu′(l) Ru(l) Wu′′(l′) Ru(l′)

Theunit of work u′′ must write l aswell by Assumption 1. Let k be
the index of such awrite, event(k) = Wu′′(l). It cannot bethe case
that k < i′, because that would contradict Lemma 1. So k > i,
since the write at i′ is the one responsible for the value at i. We
have that thread(u) 6= thread(u′), because otherwise that would
contradict Observation 1. Thus the execution is in accordancewith
one the interleaving scenarios 9 or 10 (Table 1), which is a contra-
diction.

Case 2b.
i′ < j′ < i < j

Wu′(l) Wu′′ (l′) Ru(l) Ru(l′)

or
j′ < i′ < i < j

Wu′′(l′) Wu′(l) Ru(l) Ru(l′)

Let k be an index such that event(k) = Wu′′(l). Since ts(i′) =
ts(i) < ts(j) = ts(j′) = ts(k), then it must be that k > i′, because
otherwise that would contradict Lemma1. We also have that k > i
because i′ is the index responsible for the value read at i. We
have that thread(u) 6= thread(u′′), because otherwise that would
contradict Observation 1. Therefore the execution is in accordance
with one of interleaving scenarios 8 and 11(Table 1), which is a
contradiction.

Case 3. l 6= l′ and ts(i) > ts(j). The unit of work u′ must write
l′ as well by Assumption 1. Let k be the index of such a write,
event(k) = Wu′(l′). Since ts(u′) = ts(i) > ts(j) = ts(u′′), then
it must be that k > j′, because otherwise that would contradict
Lemma1. Sincej′ is the index of thewriteresponsible for the read
at j, then it is also the case that k > j. We have that thread(u) 6=
thread(u′), becauseotherwisethat would contradict Observation 1.
Therefore the execution is in accordancewith the interleaving sce-
nario 8 (Table 1), which isa contradiction.
Therefore ts(i) = ts(j).

j i k

W
u
′ (l) Ru(l) W

u
′ (l) (scenario 3)

Part 1

j k i

Wu(l) W
u
′ (l) Ru(l) (scenario 4)

Part 2 - Subcase1a

i j i′

Ru(l) W
u
′′ (l) Wu(l) (scenario 1)

Part 2 - Case2

i j′ j

Ru(l) W
u
′′ (l) Ru(l) (scenario 2)

Part 3 - Case1

i k j′ j

Ru(l) W
u
′′ (l) W

u
′′ (l′) Ru(l′) (scenario 9)

i j′ k j

Ru(l) W
u
′′ (l′) W

u
′′ (l) Ru(l′) (scenario 9)

i j′ j k

Ru(l) W
u
′′ (l′) Ru(l′) W

u
′′ (l) (scenario 10)

Part 3 - Case2a

j′ i k j

W
u
′′ (l′) Ru(l) W

u
′′ (l) Ru(l′) (scenario 11)

j′ i j k

W
u
′′ (l′) Ru(l) Ru(l′) W

u
′′ (l) (scenario 8)

Part 3 - Case2b

i′ i j k

W
u
′ (l) Ru(l) Ru(l′) W

u
′ (l′) (scenario 8)

Part 3 - Case3
Table 1 - Proof of Lemma2

