Assciating Synchronization Constraintswith Datain an
Objed-Oriented Language*

Mandana Vaari

Frank Tip

Julian Dolby

IBM T.J. Watson Reseach Center, PO. Box 704 Yorktown Heights, NY 10598 USA
{mvaziri,ftip,dolby } @us.ibm.com

Abstract

Concurrency-related bugs may happen when multiple threads ac
cess $ared data and interleave in ways that do nd correspondto
any sequential exeaution. Their absence is not guaranteed by the
traditional nation o “data race”freedom. We present anew defini-
tion o dataracesintermsof 11 problematic interleaving scenarios,
and prove that it i s complete by showing that any exeaution nd ex-
hibiting these scenarios is sriaizable for a chasen set of locaions.
Our definition subsumes the traditional definition o a datarace &
well as high-level data races such as gale-value arors and incon
sistent views. We dso propose alanguage feaure cdl ed atomic sets
of locations, which lets programmers pedfy the exstence of con-
sistency properties between fieldsin ohjeds, withou spedfyingthe
properties themselves. We use static analysis to automatically infer
those points in the code where synchronization is needed to avoid
data races under our new definition. An important benefit of this
approach isthat, in general, far fewer anndations are required than
isthe case with existing approadhes auch as synchronized blocks or
atomic sedions. Our implementation successully inferred the go-
propriate synchronizationfor asignificant subset of Java's Standard
Colledions framework.

Categories and Subject Descriptors D.1.3 [Programning Tech-
niques]: Concurrent Programming-parallel programming, D.2.4
[Sdtware Engineaing]: Software/Program Verificaion-reliability;
F.1.3 [Logics And Meanings of Programs]: Spedfying and Verify-
ing and Reasoning abou Programs

General Terms Langueges, Theory

Keywords Concurrent Objed-Oriented Programming, DataRaces,
Seriali zability, Programming Model

1. Introduction

Writing corred concurrent programs is hard, becaise inconsistent
results may be computed when two threals access $ared data
concurrently. In particular, a data raceis sid to occur when two
threads concurrently access ®me data, where one of these ae
cesesisawrite, and where no synchronization exists between the

* Thiswork has been suppated in part by the Defense Advanced Reseach
Projeds Agency (DARPA) under contrac No. NBCH30390004

Permisson to make digital or hard copies of all or part of this work for personal or
clasgoom useis granted withou feeprovided that copies are not made or distributed
for profit or commercial advantage andthat copies bea this natice andthe full citation
onthe first page. To copy aherwise, to repubish, to post on servers or to redistribute
to lists, requires prior spedfic permissonandior afee

POPL '06 January 11-13 2006 Charleston, South Carolina, USA.

Copyright © 2006 ACM 1-59593027-2/06/0001 . . $5.00.

threads. Current techniques for preventing data races involve ob-
taining locks prior to any accessto the shared data using med-
anisms auch as Jva's synchronized blocks, or using language
constructs auch as atomic sedions [11] and transadional memory
[2, 24, 23] that ensure that a sequence of statements is exeauted
atomicdly.

One disadvantage of such code-centric gpproacdhes for avoiding
dataracesisthat it involves nonlocd reasoning: Shared data may
be accesed throughou the program and dataraces may occur if the
programmer forgets to oktain the gopropriate locks at any of these
points. A second poblem is that, even if every accessto shared
dataisproteded, datamay still end upin aninconsistent state. This
situation—sometimes referred to as “high-level dataraces’ [3] —
occaurs if a consistency property exists between multiple pieces of
shared data, and if the synchronization constructs do nd ensure
that this property is maintained at al times. Avoiding such high
level data races requires the same kind o nonlocd reasoning
as for ordinary data races, but is further complicaed by the fad
that multi ple locks may have to be aquired in a spedfic order. If
the programmer acddentally fails to obey this locking dscipline,
deadlock or inconsistent data may result.

This paper presents an dternative, data-centric approach for
avoiding bah high-level and low-level dataraces. In this approacd,
the programmer spedfiesthat a consistency property exists between
a given set of fields, but withou spedfying the property itself.
We will cdl such a set an atomic set of fields, indicating that the
elements of such a set must be upcated atomicdly. Accesss to
fieldsin an atomic set are asumed to take placein a unit of work,
which indicaes a logicd operation onshared data, and preserves
consistency when exeauted sequentially. In this paper, units of work
are aumed to coincide with method bodes. Choasing pations of
objed state as atomic sets and methods as units of work exploits
the encgpsul ation mecdhanism of objeds.

Given apair of fieldsthat occur in an atomic set, we have iden-
tified 11 problematic interleaving scenarios that capture the various
ways in which inconsistent data may occur when two threals up-
date these fields nonratomicaly. The problematic interleaving sce-
narios include traditional data races, stale-value arors[10], incon
sistent views of data[3], and several other forms of high-level data
races. We prove this list of problematic interlearzing scenarios to
be complete, in the sense that if an exeaution dces nat display any
of these scenarios, then its projedion onead atomic set is serial-
izable, i.e., equivalent to an exeaution in which the units of work
ocaur in aseria order.

We dso present an interprocedural static analysis that deter-
mines, for agiven atomic set of fields, the placesin the cde where
synchronization must be performed in order to ensure that there ae
no detaraces under our new definition. Thisisimplemented by in-
serting reader-writer locks from the java.util.concurrent li-
brary of Java 1.5 [31] at the gpropriate places. We implemented

class Customer {
String city;
int zipcode;
Date date;
Item item;

void updateAddress(String c, int z){
atomic { city = c; zipcode = z; }

}

void newPurchase(Date d, Item i){
atomic { date = d; item = i; }

}

class PreferredCustomer extends Customer {
void newStoreGift(Date d, Item i){
atomic { date = d; item = i; }
¥
J (@)

class Customer {

atomic(address) String city;
atomic(address) int zipcode;
atomic(purchase) Date date;
atomic(purchase) Item item;

void updateAddress(String c, int z){
city = c; zipcode = z;

void newPurchase(Date d, Item i){
date = d; item = i;

}

class PreferredCustomer extends Customer {

}

void newStoreGift(Date d, Item i){
date = d; item = i;

}
(b)

Figure 1. Customer example.

the analysis and condicted experiments with classes from the Java
Standard Colledions Framework. Our experiments indicae that
our data-centric goproach is aufficient to infer the corred synchro-
nizationin asignificant portion o the wlledions framework. Fur-
thermore, one of our constructs can effedively replace synchro-
nization wrappers auch as Collections.synchronizedList ().
The experiments indicae that the number of atomic location sets
is generaly far smaller than the number of synchronized blocks,
hence reducing the burden on the programmer and creaing fewer
oppatunitiesfor errors. In summary, this paper make the foll owing
contributions:

e A list of problematic interleaving scenarios that subsumes the
traditional nation o a data race & well as gale-vaue arors,
inconsistent views and aher high-level data races. We prove
thislist to be complete, in the sensethat if a program exeaution
does not exhibit these scenarios, then its projedion orto eadh
atomic set is sridizable.

e A set of data-centric language constructs that alow the pro-
grammer to express ynchronizaion constraints succinctly and
dedaratively.

e A static analysis that infers automaticdly where synchroniza
tion needs to be performed. This reli eves the programmer from
thenonlocd reasoning and cumbersomelocking dsciplinesas-
sociated with current code-centric gpproaches.

o Experiments on the Java Standard Colledion Framework that
ill ustrate the pradicdity of the work.

2. Motivating Examples

This ®dion gves me examples that ill ustrate the shortcomings
of the traditional, code-centric goproaches for avoiding data races.
At the same time, we will i ntroduce the languege cnstructs that
are part of the data-centric goproach we propacse.

2.1 Examplel: Customers

Figure 1(a) shows a dass Customer, which contains fields city
and zipcode that store parts of a austomer’s address anddate and
item that record the item and date of his last purchase. Methods
updateAddress () andnewPurchase() serveto upcite aistomer
information. PreferredCustomer is asuhclassof Customer that
models certain aspeds of a austomer loyalty program using a
methodnewStoreGift () that also updites date and item.

If methods such as updateAddress(), newPurchase(), and
newStoreGift () are exeauted concurrently by multiple threads,
care must be taken to ensure that no inconsistent results can arise.

For the purpases of this example, we will asaime that low-level
data races invaving any of the four fields are undesirable (e.g.,
we want to predude situations where one thread reads the value
of date while anather thread is updating date simultaneously). In
addition, we want to disallow high-level data races invalving the
related fields city and zipcode and invaving date and item.
For example, we want to disallow the situation where one thread
intends to read first city and then zipcode, but where aseocond
thread writes a new value into city before the first thread has
completed bah reads. In the example of Figure 1(a), atomic sec
tions are used to prevent these low-level and high-level dataraces'.
Conceptually, eath atomic sedionisexeauted withou interruptions
by ather threads. Atomic sedions can be implemented using locks
[11] or using transadional memory [2, 24, 23]. The use of atomic
sedions for preventing deta races has the foll owing drawbadks:

e |n general, the number of atomic sedions may be propartional
tothe number of accessesto shared fields. Inthe ebove example,
ead method contains an atomic sedion kecaise it accesses
shared data.

e There is a ladk of moduarity in the sense that the burden is
placal onthe programmer to remember that accesses to fields
in superclasses may have to be proteced.

Figure 1(b) shows the gproach we propacse, in which synchro-
nization constraints are asociated with data. Here, all the program-
mer needs to doisindicae that city and zipcode are part of an
atomic set cdled address, and that date and item are part of an
atomic set cdled purchase. In this framework, the compiler in-
fers where locks must be obtained so as to prevent low-level and
high-level data races. Observe that the number of annaations is
propationa to the number of fields, and that no additional work is
reguired in the presence of subclassng, thus reducing the anourt
of work and limiting oppatunities for programmer errors.

Informally, the semantics of atomic sets can be stated as fol-
lows. Asociated with ead atomic set A is a set of code blocks
that represent logicd operations on the set. We will refer to these
code blocks as the units of work for A, dencted by Units(A).
By default, the units of work associated with an atomic set de-
clared in class C consist of the methods of C and its aubclasses
(we will shortly discuss a mechanism for associating additional
units of work with a given atomic set). For a given atomic set A
and urt of work v € Units(A), the guarantee is that any pair

10ne oud aso use eplicit locking medanisms such as Jvas
synchronized blocks to prevent the low-level and high-level data races
in this example.

of accesses to fields in A that occur in u will be exeauted with-
out being interleaved by ancther thread that operates on fields
in A. For example, methods Customer.newPurchase() and
PreferredCustomer.newStoreGift() are units of work for
atomic set purchase. Therefore, it is guaranteed that the exe-
cution o these methods will nat be interleared, thus preventing
high-level data races. However, it is allowed for the exeadution
of either of these methods to be interleared with that of method
Customer.updateAddress (), becaise the latter does not operate
onthe same aomic set.

2.2 Example2: Vedor

The default units of work for a given atomic set are well -suited to
acommodate situations where some consistency property between
a set of fields must be maintained by the methods of the dassthat
dedaresthosefields. However, there ae situations where additi onal
synchronizaion on @rameters is needed.

Figure 2(a) shows a fragment of class java.util.Vector
from the Java Standard Colledions Framework. Spedficdly, the
figure shows the dedaration o a field elementData, which
refers to the aray that stores the vedor’'s contents, and a field
elementCount, which courts the number of array elements that
are aurrently in use. Also shown is a constructor for creding a
new Vector that is initialized to contain the dements of a given
colledion c. Wang and Stoller [35] reported a high-level datarace
that occurs in this code when this constructor is invoked with a
colledion o length k. The raceoccurs if a thread that exeautes
the aonstructor’s code is interrupted after exeauting the statement
elementCount = c.size() by ancther threal that is cdlingthe
removeAllElements() method onthe wlledion panted to by
c. Then, when the first thread resumes, and exeautes the statement
c.toArray(elementData), the resulting vedor will cortain &
elements that are null. This result is inconsistent with any seria
exeaution o the two threas.

Figure 2(b) shows how this high-level datarace ca be asoided
using ou new languege aonstructs. The fields elementCount and
elementData have been placal in an atomic set vec, and the
constructor has been designated as a unit of work for its parameter
c. Note that only the field elementData isin the &omic set and
nat the vedor. The unitfor construct used in this example is a
medhanism for spedfying client-side synchronization constraints,
and dedares that the scope of parameter ¢ is a unit of work for al
atomic sets of c. Hence the body d the constructor is not only a
unit of work for all the g&omic setsof this but aso for thase of c.

When a unit of work is dedared on multiple gomic sets, as
is the cae here, the aomic sets are combined to form a larger
atomic set for the duration o that unit of work. The guaranteeis
that accesses to any locaion within that enlarged set will not be
interleaved. Similarly, a method that accesses fields belongng to
multi ple aomic sets of the recever objed is a unit of work for the
union o these sets.

2.3 Example 3: Bank Acoounts

Figure 3 shows an example program containing clases Account
andBank. Account hasafield checking andmethods withdraw ()
and deposit () that manipulate this field. The checking field
has been placal in a singleton atomic set account to prevent
low-level data races invalving this field. Bank provides a method
transfer () for transferring money between acourts, and de-
claresfields log and 1ogCount for maintainingalog o completed
transfers. Observe that 1log and logCount have been placed in
an atomic set logging to prevent other threads from observing
intermediate states in which orly one of the two has been updated.

To make the example dightly more interesting, we will as-
sume that a distinction needs to be made between locd trans-

class Account {
atomic(account) int checking;
public void deposit(int n) { --- }
public void withdraw(int n) { --- }

class Bank {
atomic(logging) Log log;
atomic(logging) int logCount;

void transfer(Account a, Account b, int n){
log.add(a,b,n);
a.withdraw(n);
b.deposit(n);
logCount++;

public void localTransfer (unitfor Account a,
unitfor Account b,

int n){
transfer(a, b, n);
}
public void longDistanceTransfer(Account a,
Account b,
int n){

transfer(a, b, n);

}
}

Figure 3. Bank acourt example.

fers, for which intermediate states (in which the money has been
withdrawn from one acourt, but not yet added to the other)
shoud na be visible, and long-distance transfers, for which the
exposure of intermediate states can be tolerated. This distinc-
tion has been encoded by two methods, localTransfer () and
longDistanceTransfer (), both of which invoke the previously
discused transfer () method In esence we would like to ex-
pressthat localTransfer () isaunit of work for its parameters
a and b, and this is acomplished using the unitfor construct.
As localTransfer() reals both a and b, synchronizaion will
be inserted to ensure that the cdl to transfer () will be exeauted
atomicdly.

Observe that this olution al ows for more cncurrency than a
traditional solutionwhere the body d the transfer () method tes
been placed in an atomic sedionin order to preservetheloggngin-
formation. Thisisill ustrated by Figures 4 and 5 which show where
cdlsa’.deposit(m) and log’.add(c,d,m) can be interleaved
with cdlsto localTransfer () andLongDistanceTransfer(),
respedively. Note that cadlsto deposit () can beinterleaved with
cdls to longDistanceTransfer () while preserving the consis-
tency of log and logCount.

2.4 Example4: Synchronization Wrappers

The Java Colledions Framework provides synchronization wrap-
pers for creaing synchronized versions of colledions that are not
thread-safe. For example, class java.util.ArrayList provides
array-based liststhat are not thread-safe. An appli cationthat wishes
to use athread-safe ArrayList typicdly exeautes code such as:

List myList =
Collections.synchronizedList(new ArrayList())

Here, the synchronizedList() method from the utility class
java.util.Collections credesadecorator objed of typeList
that wraps the ArrayList that was passd in as a parameter,
and that forwards all methods to this ArrayList. All forwarding
methods are synchronized, thus preventing low-level data races
that might otherwise be caused by concurrent accesses to methods
such asget () and set (). Note that this only prevents races when

public class Vector {
Object[] elementData;
int elementCount;

public Vector(Collection<? extends E> c) {
elementCount = c.size();
// 10% for growth
elementData = new Object[
(int)Math.min((elementCount*110L) /100,
Integer .MAX_VALUE)];
c.toArray(elementData) ;

} @) }

public class Vector {
atomic(vec) Object[] elementData;
atomic(vec) int elementCount;

public Vector(unitfor Collection<? extends E> c) {
elementCount = c.size();
// 10% for growth
elementData = new Object[

(int)Math.min((elementCount*110L) /100,
Integer .MAX_VALUE)];

c.toArray(elementData) ;

(b)

Figure 2. Vedor example.

localTransfer()

log.add(a,b,n

a’.deposit(a.withdraw(n log’.add(c,d,m

b.deposit(n)

logCount++

{7

Figure 4. Allowable interlearsings for localTransfer. Arrows
indicae where a’.deposit(m) and log’.add(c,d,n) can be
interleaved, asauming that a and a’ and 1og and log’ may point
to the same objeds, respedively.

longDistanceTransfer()

1

log.add(a,b,n

a’.deposit(a.withdraw(n log’.add(c,d,m

b.deposit(n)

logCount++

d

Figure 5. Allowable interleasings for longDistanceTransfer.
Arrows indicae where a’ .deposit(m) and log’.add(c,d,n)
can be interleaved, asauming that a anda’ and log and log’ may
point to the same objeds, respedively.

using a single synchronized wrapper; it i s possble to have races if
other threads have references to underlying colledion oljed.

We present an aternative to synchronization wrappers—atomic
class—which addresses these shortcomings. In essence, making a
classatomic isequivalent to puting al of itsfields and the fields
in its superclasss in a single @omic set. In addition, anonymous
atomic dasses can be aeded by inserting the keyword atomic
at alocation sites. For example, a thread-safe ArrayList can be
creded asfollows:

List myList = new atomic ArrayList(){};
This eliminates the neal for the synchronization wrapper classes

that contain large numbers of bail erplate forwarding methods, ex-
cept for those few that need unitfor parameters.

class LinkedList {
owned(entry) atomic(list) Entry header;
atomic(list) int size;
public set(int index, Object value) {
Entry e = entry(index);
oldVal = e.value;
e.value = value;
return oldVal;

}

class Entry {
atomic(entry) Object value;
owned(entry) atomic(entry) Entry next;

}

Figure 6. Linked List Example

O 0
B

atomic set

Figure 7. A linked list. Only the objeds in the representation o
linked list are contained in an atomic set, not the objeds contained
in the list (shaded).

25 Example5: Owned Fields

The atomic set construct is used to include fields in an atomic
set. Sometimes it is useful to reason about atomic sets of objeds
referred to by afield. In the example of Figure 6, alinked list class
has two fields header and size that belong to atomic set 1ist.
Field header is of type Entry, which dedares its own atomic set
entry. Method set () takes an index in the list, finds the proper
placement in the list (using a method entry (), nat shown) and
inserts a given oljed at that position. We neal to dedare that all
the objeds that are part of the representation d the linked list are
part of the same aomic set, to proted the entire list, espedally in
methods such as set () which accesses the list in the midde. To
adhieve this, we gply the monstruct owned (entry) to theheader
field, which states that the entry set of the objed pointed to by
that field is to be included in the aomic set of that field. This is
illustrated in Figure 7. The set 1ist owns the entry set pointed
to by field header, which includes the value and next field of
the first objed. This st in turn includes the entry set of the next
objed, and so on Observe that the state of objeds painted to by
the value field are not included because this field does nat have
an owned anndation. Hence, updatesto oljedsin lists can happen
concurrently with operations onthe list itself.

u (localTransfer)

ul (add) u2 (withdraw) u3 (deposit)
W(this.log) R(a.checking) W(a.checking) R(b.checking) W(b.checking) R(logCount) W(logCount)

Figure 8. Units of work and acces®sin localTransfer

Whil e this construct could, in general, be expensive to imple-
ment with explicit locks, an ownership type system can be lever-
aged to provide an efficient implementation since owned—that
is, private—state does not need additional locks. Integrating ou
scheme with ownership types is part of future work.

3. New Definition of Data Races

The aurrent definition o a data raceis two access to the same
memory locaion, one of which is awrite with no synchronization
between them. This is not sufficient in that the ébsence of races
does nat imply the @sence of concurrency-related bugg, i.e., bugs
caused solely by interlearings of otherwise-corred code. Our ob-
jedive in providing a new definition for dataraces isto bridge the
gap between traditional data races and a property related to serial-
izability.

Our definition is given as a set of non-seridlizable interlearing
scenarios in Sedion 32. If an exeaution dces nat display any of
these scenarios, then it satisfies a property related to seriali zability.
We refer to this fad as completenessof the definition, and prove it
in Sedion 33.

3.1 Formal Model

This dion presents a dynamic forma model of code in terms of
sequences of accesses to memory locaions, atomic sets, and urits
of work.

Let £ bethe set of al memory locaions. A subset L C £ may
be designated as atomic. An evant isan accessto amemory locaion
l € L. Acces®s can be aread R(l) or awrite W (l). We sssume
that accesses to a singe memory locdion are uninterrupted. If [
denates locéions i, or I in L, we use the natation L — [to denote
the other location.

A unit of work « is a sequence of events, and is dedared on
a set of atomic sets. We write sets(u) for the set of atomic sets
correspondng to u. We say that ULESEtS(u) L is the dynamic
atomic set of u. Units of work may be nested, andwe writew. «— '
toindicaethat v’ isnested in u. Units of work form aforest viathe
«— relation.

An accessto a locaion ! € L appeaing in unt of work u
belongs to the top-most unit of work withinw such that L € sets(u).
Thenotation R,, (1) denotes aread belongngto u, and simil arly for
writes.

As an ill ustration consider again the example of Figure 3. Fig-
ure 8 shows the acceses and urits of work in localTransfer().
Unit of work « contains three nested units w1, us2, and ug, corre-
spondngto cdlstomethodsadd (), withdraw(), anddeposit (),
respedively. Unit of work « is dedared onatomic sets logging of
this, account of a, and account of b, and preserves the consis-
tency of their union. All accessesin this ssquencemust be proteced
inside u, and we say that all these acceses belongto . Thisill us-
trates how, in genera, an access belongs to the topmost unit of
work dedared onit.

A thread is asequence of units of work. The notation thread(u)
denates the thread correspondng to . An exeaition is a sequence
of events from one or more threads. Given an exeadution £ and an
atomic set L, theprojedion o E on L isan exeautionthat has every
event on L in E in the same order.

| Interleaving scenario Description

1 | Ru(l) Wy (1) Wy (1) Vauereal is gale by the

time an upchte ismade in w.

2. R (1) W,/ (1) Ru(l) Two reads of the same location

yield different valuesin w.

3. W (l) R,/ (1) Wi (1) Anintermediate state is

observed by u’.

Vauerea is naot the same &
the one written last in u.

4. | Wu() W (1) Ru(l)

5 | Wu(l) W, (1) W, (1) Valuewritten by u’ islost.

6. | Wu(lh) Wy (1) Wy (L—=1) Wy (l2) | Memoryisleftinan

inconsistent state.

7. Wu(ll) Wu’ (lg) W (lg) Wu’ (ll) same & abowve.

8. W (l1) R,/ (1) R,/ (L—1) W (l2) State observed isinconsistent.

9. Ry (l1) W, (1) W,/ (L—1) Ry (l2) same & above.
10. Ru(ll) Wu’ (lg) Ru(l2) Wu’ (ll) same as above.
11 Wu(ll) Ru’ (lg) Wu (lg) Ru/(ll) same as above.

Figure 9. Probematic Interleaving Scenarios. These scenarios are
complete provided that ead unit of work that writes to an atomic
set, writes all locaionsin that set.

Observation 1 For any pair of accesses belongng to units of work
u and v’ that appea in the projedion o an exeauttion E on an
atomic set L, if thread(u) = thread(u’) then we have neither
u «— u, nor v’ « wu; i.e. the projedion daes not contain nested
units of work.

This observation foll ows from the fad that ead accessbelongs to
the topmost unit of work dedared onit.

An interleaving scenario is also a sequence of events. For ex-
ample, R, (1) W, (1) W, (1) isan interleaving scenario where unit
of work u first reals I, then anather unit of work «’ performs a
write, followed by awrite by w.

An exeadtionisin accordance with an interleaving scenario if it
contains the eventsin the interleaszing scenario, and these gopea in
the same order. The @omic sets of an exeaution £, atomicSets(E),
consists of al atomic sets for which there is an accessin E, as
well asthe dynamic aomic set of al units of work in E. When the
exeautionis clea from context, we write atomicSets.

3.2 Dfinition

Figure 9 shows the interleaving scenarios that are non-seriai zable.
Seridlizability is obtained by preserving data consistency, so these
scenarios cgpture when the data may be read or written inconsis-
tently.

Definition 1. Data Races Let L be an atomic set of locaions,
l1,lo € L,loneof I; or I3, and v and v’ two urits of work for L,
such that thread(u) # thread(”). An exeaution hes adataraceif it
isin acordance with ore of the interleaving scenarios of Figure 9.

We now describe informally why these scenarios are problematic.
In the first scenario, unit of work « reads ore location I, foll owed
by an updhte to [. If ancther update to I is interleaved between the
two, then the read operation yields astale value and the subsequent
update may be inconsistent. This senario captures common “low-
level” data races, such as two threads exeauting x++. Scenario 1
correspondsroughy to the “lost update” [37] anomaly in databases:

i —]—[1—H—I
u(ll) wu'(12) wu'(11) wu(l2)
scenario 6
o —[]— [—
Ru(I1) Wu'(11) Wu'(12) Ru(I2)

|:| scenario 9 |:|

Figure 10. Problematic interleaving scenarios

a transadion 7 reas a data item, then ancther transadion 7>
updhtes the item, then 77 updates the item based onthe value read
and commits. The update of T isthen lost.

Scenario 2 shows two conseadtive reads of locaion [in a unit
of work that do nd yield the same value. It rougHy corresponds
to the “fuzzy read” anomaly in databases, where atransadion T
reads a data item, then a second transadion 7> modifies that item
and commits. If T attempts to re-read the same item, it recaves a
different value.

In scenario 3, an intermediate value of [isreal, when a unit of
work writes it multiple times. In scenario 4, the value rea for [is
not the same & the one last written in the same unit of work. In
scenario 5, awrite to [islost, or hidden by the writes from some
unit of work.

Scenarios 6 (Figure 10) and 7 ill ustrate cases where memory
is updated inconsistently. Recdl that [denates one of I; or o,
and that L — [denotes the other. In scenario 6, a unit of work
upchtes some location in the set, followed by an updite to anather
location. Thus the whde set is updated in multiple steps. If awrite
to the set is interleaved between the two, then memory is left in
an inconsistent state since individual locaions have values from
diff erent operations. A reader may then observe what appeasto be
intermediate states of various updates. Scenario 7is smilar.

Scenarios 8 through 11(Figure 10) ill ustrate cases where mem-
ory is rea inconsistently, even if it may never have been written
incorredly. In scenario 9, one unit of work reals i; followed by
reading l>. Thus one thread is observing the state of multi ple parts
in the aomic set. If an updhte to the whde set is interleaved, then
the values observed belongto diff erent operations. The rest of the
scenarios are problematic for asimilar reason. These scenarios are
similar to the “read skew” database anomaly.

All scenarios that only manipulate one memory location are
marked as having a data race by the common definition. How-
ever, there aethreescenarios missng R (1) R,/ (1) Ru(1), Wy (1)
R, (1) Ru(1), and Ry (1) R,/ (1) Wy(l). None of these ae prob-
lematic, but the common d&finition marks the last two as having a
race Our definition avoids these benign cases. An example of the
third scenario is athread performing x++ and ancther printing the
value of x, where the write of x isatomic. Thisisnon-deterministic
but serializable, so thereisno datarace

Not all database anomalies are gpplicable in this context. Some
are concerned with an erroneous behavior when atransadionaborts
and rolls badk: e.g. “dirty read” and “dirty write”. Others refer to
reading a set of memory locaions that satisfy a seach condtion:
“phantom read”. Finaly the “write skew” anomaly is covered by
several of our scenarios.

3.3 Completeness

We now show that theinterleaving scenarios are complete, meaning
that if an exeaution daes nat display them, then its projedion on
ead atomic set is ridizable, a mncept that we define predsely
below. To this end, we introduce aformal model of timestamps.
Units of work can be totally ordered by the occurrence of their

first write events in an exeaution. We asociate aunique timestamp
with eat unt of work, respedingthis order. A write event getsthe
timestamp of the unit of work to which it belongs. A real event
gets the timestamp of the most recant write to the memory locaion
it isreading. If a memory location gets written more than orce by
a unit of work, we mark the locaion as temporary, urtil the last
write is completed. We use timestamps and temporary locations to
capture nsistency: if two reads within aunit of work get diff erent
timestamps, they are observing an inconsistent state. Likewise,
observing alocaion marked as temporary by another unit of work
is undesirable. We make the foll owing assumption in our proof of
completeness

Asaumption 1. We asume that ead exeaution is auch that every
unit of work that writes some locaionin an atomic set, writesevery
locaionin that atomic set.

This asamption is not restrictive becaise we can always add
“dummy writes’ to any unit of work that does nat satisfy it, and
they are only needed conceptualy.

In the rest of this ®dion, we consider an exeattion E and its
projedion onsome gomic set L in atomicSets(F). We cdl these
“the exeaution” and “the projeded exeaution”, respedively.

If the exeaution is nat in acordance with the interleaving sce-
narios of Definition 1, then neither is the projedion, and we show
that the timestamp of writes to a given memory locaionin L are
monaonicdly increasing (Lemma 1), and that no urit of work
observes an inconsistent state (Lemma 2). These two properties
suffice to show that the projeded exeaution is sridizable (The-
orem 1), using the Serializability Theorem from database theory
[8].

We useindicesto refer to atotal order of eventsin the projeded
exealtior?. The function event(:) gives the event at index i. If u is
aunit of work, then firstWrite(u) istheindex of thefirst write event
of u.

We asaume that timestamps are drawn from the natural num-
bers, and that the indices in an exeaution start at 1. We use ts(u)
to denate the timestamp of a unit of work that performs writes. We
all ocate timestamps to urits of work in such away that:

ts(u) < ts(u’) < firstWrite(u) < firstWrite(u').

So aunit of work u, whose first write happens before the first write
of anather unit of work " in an exeaution, gets a lower timestamp.
Given atotal order of timestamps thus all ocated, let prev(t) be the
timestamp immediately preceding ¢ in thisorder (prev(t) < t).

We ssciate atimestamp, ts(¢), with an event at index ¢ in the
exeaution. Write events get the timestamp of the unit of work to
which they belong and read events get the timestamp of the most
recent write to the memory locaion real. ts(z) is computed as
follows:

ts(u) if event(i) = W (1)
ts(j) if event(i) = Ru(l)
Aj<iANevat(j) =W, ()
A Ak, j <k <ilevet(k)=W,(l)
0 if event(z) = Ru (1)
A ﬂ]!] <1 ‘ eth(j) = Wu’(l)

So far ts(u) isonly defined for units of work w that perform writes.
For aunit of work that consists entirely of read events, let ts(u) =
ts(¢) for some such that event(:) = R., (7). Wewill seeinLemma2
that all such 7 have the same timestamp.

2A total order of events is natural for a sequentially consistent architec
ture. However, events happen in some total order even onwedker memory
models, so our conceptual model is gill applicable.

temp(us, 4, 12)
index event ts(i) | temp(ui,i,l1) | temp(ue,i,l1)
temp(uz, i, l2)

1 W, (l1) 1 true false

2 R, (l1) 1 true false

3 Ry, (l2) 0 true false

4 W, (I2) 1 true false

5 Wy (11) 2 true false

6 W, (12) 2 true false

7 W, (Ih) 1 false false

Figure 11. Sample exeaution and timestamps

The predicae temp(u, 4, 1) istrueif locaion ! is temporary for
unit of work u at index 7, meaning that there will be ancther write
to ! inwu beyondindex i. It is fase for unit of work v at index i if
1 represents the index of the last writeto [/ in u. For reals, we take
the value of temp(u, ¢, 1) to be the value temp(u, ¢ — 1,1). Initially,
temp(u, 0, 1) = falsefor al w and!. It is computed as foll ows:

true if event(s) = W, (I) A
35> i|evet(y) = Wu(l)

temp(u,i,1) = < false if event(i) = W, (I) A
Aj>i|ever(j) = Wyu(l)
temp(u,i — 1,1) otherwise.

Figure 11 gves a sample exeaution and its timestamps. In this
example, there aetwo unts of work u; andus in different threals,
and two locaions I; and l2. We have ts(u;) = 1 and ts(u2) = 2.
At index 2, unit of work us reads an intermediate value of locaion
l1. Thisis captured by temp(u., 2, 1) being true.

The following lemma states that the timestamps of write events
onthe same memory locaion ! are monaonicdly increasing.

Lemma 1 If the projeded exeaution is not in acordance with
the interleaving scenarios of Definition 1, and ¢ and 5 are such
that i < j, event(i) = W, (l) and event(j) = W, () for some
I, u# u, thents(i) < ts(j).

The proof of Lemma 1 can be foundin Appendix A.

The foll owing lemma states that the state observed in a unit of
work is consistent, by giving three properties of read events in an
exeaution that is nat in acordance with any of the scenarios in
Definition 1 First, no temporary value is ever read. Secmond reads
inaunit of work that also writesthe same gomic set do nd get stale
values. Third, two readsin aunit of work that does nat perform any
writes to same aomic set get consistent values.

Lemma 2. If the projeded exeautionis nat in acaordance with any
of the interlearing scenarios of Definition 1:

1. No event from one unit of work reals a memory locdion
marked as temporary by ancther unit of work in a different
thread.

Vu,i,l | event(i) = Ru(l) = Au’ | v’ # u A thread(u) #
thread (u’) A temp(v/, ,1).

2. A rea in aunit of work that also contains a write to the same
atomic set does not get a stale value, i.e. it gets the timestamp
correspondng to the unit of work or the previous ore.

Vi |(evert(i) = Ru(l) A3 j | eveit(j) = Wu(l)) = ts(i) €
{ts(u), prev(ts(u))}.

3. Realsin aunit of work « that does nat contain writes, get the
same timestamp.

Vi,7 | (event(i) = R, (1) Aevent(j) = R, (') A
Ak |evet(k) =Wy(l)) = ts(i) = ts(j) = ts(u).

The proof for Lemma 2 can be foundin Appendix B.

Finally, we show that for an exeaution that is not in ac@rdance
with any of the interleaving scenarios of Definition 1, its projedion
onead atomic set is sridizable, which we define predsely below.
We can think of a unit of work as being a single-threaded transac
tion that dways commits, and this all ows us to use concepts from
seriali zability theory [8]. Givenindicesi and+’ suchthat i < i, the
pair (event(s),event(i')) isaconficting par of events, if they areon
the same memory locdion, and ore of them isawrite. We say that
two exeautions are equivalent if they consist of the same units of
work and the same events, and have the same pairs of corflicting
events. An exeautionis serial if for every two unts of work « and
u’ that appea in it, either all eventsin u happen before dl events
inu’, or viceversa. We say that an exeattion is serializableif itis
equivalent to an exeaution that is erial.

The confict graph of an exeadtion is a direded graph, with
nodes consisting o units of work. There is an edge between urits
of work » and v/, if v and v’ have events e and €', respedively,
such that (e,e’) is a conflicting peir. The Seriali zability Theorem
[8] states that an exeautionis serializable, if and ony if its conflict
graphisagyclic. We will use thisfad to prove Theorem 1 bel ow.

Theorem 1. Serializability If the exeaution is not in acordance
with any of the interleaving scenarios of Definition 1, its projedion
on ead atomic set in atomicSets(F) is wriaizable.

Proof. Assume that the exeaution is nat in acordance with any
of the interleaving scenarios of Definition 1, and that there exists
an atomic set L in atomicSets, such that the projedion o the
exeaution on L is not serializeble. We have that the projeded
exeaution is also na in acmrdance with the interleaving scenarios
of Definition 1 By the Seridlizability Theorem [8], the conflict
graph for the projeded exeaution hesa gycle: gy — ug — -+ —
un — u1. Note that for any pair w and «’ in this cycle, it cannat
be the cae that thread(u) = thread(u’), becaise otherwise one of
them would be nested inside the other, contradicting Observation 1
Consider two conseautive units of work u andu’ inthiscycle. Let i
be the index of an event of v that conflicts with an event of u’ with
index j (i < j). We show by casesthat ts(u) < ts(u'):

1. event(i) = W, (I) and event(j) = W,/ (1). By Lemma 1, ts(¢)
< ts(7). Sincets(z) = ts(u) and ts(y) = ts(u'), we have ts(u)
< ts(u').

2. evet(z) = Wy(l) and event(j) = R,/ (I). We have ts(i) <
ts(j). By Lemma 2, Part 2 and 3 ts(j) is either equal to ts(u')
or prev(ts(u)). Also ts(i) = ts(u). Therefore we have dther
ts(u) < ts(u'), or ts(u) < prev(ts(u’)). Note that in the latter
casets(u) < ts(u'), by the definition o prev.

3. event(:) = R.(I) andevent(j) = W,/ (I). We show by contra-
dictionthat ts(z) < ts(j). Asume first that ts(z) = ts(j). Then
there must have been a k < 4 such that event(k) = W,/ (1).
So temp(w’, 4, 1) istrue. By Lemma 2, Part 1, we know that no
event reas a locaion marked as temporary, so thisis a aon
tradiction and ts(4) # ts(j). Assume now that ts(i) > ts(4). In
this cese, there exists a k < 1, such that evet(k) = W, (1)
for some ", which is the write resporsible for the read at i.
We have £ < j, and ts(k) > ts(j), which is a contradiction
by Lemma 1. Therefore ts(i) < ts(j). Moreover, by Lemma 2,
Part 2 and 3 ts(i) is either ts(u) or prev(ts(u)). Since ts(y)
= ts(u'), then we have ather ts(u) < ts(u'), or prev(ts(u)) <
ts(u’). Note that in the latter case ts(u) < ts(u'), by the defini-
tion o prev.

So in all three caes, ts(u) < ts(u'). So for our cycle uy —
Uz — - — up — u1, Wehavets(ui) < ts(uz) < -+ <ts(un)
< ts(u1). Therefore ts(u1) = -+ = tS(un). We know that the
conflicting events of u, throughu,, must contain at least two writes

Construct | Usage

atomic(s) | fieldsthat have a @nsistency property or
fields whose intermediate states shoud na be visible
unitfor parameter that must be manipulated atomicadly
atomic classthat neals to be thread-safe
owned(s) similar to atomic (s) but with ore level of indiredion
throughfield dereference

Figure 12. Summary of language constructs

from diff erent units of work. Thisisthe cae becaise interleaving
scenarios 2 and 3 do na happen in the exeaution, due of our initial
assumption. Thus by the definition d ts(u), the fad that ts(u,) =
--- = ts(un) is a contradiction. Therefore such a gycle does not
exist andthe projedion d the exeaution onL is sridlizeable. O

4. Implementation

This ®dion presents an owverview of the languege cnstructs and
their implementationfor Java.

4.1 Overview of Language Constructs

In ou approadh, ead classis resporsible for its own synchroniza
tion by dedaring ore or more atomic sets. An atomic set deda-
rationin a dassmeans that ead instance of that classhas its own
separate aomic set. These dedarations are inherited via subclass
ing, and subclasses may extend existing sets and/or introduce their
own. The pulic and proteded methods of a dassare asaumed to
be units of work for its atomic sets, meaning that they preserve
consistency when exeauted sequentialy. We ssaume that ead ac
cessto alocaionin an atomic set is dore within a unit of work for
that atomic set®. If a unit of work accesses the dements of more
than one a&omic set in the same dass then it is guaranteed that no
interleavings will occur in which other threads accessany datain
theunion o these sets (thoughinterleavings with ather threads that
only access unrelated data ae dlowed). The unitfor construct
enables a dient of a dassto spedfy that a parameter needs to be
manipulated atomicdly for the duration o its <ope. If amethodis
alrealy a unit of work for an atomic set S, then aunitfor deda
ration on @rameter p effedively makes the method a unit of work
for the union of the set S and the aomic sets of p.

The owned(s) construct is smilar to atomic(set) but pro-
vides ore level of indiredion. It guarantees that the gomic set s
of the objed painted to by afield isincluded in the aomic set of
the field. This mechanism all ows transitively defined sets, and en-
ables fine-grained concurrent access to reaursive data structures.
For example, the representation o a linked list may be included
in an atomic set withou also including the objeds contained in
the list. As part of future work, we will provide two variants of
owned for arrays, one which includes the aray itself, and the other
which additionally includes the dements. Finally, a utility meca-
nism, the atomic classconstruct, helps making a dassthread-safe,
by dedaring that dl it sfieldsarein asingle aomic set. Thisavoids
the neda for synchronizaion wrappers in Java. Figure 12 summa-
rizes the language constructs.

4.2 Synchronization Inference

Wewill now discussan approach for generating code with synchro-
nizationthat guarantees that the consistency properties dedared us-
ing atomic set constructs are respeded. In other words, that the

3 This assumption means that our system expeds cli ent-side field accesss
to be dore via getter/setter methods.

|n(1)) — {Out(vi)| v—v; € BEgV
(3vi = v.£f A s owned(s) f)}

Out(v) <« In(v)U reads(v) U writes(v)
reads(v) «— {read(s)|3x=vienAfes}
writes(v) «— {write(s)|Ivf=x€EnAf€Es}

Figure 13 Dataflow equations for determining atomic sets ac
cesed from pointers.

problematic interleaszing scenarios do nd occur. First, we define
a dataflow analysis over a program’s cdl graph that infers which
locks nedd to be held for eadh unt of work. Then, we discusshow
that information can be used to insert synchronization constructs.

Determining Atomic-Set Usage. The @omic setsthat may be ac
cesed by aunit of work can be determined by examining the code
in the methodthat denotes the unit of work andin al methods tran-
sitively cdled by that method In this st of methods, al field ac
cesss are diredly evident*. The cntainment of fields in atomic
sets is dedared explicitly, so that computing the aomic sets ac
cesed by eat unt of work is graightforward. The analysis can be
formulated as a standard dataflow problem using Kildall's graph-
based dataflow framework [26]. Recdl that this framework aso-
ciates ®tsIn(n) and Out(n) with ead noce n and definesthe value
In(n) to betheunion o values of al Out(z) wherethe graph hesan
edge from x to n. Node transfer functions define Out(n) in terms
of In(n). We formulate astandard hit-vedor problem, in which the
bitsareread(s) andwrite(s) for ead atomic set s in the program.

We define the dataflow problem acoss a standard dataflow
graph G =< Ng, E¢ > that cgptures the dataflow among panter
values in the program. Thereisan In and an Out set for eat value
in N¢. The edgesin ou problem consist of: (i) theinverse of edges
in E¢ and (ii) edges derived from reads of owned fields. The latter
edges ensure that accesses to ohjeds that are owned are treaed
as acceses of the owner set.The dataflow equations are shown in
Figure 13, where the natation f € s isused to dencte the fad that
field f is dedared to be in atomic set s, and statement € n to
mean that a statement occurs in the method associated with noce 7.
Theresult of the analysisis, for ead panter value v in the program,
aset Out(v) of all atomic sets accessed from v and from any v’ to
which oljeds might transitively flow from v.

Adding Synchronization. We asociate alock with eat atomic
set. For eaty method m, we aquire locks for al atomic sets that
m may acces acording to the ebove analysis and for which m
is a unit of work®. This includes atomic sets that are accesed by
methodsm/ transitively cdled by m aswell asatomic setsaccessed
from fields transitively owned by elements in atomic sets accessed
by m. Note that atomic sets accessed transitively from m may
include aomic sets dedared in subclasses of the dassthat dedares
m.
Various kinds of locks can be used for synchronizaion. The
most conservative strategy is to use exclusion, which prevents all
problematic interleaving scenarios. We initialy implemented this
strategy using Java's synchronized blocks. However, our prob-
lematic interleaving scenarios enable more aggressve implemen-
tations. In particular, we implemented the use of reader-writer
locks [31] in which multiple readers are permitted concurrent ac
cess but where writers must have exclusive accss Since dl sce
narios of Figure 9 invalve & least one writer, this chemeisclealy

4Weignaretheissie of fields accessed viamedhanisms such as Jvareflec
tion. In such cases, we would need to use a @nservative goproximation of
what fields might be accesd.

5We asaume some ability to atomicdly aauire multiple locks, which is
straightforward for locks that suppat POSIX-style trylock.

corred. Potentially, we could analyze units of work for occurrences
of problematic interleaving scenarios and generate austomized syn-
chronizaion that prohibits possble bad interadions.

Assumptions like having cal graphs or global dataflow graphs
make this implementation most suitable for whole-program com-
pil ation where relatively predse graphs can be constructed. How-
ever, it is posshle to use gproximations of unknavn partions of
the graph when the whd e program is nat avail able.

Deadlock When attempting to aauire locks for all the aomic
sets that a method accesses, our approach consists of tryingto ac
quirethemall, andreleasethem all i f at least oneisunavail able, and
then trying again. This miti gates deadlock to some extent. Dead-
lock may still occur in the generated code if there ae (transitive)
cyclicd dependences between the sets of locks needed by two urits
of work. This can be deteded throughstatic analysis. Future work
includes buil ding such an analysis to warn the programmer.

4.3 Experimental Results

We have implemented a prototype for synchronization inference
using the Ecli pse refactoring framework [6]. The inference engine
isbased onDomo [16], an anaysisinfrastructure developed at IBM
Reseach.

Our language oonstructs are sufficient to corredly add synchro-
nization to a significant subset of the the Java Coll edions Frame-
work®. Figure 14 shows, for several classesin that framework, the
number of original synchronized blocks, the number of atomic
sets needed, the number of owned fields, and the number of meth-
ods for whichunitfor was needed. All experimentstooklessthan
one minute on a 1.7GHz Pentium Il with 768MB of memory. The
first four lines refer to clases auch as Vector which had exist-
ing synchronization. For ead such class we manually removed al
synchronizaion Hocks, and then added a singe aomic set. There
were 5 methods in Vector that neaded theunitfor construct, and
most of these correspondto pubished high-level dataracesthat are
easily avoided using ou constructs. Observe that our approach gen-
erally requires far fewer annaations than the traditi onal approach.
For example, Vector requiresonly 1 atomic set, 1 owned field, and
5 unitfor constructs instead of the origina 37 synchronized
blocks.

The rest of the benchmarks are dasses that did na have
synchronizaion. As the figure indicaes, very few anndations
are negled to make eab of them thread-safe. This is to be
contrasted with Java's g/nchronization wrappers, such as e.g.
SynchronizedSet, which wrap ead method d the base dass
in a synchronizaion Hock. These wrappers are long and error-
prone dasses, sincethere isan explicit | ock that must be held at the
right places. With our constructs, synchronizaion wrappers are no
longer needed.

5. Related Work

Most static [15, 28] and dyremic racedetedors[30, 33], aswell as
type systems[9, 19] and languages [5] that guaranteeracefreedom
are based onthe common dfinition o data races and therefore do
nat hande hightlevel races. Type systems use reduncant anndta-
tions to verify that data races do nd occur. In contrast, our system
infersthe gopropriate synchronizaion to prevent high-level aswell
as low-level data races, and daes not require the programmer to
keep tradk of locks explicitly.

An extension to ESC/Java deteds a dass of high-level data
races, cdled “stae-value arors’ [10, 4]. The value of a locd

6 Some limitations in our current implementation (most natably in handing
inner classs) prevent us for performing the experiment on the entire Col-
ledions Framework.

‘ orig. added data-centric constructs

Benchmark sync. | sets | owned | unitfors
Vedor(unitfor Colledion)
addAll (unitfor Colledion)
Vedor 37 1 1 addAll (int,unitfor Colledion)
removeAll (unitfor Colledion)
retainAll (unitfor Colledion)
Hashtable 17 1 3 void puAll (unitfor Map)
Observable 8 1 1
Randam 3 1 0
ArrayList(unitfor Colledion)
ArrayList n/a 1 1 addAll (unitfor Colledion)
addAll (int,unitfor Colledion
LinkedList n/a 1 3 addAll (int,unitfor Colledion
SubList n/a 1 0 addAll (int,unitfor Colledion
HashSet n/a 1 0 HashSet(unitfor Colledion)
TreeSet n/a 1 1 addAll (unitfor Colledion)
HashMap n/a 1 3
LinkedHashMap n/a 1 3
IdentityHashMap n/a 1 1 putAll (unitfor Map)
equals(unitfor Objed)
TreeMap n/a 1 4 putAll (unitfor Map)
interseds(unitfor BitSet)
equals(unitfor Objed)
BitSet n/a 1 0 and (unitfor BitSet)
or (unitfor BitSet)
xor (unitfor BitSet)
andNot (unitfor BitSet)

Figure 14. For ead benchmark the table shows the number of
origina synchronizaion Hdocks, the number of atomic sets added,
the number of owned fields and the methods requiring the unitfor
construct. The natation nais used for classes that had no aiginal
synchronizaion becaise they were not intended for concurrent use.

variable is gde if it is used beyond the aiticd sedion in which
it was defined. Scenario 1 o our definition o data races addresses
stale-value arors. View consistency [3] is a crredness criterion
that ensures that multiple reads in a threal observe a onsistent
state. A view is defined to be the set of variables that a lock
proteds. Two threads are view consistent if all the views in the
exeaution o one, intersected with the maximal view of the other,
form a chain under set inclusion. View consistency can be chedked
dynamicdly [3] or staticdly [34]. Scenarios 8 through 11 & our
definition o data races addressthe isaue of multiple reads getting
an inconsistent state. In our approadh, however, the programmer
indicaes explicitly what sets of locations form an atomic set, so
this information does nat neal to be extraded from the locking
structure of the code, which may not be corred.

Atomicity [21] is a noninterference property used to reason
abou multi-threaded programs. An atomic sedion can be essaumed
to exeaute serially withou interleaved steps from other threads. A
number of tods have been developed for cheding atomicity vio-
lations, including type systems [21, 22, 18, 32]; dynamic analysis
such as the Atomizer [20] which combines the theory of reduction
[29] and ideas from dynamic racedetedors; and model cheding
techniques [25, 17]. These gproades reguire aomicity annda-
tions in addition to synchronized blocks from the programmer.
In contrast, we have damed at minimizing the amourt of anno
tation reguired to spedfy synchronizaion constraints. Units of
work are different from atomic code blocks in that they are re-
lated to the sequential, rather than concurrent, behavior of code
and preserve the consistency of data when exeauted sequentially.
They correspond returally to method bodes in a well-designed
objed-oriented program. They are dso data-centric because they
are dedared on spedfic aomic sets, which sometimes allows
more cncurrency than an atomic code block (see e.g., method
longDistanceTransfer () in Example 3).

Our definition of dataraces diff ers from the theory of reduction
[20, 18], which provides a singe pattern for atomicity, that is a

sequence of right movers, followed by at most one aomic adion,
foll owed by a sequence of left movers. Lock acquires (releases) are
considered right (left) movers. Consider the foll owing fragment of
code, where x isa shared variable and t islocd:

synchronized(lock){ t

x; }

t++;

synchronized(lock) { x =

t; }
This fragment of code is non-atomic, and can be fixed as foll ows:
synchronized(lock) {

synchronized(lock){ t = x; }

t++;
synchronized(lock){ x = t; }

Even thoughthis fragment is now atomic, the theory of reduction
would rejed it, sinceit consists of aright mover, followed by two
atomics, followed by a left mover. To overcome shortcomings of
the underlying theory, the Atomizer tod [20] performs additi ondl
anadysis to determine reentrant locks, as well as proteded locks.
The type system of [18] remedies this problem by providing more
predsion via condtiona atomicities. In contrast, our definition o
dataracesisa complete set of non-serializable patterns, and is not
based onlocking structures. A tod based on ou definition would
not consider the abowe fixed code & problematic, becaise it would
observe access to data rather than locks.

Languege-level atomic sedions[11] and software transadional
memory [2, 24, 23, 36] are methods for removing the burden on
the programmer in determining which locks to hdd, by allowing
code blocksto be marked as atomic. These code-centric gpproaches
till require nonlocd reasoning from the programmer asill ustrated
in Sedion 2 A corred implementation o these methods needs to
guaranteethat there exists aglobal seria order of exeaution for the
atomic sedions. Thisisin general hard to implement efficiently in
an imperative language, and requires edalized hardware[2]. The
reguirement for our units of work is that there exists a serial order
only with resped to ead atomic set, and there may nat be aglobal
seria order. By wedkening the guarantee while still maintaining
corredness (preservation o data consistency), we have amethod
that is much easier to implement.

Our problematic interleasing scenarios are simil ar to those used
by Wang and Stoll er [35] to provide run-time analyses for atomic-
ity. Our scenarios are simpler, and more importantly they are com-
plete, meaning that an exeaution nd displaying them is guaranteed
to have aproperty related to seridizability.

The scenarios in our definition of data races are analogous to
anomali es used to charaderizelevels of isolation in databases, and
defined in the ANSI SQL standard [37, 7]. Commercia databases
allow programmers to trade off consistency for performance by of-
fering dfferent levels of isolation. Each level is charaderized by
the set of anomalies it does nat allow. The highest level of iso-
lationis seridlizability. Our problematic interlearing scenarios are
similar to the schedules used to expressthe database anomalies.
Some of these ae nat diredly applicable in the context of concur-
rent programming, because they explicitly talk abou atransadion
committing a aborting.

Atomic sets share dharaderistics with data groups [27]. Data
groups help in the spedficaion o methods whose overrides may
modify addtional state introduced in subclasses. A methodthat is
allowed to modify a data group is all owed to modify its downward
closure, consisting o all member variables added in subclasss.
Atomic setsare simil ar in that subclasses may add locaionsto a set
dedared in a parent class They differ in that, unlike data groups,
they are nat hierarchicad and norroverlapping.

The Seridizability Violation Detedor (SVD) [38] isatod that
dynamicdly infers atomic sedions (cdled Computation Units or

10

CUs), based on dita and control dependences, and then deteds if
these CUs are non-seriali zable by cheding arule based onstrict 2-
Phase Locking. One of itskey feauresisthat it does nat rely onthe
possbly buggylocking structure of the program to infer CUs. We
share asimilar viewpoint by having a definition o data races that
does nat rely onlocks. SVD produces both false positives and false
negatives, depending onthe predsion o the inferred CUs. It does
not consider some of our interleaving scenarios to be problematic.
This is always the cae for Scenario 2, and some of the time for
other scenarios because acceses can end upin different CUswhen
thereisno data or control dependence between them.

Deng et al [14] present amethodthat all ows the user to spedfy
synchronizaion petterns that are used to synthesize synchronized
code. The generated code can then be verified using the Bandera
todset. The user must spedfy explicitly the regions of code that
neal synchronization, but we do nd reguire this. Unlike them,
we only focus on ore kind o synchronizaion pettern: exclusion
between two regions that accessthe same aomic set.

The Actor model [1] defines ohjeds that are updated atomicdly
by individual methods. The Actor model shares our focus on wsing
objeds to manage ansistency, but there ae some aucia differ-
ences. Firg, it has amore restrictive notion o state changes, with a
single become operation. Secnd, it i s asynchronous, and dces nat
have the nation d nesting d units of work. Third, this model does
not suppat our nation o multiple consistency properties within a
single objed. Fourth, these languages ladk a compaositional struc-
ture like our owned. Fifth, these languages do nd suppat a con-
struct such as unitfor for customizing consistency. Some Actor-
based langueges address ®me of these issuies—Concurrent Aggre-
gates [13] added synchronots cdls and resting, and ICC++ [12]
had alimited form of compaosition with integral.

6. Conclusions

We presented a new definition of a datarace & a wlledion o 11
problematic interleaving scenarios, which subsumes the traditi onal
nation o adatarace @& well ashigh-level dataraces sich as gale-
value arors and inconsistent views. We have proved it complete
by demonstrating that any exeaution that does nat exhibit any of
the 11 scenarios is equivalent to a serial exeaution, when projeced
onto ead atomic set.

We have proposed a small humber of language constructs that
allow programmers to spedfy atomic sets, and asimple static anal-
ysis to determine the places in the code where synchronizaion is
nealed in order to avoid dataraces acording to our new definition.
Our data-centric gpproach is adedarative and sucdnct way for the
programmer to spedfy synchronizaion constraints, in a way that
maps naturaly to the encgpsulation provided by oljeds. It isless
error-prone becaise the anstructs are ea&y to use and the synchro-
nizationisinserted automaticdly.

The experiments indicae that these mnstructs auffice for much
of the Java Colledions Framework, and they also show grealy
reduced annaations compared to synchronized blocks.

Acknowledgments

We thank David Bamn, Rastidav Bodk, Stephen Fink, Robert
O’ Callahan, and Vivek Sarkar for very useful discussons.

References

[1] Gul Agha. An owverview of ador languages. In Procealings of the 1986
S GPLAN workshop onObjed-oriented programning, pages 58-67,
New York, NY, USA, 1986

[2] C.S. Ananian and M. Rinard. Languege-level transadions. In High-
Performance Embedded Computing (HPEC), 2004

[3] C. Artho, K. Havelund and A. Biere. High-level dataraces. In Proc.
NDDL/VVHS 03, pages 82—93 2003
[4] C. Artho, K. Havelund and A. Biere. Using Hock-locd atomicity to
deted stale-value mncurrency errors. In ATVA 04, pages 150-164
2004
[5] D. F. Bawmn, R. E. Strom, and A. Tarafdar. Guava: A diaed of Java
withou data races. In Proc. OOPSLA' 00, pages 382—-400 200Q
[6] D. Baumer, E. Gamma, and Adam Kiezun. Integrating refacoring
suppat into a Java development tod. In Objed-Oriented Program-
ming, Systems, Languags, and Applications (OOPSLA) Comparion,
October 2001
[7] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’ Neil, and P. O’ Neil .
A critique of ANSI SQL isolation levels. In Proc. ACM SGMOD
Conf., pages 1-1Q 1995
[8] P. Bernstein, V. Hadzilaas, and N. Goodman. Concurrency Control
andReovery in Database Systems. Addison-Wesley, 1987
[9] C.Boyapati andM. Rinard. A parameterized type system for racefree
Java programs. In Proc. OOPSLA' 01, October 2001
[10] M. Burrows and K. R. M. Leino. Finding stale-value arors in
concurrent programs. Technicd Report 2002004, SRC, May 2002
[11] Philippe Charles, Christopher Donawa, Kema Ebcioglu, Christian
Grothoff, Allan Kidlstra, Vijay Saraswat, Vivek Sarkar, and Christoph
von Praun. X10: An objed-oriented approach to norruniform cluster
computing. InProc. OOPSLA' 05, San Diego, CA, 2005 To appea.
[12] A. Chien, U. Reddy, J. Plevyak, and J. Dolby. ICC++ — A C++
dialea for high performance parallel computing. Ledure Notes in
Computer Science 10497695 1996
[13] Andrew A. Chien and William J. Dally. Concurrent aggregates (ca).
In Proc. PPoPP’ 90, pages 187—196 199Q
[14] X. Deng, M. Dwyer, J. Hatcliff, and M. Mizuno. Invariant-
based spedficaion, synthesis, and werification o synchronizaion
in concurrent programs. In Proc. ICSE’'02, May 2002
[15] D. Engler and K. Ashcraft. Racex: Effedive, static detedion o race
conditions and deadlocks. In Proc. SOSP' 03, pages 237—252 October
2003
[16] S. Fink, J. Dolby, , and L. Colby. Semi-automatic J2EE transadion
corfiguration. Technicd Report RC23326 IBM T.J. Watson Reseach
Center, March 2004
[17] C. Flanagan. Verifying commit-atomicity using model chedking. In
Proc. SPIN' 04, pages 252—266 2004
[18] C. Flanagan, S. Freund and M. Lifshin. Type inference for atomicity.
In Proc. TLDI’ 05, pages 47-58 2005
[19] C. Flanagan and S. N. Freund Type-based racedetedion for Java. In
Proc. PLDI' 00, pages 219—232 2000
[20] C. Flanagan and S. N. Freund Atomize: A dynamic aomicity
chedker for multithreaded programs. In Proc. POPL’ 04, pages 256—
267, 2004
[21] C. Flanagan and S. Qaded. A type and effed system for atomicity. In
Proc. PLDI’ 03, pages 338—349 2003
[22] C. Flanagan and S. Qadea. Types for atomicity. In Proc. TLDI' 03,
pages 1-12 2003
[23] T.HarrisandK. Fraser. Language suppat for lightweight transadions.
In Proc. OOPSLA' 03, pages 388—402 2003
[24] T. Harris, S. Marlow, S. PeytontJones, and M. Herlihy. Compaosable
memory transadions. In Proc. PPoPP’ 05, 2005
[25] J. Hatcliff, Robby, and M. B. Dwyer. Verifying atomicity spedfica
tions for concurrent objed-oriented software using model chedking.
In Proc. VMCAI' 04, pages 175-190 2004
[26] Gary A. Kildal. A unified approach to global program optimization.
In Proc. POPL’ 73, pages 194—206 1973
[27] K.R. M. Leino. Data groups: Spedfying the modificaion o extended
state. In Proc. OOPS_A' 98, pages 144-1531998
[28] K. R. M. Leino, J. B. Saxe, and R. Stata. Chedking Java programs via
guarded commands. Technicd Report 002, Compag SRC, 1999
[29] R. J. Lipton. Reduction: A method d proving properties of paralel
programs. CACM, 18(12), 1975

11

[30] R. O'Cdlahan and J.-D. Chai. Hybrid dyramic data racedetedion.
In Proc. PPOPP’ 03, pages 167-178 2003

[31] Java Community Process JSR 166 Concurrency utiliti es. Seehttp:
//gee.cs.oswego.edu/dl/concurrency-interest/index.
html., September 2004

[32] A. Sesturkar, R. Agarwal, L. Wang, and S. Stoller. Automated type-
based analysis of data races and atomicity. In Proc. PPoPP’ 05, 2005

[33] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: adynamic data racedetedor for multi-threaded programs. In
Proc. SOSP’' 97, pages 27—37, October 1997

[34] C.vonPraunand T. Gross Static detedion o atomicity violations in
objed-oriented programs. Journal of Objed Techndogy, 3(2), 2004

[35] Ligiang Wang and Scott D. Stoller. Runtime analysis for atomicity
for multi-threaded programs. Technicd Report DAR-04-14, State
University of New York At Stony Brook, May 2005

[36] A. Welc, S. Jagannathan, and A. Hosking. Transadional monitors for
concurrent objeds. In Proc. ECOOP’ 04, pages 519-542 2004

[37] ANSI X3.1351992 In American Nationd Sandad for Information
Systems — Database Langua@ — QL, November 1992

[38] M. Xu, R. Bodik, and M. Hill. A seridizability violation detedor for
shared-memory server programs. In Proc. PLDI’ 05, pages 1-14 2005

A. Proof of Lemmal

Assume that the projeded exeaution is nat in acordance with any
of the problematic interleaving scenarios of Definition 1 Assume
that there eist ¢ and j such that ¢ < j, event(i) = W, (l), and
evat(j) = W, (l) for some ! andu # v/, but ts(z) > ts(j). Since
u # v/, thents(¢) andts(j) could nat be equal. So we have ts(z) >
ts(j).

Sincets(z) = ts(u), and ts(j) = ts(u'), it must be that the first
write of u occurs after the first write of «’. Let i’ = firstWrite(u)
and j’ = firstWrite(u'). Then we havethat j' <4’ <i < j.

Casel. evet(;') = W, (1). It must bethat thread(u) # thread(u’),
becaise otherwise u and u” would be nested urits of work and this
would contradict Observation 1 (two norrnested units of work of
the same threal do nd have interleased events). Then the projeced
exeaution isin acmrdance with the interleaving scenario 5 o Def-
initi on 1, which isa cortradiction.

J ? J
Wy (1) Wu(l) Wy (l) (scenario 5)

Case 2. evat(j') = W, ('), I # 1. Since unit of work » also
writes I/, by Assumption 1, the index k of such a write is greaer
than 4/, since i’ is the index of the first write of u. We have that
thread(u) # thread(u") for the same reason as above. Thereforethe
projeded exeadtion is in accordance with ore of the interlearing
scenal;ios 6 or 7, which is a contradiction.

7

W (l) Wa() Wa(l) W] (1) (scenario 6)

WJ &) W,) Wu) WJ (1) (scenario 6)
’ ; . k

WJ &) W,) WJ (1) Wu(l') (scenario?)

Thereforets(i) < ts(j) asrequired.

B. Proof of Lemma 2
Table 1ill ustrates the diff erent cases appeaing in this proof.

Part 1. Asaume that the projeded exeadtion is nat in acordance
with the interleaving scenarios of Definition 1 Consider an index
1 such that event(:) = R, (1), and temp(v', 7,1) = true for some
u’ # wu such that thread(u) # thread(u’). Then there must be a;j
andk, j < i < k, such that event(j) = event(k) = W,/ (). But
the projeded exeaution would be in acardance with interleasing

scenario 3 (Table 1), which is a contradiction. So temp(u/',i,1) =
false.

Part 2. Asauume that the projeded exeaution is nat in acordance
with the interleaving scenarios of Definition 1 Consider a unit of
work u that contains at least a read and a write event. Asaime
that there is an ¢, such that event(i) = R.(l), and ts(i) & {ts(u),
prev(ts(u))}. Letk, k < ¢, betheindex of thewrite resporsible for
the value of ts(z). So event(k) = W, (1) for some v’

Case 1. ts(z) > ts(u). Since unit of work w must also write [by
Asamption 1, let j the index of this write, event(j) = W (1).
Note that we cana have k < j < 1, since the write & index k
isresporsible for the value of ts(i).

J < k <)
W (l) W (1) Ry (1)
We have that thread(u) # thread(u), because otherwise v and v’
would have to be nested urits of work, and this would contradict

Observation 1 Then the projeded exeaution isin acordance with
interleaving scenario 4 (Table 1), which is a contradiction.

Subcase la.

k < i < j

subcaseId wum R W)

We have that ts(i) = ts(k) > ts(u) = ts(j), which contradicts
Lemmal.

Case2.ts(i) < prev(ts(u)). Theremust be a;j such that event(y)
W (1) by Assumption 1, and ts(j) = prev(ts(u)). Sincets(k)
ts(7) < prev(ts(u)), then it canna be the case that j < k, because
otherwise that would contradict Lemma 1. Therefore we have:

k < i J
W (1) Ru() W (1)

There must be and index i’ such that event(:') = W, (l) by As-
sumption 1 Wehavethati’ > j, becaise otherwisethat would con-
tradict Lemma 1. We have that thread(u) # thread(u"), becaise
otherwise that would contradict Observation 1 Thus the exeau-
tionisin acwrdance with the interleaving scenario: R, (1) W, (1)
W (1) (Table 1), which is <enario 1 from Definition 1 Thisisa
contradiction.

Thereforets(i) € {ts(u), prev(ts(u))}.

<

Part 3. Asaime that the projeded exeadtion is not in acmrdance
with any of the interleaving scenarios of Definition 1 Asaume that
there existsaunit of work u, ands < j, such that event(:) = R (1),
event(j) = R, (I'), andts(i) # ts(4). Suppcse that the unit of work
u does nat contain any writes. Let " and 5’ be the indices of writes
resporsible for the values of ts(i) and ts(j). We have that i’ < ¢
andj’ < j, andevent(i') = W, (1), event(j') = W, (I').

Case 1.l =!'. Then it must be that:

i’ < i 7’ j
W (1) Ru(1) W (1) Ru(1)
We have thread(u) # thread(u””) because otherwise that would
contradict Observation 1 But then the exeaiutionis in acordance

with interleaszing scenario 2 d Definition 1 (Table 1), which is a
contradiction.

Case2.1 # I’ andts(i) < ts(j).

’ <]

< i<
Case2a Ru(l) W (1) Ro(l)

'i/
W (1)

12

Theunit of work »"" must writel aswell by Assumption 1 Let k be
theindex of such awrite, event(k) = W, (1). It cannat bethe case
that k < ', because that would contradict Lemma 1. So k& > i,
since the write & i’ is the one resporsible for the value a i. We
have that thread(u) # thread(v’), because otherwise that would
contradict Observation 1 Thusthe exeattionisin acordance with
one the interleaving scenarios 9 or 10 (Table 1), which is a mntra
diction.

Case 2b.
i’ < 3’ < 1 < J
W, (1) W (1) Ru (1) Ru(l')
or
J’ < i’ < i < J
W (1) W, () Ry (1) Ru (")

Let k£ be an index such that event(k) = W, (1). Sincets(i') =
ts(z) < ts(j) =ts(j') = ts(k), then it must be that k£ > ¢’, because
otherwise that would contradict Lemma 1. We dso havethat &k > ¢
becaise i’ is the index resporsible for the value real at i. We
have that thread(u) # thread(v”), because otherwise that would
contradict Observation 1 Therefore the exeaution isin acmrdance
with ore of interleaving scenarios 8 and 11 (Table 1), which is a
contradiction.

Case 3.1 # I’ andts(z) > ts(j). The unit of work »" must write
" as well by Asaimption 1 Let & be the index of such a write,
evait(k) = W, (I'). Sincets(u’) = ts(¢) > ts(j) = ts(u”), then
it must be that & > j’, becaise otherwise that would contradict
Lemmal. Since;’ istheindex of the write resporsible for the read
a j, thenitisasothe caethat k£ > j. We have that thread(u) #
thread(u"), becaise otherwise that would contradict Observation 1
Therefore the exeaution is in acordance with the interleaving sce-
nario 8 (Table 1), which isa contradiction.

Thereforets(i) = ts(j).

j i k
W () Ru(l) W, (1) (scenario?3)
Part 1
j k i
Wu() Wy (1) Ru(l) (scenario4)
Part 2 - Subcese 1a
i j i
Ru,(l) Wyun(l) Wyu(l) (scenariol)
Part 2 - Case 2
4 i J
R.(l) Wyn(l) Ru(l) (scenario?)
Part 3- Case 1
i k 7’ J
R, (1) W (1) W (1) R, (1) (scenario 9)
; o)
i J k J
R,(l) Wy (l) W (1) R, (1) (scenario 9)
; ¥)
z J J k
R,(l) Wyun(l) R, (1) W, (1) (scenario 10
Part 3 - Case 2a
i’ i k J
Wu” (l,) Ru(l) Wu// (l) Ru(ll) (scmario 1])
} ; !
J i J k
Wu” (l,) Ru(l) Ru(l,) Wu//(l) (scmario 8)
Part 3 - Case 2b
i A 7 k
W, (1) Ryu() Ru.(l) W, (@) (scenaiod
Part 3- Case 3

Table 1 - Proof of Lemma2

