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Genome-wide association studies (GWAS) in coronary artery disease (CAD) have identified 113 

66 loci at ‘genome-wide significance’ (p < 5 × 10-8) but a much larger number of putative loci 114 

at a false discovery rate (FDR) of 5%1-4. Here, we leverage an interim release of UK Biobank 115 

(UKBB) data to evaluate the validity of the FDR approach. We tested a CAD phenotype 116 

inclusive of angina (SOFT; Ncases=10,801) as well as a stricter definition without it (HARD; 117 

Ncases=6,482) and selected the former for conducting a meta-analysis with the two most 118 

recent CAD GWASs2-3. This approach identified 13 new loci at genome-wide significance, 12 119 

of which were in our previous 5% FDR list2, and provided strong support that the remaining 120 

FDR loci represent genuine signals. The set of 304 independent variants at 5% FDR in this 121 

study explain 21.2% of CAD heritability and identified 243 loci that implicate pathways in 122 

blood vessel morphogenesis as well as lipid metabolism, nitric oxide signaling and 123 

inflammation. 124 

 125 

 126 

Previous GWAS studies of CAD risk1-4 have interrogated a large number of cases and controls 127 

but remain less well-powered than GWAS of quantitative traits5. UKBB was established to 128 

improve understanding of the causes of common diseases including CAD, a leading health 129 

problem around the world6. In addition to self-reported disease outcomes and extensive 130 

health and life-style questionnaire data, the 502,713 participants are being tracked through 131 

their NHS records and national registries (including cause of death and Hospital Episode 132 

Statistics). In July 2015, UKBB released genotypes imputed to the 1000 Genomes panel for 133 

152,249 participants profiled with a SNP array harboring 820,967 variants comprising 134 

common variants optimized for imputation, validated rare coding variants and sets of 135 

phenotype-associated variants or their proxies (e.g. GWAS catalogue).   136 



We set up The UKBiobank-CardioMetabolic-Consortium CHD working group to assess the use 137 

of self-reported and hospital record data on CAD in UKBB and define the relevant case and 138 

control subgroups to undertake genetic analyses of CAD risk. 139 

The July 2015 release of UKBB comprises 10,801 genotyped individuals with an inclusive CAD 140 

phenotype (‘SOFT’) that incorporates self-reported angina or other evidence of chronic 141 

coronary heart disease, of which 6,482 have a more stringently defined CAD phenotype 142 

(‘HARD’) of myocardial infarction and/or revascularisation (Fig. 1a). After QC we analysed the 143 

SOFT and HARD cases separately against 137,914 controls for 9,149,595 variants present 144 

either in the CARDIoGRAMplusC4D 1000-Genomes GWAS2 or the MIGen/CARDIoGRAM 145 

Exome-chip study3-4. The SOFT definition was selected for the primary analysis based on 146 

power calculations (Supplementary Table 1). We found 4 (SOFT and HARD), 1 (SOFT only) and 147 

2 (HARD only) variants reaching genome-wide significance, all located in known CAD loci 148 

(Supplementary Figure 1).  149 

We then meta-analysed the UKBB data for each CAD definition with each of the two published 150 

data sets (Supplementary Figure 2) applying a double genomic control correction.  For both 151 

the SOFT and HARD definitions, we validated all 66 known CAD loci (72 independent variants 152 

with p < 1.2xx10-3) with 43 and 37 respectively reaching genome-wide significance in this 153 

study (Supplementary Table 2). Outside the known CAD loci (1 Mb window centred on the 154 

published lead SNP) we found 9 new signals (in both SOFT and HARD) reaching genome-wide 155 

significance (Table 1 and Fig. 2). The anticipated increase in power with the SOFT definition 156 

(Supplementary Table 1) was attenuated by an inflation of the lambda statistic 157 

(Supplementary Table 3), potentially due to a combination of larger sample size (i.e. 158 

polygenicity) and a less homogeneous phenotype in the SOFT definition. Overall, there was 159 

strong concordance between corresponding signals for SOFT and HARD (Fig. 1b, 160 



Supplementary Table 4); subsequent analyses were undertaken using the SOFT meta-analysis 161 

results.  162 

To look for additional signals beyond the 9 that reached genome-wide significance (Fig. 2) we 163 

performed an FDR analysis and selected 23 suggestive signals at 1% FDR (p < 1.55x10-6; 164 

Supplementary Table 4) outside known CAD loci which we validated in an independent 165 

sample of up to 4,412 cases and 3,910 controls from the German MI-Family-Studies V and VI 166 

and a Greek case-control study (Supplementary Table 5). In total, we identified 13 new 167 

genome-wide significant CAD loci in the combined discovery and replication sample (Table 1, 168 

Supplementary Table 6).  169 

In our recent large-scale GWAS2, we reported 162, mainly common, variants at an FDR 170 

discovery cutoff of 5% showing conditional independent associations with the Pjoint test in 171 

GCTA7. Twelve of the 13 new sentinel SNPs were present or had a proxy (r2>0.8) among these 172 

162 variants2. Fig. 3 shows a strong linear relationship between association signals for these 173 

162 variants in the earlier2 and current analysis, with overall greater significance levels in the 174 

current meta-analysis. As expected, we observed an excess of small p-values for this set of 175 

variants in the UK Biobank alone (Supplementary Figure 3a). Monte Carlo simulations show 176 

that the expected number of replicated variants in the UK Biobank data is 56 (95%CI 42 – 69) 177 

(Supplementary Figure 3b) and we found 58 variants after allowing for multiple testing (q-178 

values < 0.05). This further confirms the validity of extended lists of associated variants based 179 

on FDR criteria. We therefore defined a new FDR list of association signals by performing an 180 

approximate joint association analysis with the GCTA software7 as described elsewhere2 using 181 

the 11,427 SNPs with 5%FDR. We identified 304 independent variants at Pjoint < 10-4, clustering 182 

in 243 putative CAD loci (Supplementary Table 7). The new 5%FDR set overlaps by 122 SNPs 183 

with the old set (75.3%; including proxies at an r2 > 0.8). We then assessed heritability using 184 



the independent set of 304 SNPs and obtained a heritability estimate of 21.2%.  The 185 

contribution to this heritability estimate of the 13 new loci (Table 1) was 1.03% whereas the 186 

new and known genome-wide significant CAD loci together explained 8.53% of CAD 187 

heritability. To further assess the validity and utility of the 5%FDR set, we tested the ability to 188 

predict CAD using genetic risk scores (GRS) based on either the 5%FDR SNPs (GRS1) or only 189 

CAD variants reaching genome-wide significance (GRS2; Online Methods) in an independent 190 

sample, EPIC-CVD8, comprising 7910 CHD cases and 12958 controls. In a model with age and 191 

sex, GRS1 increased the C-index by 0.25% compared to GRS2 (Supplementary Table 8). GRS1 192 

improved the point estimates of the HR compared to GRS2 mainly in the second (from 0.9116 193 

to 0.8314) and fourth quintile (from 1.0437 to 1.176), Supplementary Figure 4. 194 

We then explored the biology of the 13 new genome-wide significant CAD risk loci; 195 

Supplementary Figure 5 shows regional association plots. Supplementary Figure 6 provides 196 

in silico functional annotation (Online Methods) for each lead variant and its proxies (1000 197 

Genomes). We found compelling evidence to implicate candidate genes ITGB5, TGB1, PDE5A, 198 

ARHGEF26, FN1, CDH13, and HNF1 (detailed in Supplementary Note). The risk allele of 199 

rs150512726 (proxy for rs142695226; Table 1), causes a 3 amino acid deletion within the 200 

cytoplasmic tail of integrin subunit beta 5 (ITGB5), part of a heterodimer which regulates the 201 

activation of latent TGFB1 (Transforming growth factor beta 1)9-10. The intronic variant 202 

(rs8108632; Table 1) we identified in TGFB1, further implicates the TGFB1 pathway in CAD 203 

risk. TGFB1 is known to have important roles in endothelium and vascular smooth muscle11 204 

205 

signalling downstream of CDKN2B in the CDKN2BAS cardiovascular risk locus12. eQTL analyses 206 

suggested candidate CAD risk genes (TDRKH, FN1, ARHGEF26, PDE5A, ARNTL, and CDH13) in 207 

six new loci (Supplementary Table 9). For example, the lead variant rs7678555 (Table 1) was 208 



found to be a strong eQTL (p=8.1x10-13) for PDE5A only in aorta from CAD patients 209 

(STARNET13; Supplementary Table 9) although its regulatory potential was modest using 210 

functional prediction tools (Online methods). PDE5A encodes a cGMP-specific 211 

phosphodiesterase which is important for smooth muscle relaxation in the cardiovascular 212 

system where it regulates nitric-oxide-generated cGMP14. Furthermore, mining eQTL data in 213 

tissues from CAD patients (STARNET) showed several other instances of eSNPs (TDRKH, FN1, 214 

CDH13; Supplementary Table 9) having no effect in tissues from non-CAD patients (GTEx15), 215 

highlighting the need to expand efforts to map regulatory elements in disease tissues.  216 

Other candidate genes fit with emerging data on atherosclerosis mechanisms. For example, a 217 

knockout mouse for ARHGEF26 on a hyperlipidemic background resulted in reduced 218 

atherosclerosis and plaques with reduced macrophage content16. Similarly, FN1 expression is 219 

increased in plaques and mouse models have demonstrated a causal role for fibronectin-1 in 220 

the development and progression of atherosclerosis17-18. Finally, we undertook a phenome 221 

scan to assess pleiotropy (Supplementary Table 10). Several of the new lead SNPs (or a proxy) 222 

had robust associations (p < 5x10-8) with traditional CAD risk factors such as LDL-cholesterol 223 

(HNF1A and FN1), blood pressure (PRDM8/FGF5) and BMI (SNRPD2).  224 

 225 

We next evaluated the broader functional relationships among genes associated with variants 226 

(N=11,427) at 5%FDR. The 5%FDR set was annotated for eQTLs which, when present, were 227 

mainly found in atherosclerotic aortic wall (25%) or internal mammary artery (22%) of CAD 228 

patients (STARNET13; Supplementary Table 9). In GTEx15, eQTLs were mainly found in 229 

subcutaneous fat (Supplementary Table 9; Supplementary Figure 7). 230 

Prior pathway analyses of GWAS CAD loci have highlighted genes involved in lipid metabolism, 231 

cellular movement, and processes such as tissue morphology and immune cell trafficking1. 232 



Analysis of 357 genes, selected as either eQTLs and/or the nearest gene to a 5%FDR 233 

independent variant in this study (N=304), with the Ingenuity Knowledge base confirmed the 234 

above findings1 highlighting cardiovascular system development and function (p = 1.31x10-235 

16), organismal development (p = 1.31x10-16) and survival (p = 1.52x10-16) as the most 236 

significant processes. In addition to canonical pathways related to lipid metabolism, 237 

extracellular matrix, inflammation and nitric oxide production, the 357 gene set showed 238 

enrichment for angiogenesis and signalling by the pro-angiogenic growth factor VEGF 239 

(Supplementary Figure 8). We also applied DEPICT19 with the full distribution of 5%FDR 240 

signals (Online Methods) to search for enriched gene sets. Blood vessel development, which 241 

includes angiogenesis, was in the top 10 (p < 6.67x10-12) DEPICT Grouped-GeneSets 242 

(GO:0001568; Fig. 4, Supplementary Figure 9, Supplementary Table 11). 243 

Ingenuity built 5 networks out of the 357 genes with the largest three integrating 12 of the 244 

new candidate CAD risk genes with 67 candidate genes in known CAD loci (Supplementary 245 

Table 12). In total, the 5 networks comprise 66.4% of the 357 genes. 246 

This is the largest CAD genetic study to assess simultaneously common and rare (MAF < 247 

1%)/low-frequency (MAF 1-5%) variants. In total, 101 low-frequency and 3 rare variants 248 

reached genome-wide significance among all 5%FDR markers (N=11,427). This apparent 249 

paucity in rare variants which has also been reported for type 2 diabetes20, is likely due to lack 250 

of power compared to studies of quantitative traits e.g. a study of adult height in ~700,000 251 

individuals has reported 32 rare variants5. As expected, lower-frequency variants tend to have 252 

stronger effects compared to common variants (Supplementary Figure 10) with the exception 253 

of rs2891168 in CDK2NB-AS1 (MAF 48.7%; OR 1.19; Supplementary Table 13). The intergenic 254 

variant rs186696265 which had the largest OR (1.62) in our study is known to affect LDL 255 

cholesterol levels21.  256 



Our findings highlight the importance of the FDR approach to define an extended list of 257 

associated variants. As we have previously proposed1-2, suggestive association signals in well-258 

powered GWAS such as this one can substantially improve our knowledge of disease 259 

architecture at only a modest penalty implied by the 5%FDR. We have demonstrated the 260 

potential value of the new 5%FDR list in improving prediction of CAD risk and implicating new 261 

networks underlying CAD pathophysiology. This extended list of candidate genes provides a 262 

powerful resource for functional studies. 263 
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Figure legends 394 

Figure 1. (a) Diagram depicting the CAD phenotype definition in UK Biobank. HARD CAD 395 

defined as fatal or non-fatal myocardial infarction (MI), PTCA (percutaneous transluminal 396 

coronary angioplasty), or coronary artery bypass grafting (CABG). SOFT CAD includes HARD 397 

CAD as well as chronic ischaemic heart disease (IHD) and angina. UK Biobank self-reported 398 

data: ‘Vascular/heart problems diagnosed by doctor’ or ‘Non-cancer illnesses that self-399 

reported as angina or heart attack’. Self-reported surgery defined as either PTCA, CABG or 400 

triple heart bypass. HESIN hospital episodes data and death registry data using diagnosis and 401 

operation - primary and secondary cause: MI defined as hospital admission or cause of death 402 

due to ICD9 410-412, ICD10 I21-I24, I25.2; PTCA is defined as hospital admission for PTCA 403 

(OPCS-4  K49, K50.1, K75); CABG is defined as hospital admission for CABG (OPCS-4 K40 – 404 

K46); Angina or chronic IHD defined as hospital admission or death due to ICD9 413, 414.0, 405 

414.8, 414.9, ICD10 I20, I25.1, I25.5-I25.9. (b) Radar plot highlighting the proportions (%) of 406 

signals between the HARD and SOFT CAD phenotype definitions based on the 5%FDR results 407 

(Supplementary Table 4); MAF = minor allele frequency, p < 5x10-8 marks variants reaching 408 

genome-wide significance, OR = odds ratio (OR > 1.05 corresponds to 85% power to detect a 409 

signal (alpha < 0.05) in the SOFT analysis). The results for all six subgroups of variants assessed 410 

did not differ statistically between the two phenotype definitions (p>0.1) 411 

Figure 2. Transposed Manhattan plot showing the SOFT meta-analysis results under an 412 

additive model. The P-values are truncated at –log10(P) = 20. The red dotted lines are at 413 

GWAS (P=5x10-8) and 5% FDR significance (P=6.28x10-5). The known CAD risk loci are shown 414 

in black (Supplementary Table 2); KSR2 and ZNF507-LOC400684 had reached genome-wide 415 

significance under a recessive model2. The exome chip markers are shown with an *. The 13 416 



novel CAD loci which reached genome-wide significance in our study (including replication 417 

data; Table 1), are written in brown font. 418 

Figure 3. Single marker p-value comparison of the 5% FDR variants in the published 419 

CARDIoGRAMplusC4D 1000Genomes CAD GWAS meta-analysis2 and current FDR study. Of 420 

the 162 variants which had p <5x10-5 in the CAD 1000Genomes GWAS, 116 had a match or 421 

good proxy (r2 > 0.8) in the new FDR list (red circles). SNPs in green (n=7) were present in the 422 

earlier FDR list and reached genome-wide significance in the current analysis. 423 

Figure 4. Heat map showing the DEPICT gene set enrichment results with zoom-in on a subset 424 

of the results. 556 gene sets are included which had evidence of enrichment at 1% FDR. The 425 

x– axis shows the gene name, which is predicted to be included in the reconstituted gene set 426 

indicated in the y – axis.  The color red indicates higher Z-score, where Z-score is a value 427 

representing each gene’s inclusion in DEPICT’s reconstituted gene sets. Clustering was made 428 

based on complete linkage method. Highlighted pathways in the cluster, include 429 

angiogenesis, blood vessel development and morphogenesis. 430 

 431 

Online Methods 432 

Phenotype Definitions & Power calculation 433 

UKBB recruited 502,713 individuals aged 40-69 years from England, Scotland and Wales 434 

between 2006 and 2010 (94% of self-reported European ancestry). HARD CAD was defined 435 

as fatal or non-fatal myocardial infarction (MI), percutaneous transluminal coronary 436 

angioplasty (PTCA), or coronary artery bypass grafting (CABG). SOFT CAD includes all HARD 437 

CAD as well as chronic ischemic heart disease (IHD) and angina. Controls were defined as 438 

patients which were not a SOFT case after exclusions (listed below). All conditions were 439 

defined by either self-reported, hospital episode or death registry data. 440 

Exclusions were made for aneurysm and atherosclerotic cardiovascular disease using 441 

hospital admissions, or cause of death, codes ICD9 414.1, ICD 10 I25.0, I25.3, I25.4, and not 442 

having MI, PTCA, CABG, Angina or chronic IHD as defined above. 443 

Susceptibility effect sizes in MI cases and an inclusive CAD definition were very similar in 444 

the earlier GWAS2. We hypothesized that the detailed clinical information in UKBB might 445 

enhance the search for novel loci by further broadening the CAD phenotype to increase 446 

sample size. 447 

 448 



GWAS and meta-analyses  449 

All participants gave written consent for participation in genetic studies, and the protocol 450 

of each study was approved by the corresponding local research ethics committee or 451 

institutional review board. Participating cohorts in the 1000 Genomes and Exome GWAS 452 

studies are described elsewhere2,3. UK Biobank (UKBB samples) were excluded due to 453 

withdrawn consent, sex mismatches (n=182), Biobank/Believe QC exclusions (n=406) and 454 

sample relatedness (n=3,481) determined as Kinship>0.088. GWAS analysis in UKBB was 455 

restricted to variants with results available in the published GWAS2 or Exome3-4 dataset. 456 

Further exclusions included poorly imputed (info<0.4) or monomorphic variants, duplicate 457 

variants across data sets, variants that deviated strongly from Hardy-Weinberg Equilibrium 458 

in European ancestry controls (p<1x10-9), variants with an effect allele frequency in 459 

European ancestry samples that differed strongly (i) from 1000G European panel, (ii) from 460 

GWAS/Exome data, (iii) between arrays (UKBB vs UK-BiLEVE), and (iv) across genotyping 461 

batches. Variants that did not produce a valid result or estimated extreme log odds ratios 462 

(|beta|>4) were also excluded after analysis. Cluster plots lead variants and of proxies 463 

were visually inspected. 464 

We ran the GWAS under an additive frequentist mode of inheritance for each variant using 465 

the dosages from the imputed data, adjusting for array (UK Biobank vs UK BiLEVE) and the 466 

first five principal components using SNPTEST. Age and sex were not adjusted for to 467 

maximize the power to detect associations with diseases that have a prevalence <10%22. 468 

Population stratification was assessed and standard errors were adjusted using the 469 

genomic inflation statistic (λ). 470 

Association summary statistics (after λ correction) from the UKBB were combined with the 471 

1000 Genomes (1000G) imputed GWAS results2 and the Exome results3 via two separate 472 

fixed-effect inverse-variance weighted meta-analysis implemented in GWAMA23. We 473 

applied post meta-analysis λ correction in each instance. We identified 36,460 variants 474 

present in both the 1000G imputed GWAS and the Exome results. We retained the variants 475 

from the 1000G imputed GWAS if the median info score was 1, otherwise we retained the 476 

results from the Exome data. 477 

 478 

Comparison of SOFT vs HARD peak variant lists at 5% q-value  479 

The false discovery rate (FDR) following the meta-analysis with UKBB was assessed using a 480 

step-up procedure in the qqvalue Stata program24 as it is well controlled under positive 481 

regression-dependency conditions. We used the Simes method to generate q-values for 482 

the 8.9M variants. The p-value cut-off for a q-value of 5% for HARD was 7.24x10-5 and SOFT 483 

was 6.28x10-5. Peak SNPs were identified in a 1cM window. There is an exact overlap of 484 

155 variants between the 2 peak variant lists, however, using the 1cM window the overlap 485 

increases to 206 variants. Both the lists were annotated and classified into 6 categories 486 

(exome chip, indels, Odds Ratio (OR)>1.05, p<5e-8, MAF<5% and exonic). The proportions 487 

were calculated in each of the 6 categories and plotted as a radar plot (Fig. 1b). Monte 488 

Carlo simulations were used to assess the post-hoc power of the UKBB interim data to 489 

replicate the 155 variants. The 1000G GWAS effect sizes (“betas”) are expected to be 490 

subject to winner’s curse inflation so were shrunken (towards the null) by application of 491 

the FIQT procedure25. Effect sizes for firmly established CAD loci were systematically lower 492 

for SOFT compared to the HARD phenotype (Supplementary Table 1) noting that HARD 493 

closely corresponds to the CAD phenotype in reference 2. Betas were therefore further 494 



shrunken by a factor log (1.059)/log(1.072) = 0.82 (Supplementary Table 1). 10,000 495 

replicates were then randomly drawn from the vector of shrunken betas and the 496 

corresponding UKBB standard errors, to allow for variation in genotype call rates, 497 

imputation quality and allele frequency and to calculate Wald association statistics. 498 

Multiple testing of 155 variants was allowed for by controlling the FDR to 5% with a step-499 

up procedure encoded in the multproc26 Stata™ program. The average expected number 500 

of replicated variants was 56 (95%CI 42 – 69). Testing the 5% FDR variants (Supplementary 501 

Table 7) in UKBB with a model adjusted for age and sex gave concordant results to the 502 

unadjusted model (data not shown). 503 

  504 

GCTA & Heritability analysis  505 

We used the GCTA software7 to perform joint association analysis in (SOFT) meta-analysis 506 

results. This approach fits an approximate multiple regression model using summary-level 507 

meta-analysis statistics and LD corrections estimated from a reference panel (here the 508 

UKBB sample). We adopted a chromosome-wide stepwise selection procedure to select 509 

variants and estimate their joint effects at i) a genome-wide significance level (pJoint ≤ 510 

5x10-8) in the totality of meta-analysed variants (n~ 9M; Supplementary Figure 10, 511 

Supplementary Table 11) and ii) a Bonferroni-corrected pJoint<1x10-4 corresponding to 512 

the number of independent LD bins (r2 < 0.1) in the 5% FDR variant list (n=11,427; 513 

Supplementary Table 6). 514 

Heritability calculations were based on a multifactorial liability-threshold model, 515 

implemented in the INDI-V27 calculator (http://cnsgenomics.com/shiny/INDI-V/), under 516 

the assumption of a baseline population risk (K) of 0.071928 and a twins heritability (𝐻𝐿2) of 517 

0.4. Multiple regression estimates from the GCTA joint association analysis were used to 518 

estimate heritability for the 304 independent CAD risk variants within the 5% FDR list. 519 

 520 

Genetic risk score analysis  521 

GRS analysis was undertaken in the EPIC-CVD study8 which comprises 7910 CAD cases and 522 

12958 controls (Supplementary Note). We considered either all known and new lead CAD 523 

risk variants reaching genome-wide significance (GRS2; Supplementary Table 2 and Table 524 

1) or the 304 variants in the 5% FDR set (GRS1; Supplementary Table 7). We used variants 525 

with an INFO score filter of 0.4 in EPIC-CVD and replaced missing ones  with proxies (r2 > 526 

0.8 in 1000 Genomes European participants). GRS1 comprised 280 variants and GRS2 71. 527 

The raw GRS was obtained by summing the dosages of these variants for all individuals. 528 

We then fitted a Prentice weighted cox regression model for each GRS, adjusting for age 529 

and sex, to obtain survival forecasts and calculate the C indices. Statistical analyses were 530 

performed using R 3.3.3 and STATA 13.1. Variant extraction was done using qctool 1.4. 531 

 532 

Functional annotation 533 

eQTLs: For associations between the 304 independent variants (5% FDR) and gene 534 

expression traits we searched for expression quantitative trait loci (eQTLs) in the 535 

Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) RNA-seq 536 

dataset13 and the Genotype-Tissue Expression15 (GTEx) portal. eQTLs were included if the 537 

best eSNP (i.e. the variant with the most significant association with gene expression in cis) 538 

was in high LD (r2>0.8) with the CAD lead SNP. 539 

http://cnsgenomics.com/shiny/INDI-V/


Regulatory elements: We functionally annotated each of the 13 lead variants and their 540 

proxies (r2>0.8) using HaploregV429. Overlap with regulatory elements including 541 

chromosome state segmentation, DNase hypersensitivity, and transcription factor binding 542 

(TFB) as determined by the ENCODE30 and Roadmap Epigenome projects31, and predicted 543 

effects on TFB based on regulatory motifs from TRANSFAC32 and JASPAR33 were identified 544 

using HaploregV419 and the UCSC genome browser. Variants were then scored using three 545 

different bioinformatics tools that help prioritise causal disease variants. Combined 546 

Annotation Dependent Depletion (CADD)34 incorporates a range pathogenicity prediction 547 

tools to provide a genome-wide score (C-score) for each test variant from its pre-calculated 548 

database of ~8.6 billion genetic variants. High scores indicate variants that are not 549 

stabilized by selection and are more likely to be disease-causing and low scores indicate 550 

evolutionary stable non-damaging variants. The top 10% of likely functional variants will 551 

have a C-score >10 and top 1% of variants will have a C-score >20. Genome-wide 552 

annotation of variants (GWAVA)35 predicts the functional impact of noncoding variants 553 

based on genomic and epigenomic annotations and provides scores between 0 and 1 with 554 

higher scores indicating variants that are more likely to be functional. RegulomeDB36 555 

annotates and scores variants in seven categories based datasets such as ENCODE. Scores 556 

of 1-2 variants likely to affect TFB, 3 less likely to affect binding, 4-6 relate to variants with 557 

minimal binding evidence and 7 is for variants with no regulatory annotation. 558 

Phenome-scan: look ups in other common traits were performed using the PhenoScanner 559 

database as described in ref 37. 560 

 561 

Pathway analysis 562 

DEPICT: DEPICT19 is a computational tool which performs gene set enrichment analyses to 563 

prioritize genes in associated GWAS loci with probabilistically predefined gene sets based 564 

on Gene Ontology terms, canonical pathways, protein-protein interaction subnetworks 565 

and rodent phenotypes; reconstituted gene sets are detailed in refs 19 and 38. Input to 566 

our analysis were the 11,427 CAD variants (FDR 5%) of which 11,311 were annotated in 567 

DEPICT. We constructed loci as previously described (beta version 1.1, release 194, 568 

www.broadinstitute.org/mpg/depict). Analysis was performed with default parameters 569 

(50 repetitions to compute FDRs, 500 permutations to adjust for biases, such as gene 570 

length). The 11,311 variants were collapsed to 288 loci which were used in the gene set 571 

enrichment analyses.  Correlated gene sets were grouped together based on gene 572 

membership to expedite data interpretation. 573 

Ingenuity: Genes were selected using 304 independent SNPs (5% FDR) based on eQTLs 574 

(Supplementary Table 9) and physical proximity (included overlapping genes on opposite 575 

strands or at equal distance from the SNP). Spliced ESTs and putative transcripts were not 576 

included. Network analysis was performed using the Ingenuity Pathway Analysis software 577 

(www.ingenuity.com). We considered molecules and or relationships available in The IPA 578 

Knowledge Base (IKB) for human OR mouse OR rat and set the confidence filter to 579 

Experimentally Observed OR High (Predicted). Networks were generated with a maximum 580 

size of 70 genes and up to 10 networks were allowed. Networks are ranked according to 581 

their degree of relevance to the ‘eligible’ molecules in the query data set. The network 582 

score is based on the hypergeometric distribution and is calculated with the right-tailed 583 

Fisher's Exact Test. The significance p-value associated with enrichment of functional 584 

processes is calculated using the right-tailed Fisher Exact Test by considering the number 585 

http://www.broadinstitute.org/mpg/depict


of query molecules that participate in that function and the total number of molecules that 586 

are known to be associated with that function in the IKB. 587 

 588 

 589 

Data Availability: Meta-analysis summary statistics for the variants considered in this 590 

study for association with CAD (SOFT definition) are available at 591 

http://www.cardiogramplusc4d.org/data-downloads/. 592 
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Table 1 - Novel variants reaching genome-wide significance (P<5x10-8) in the combined (discovery and replication) SOFT meta-analysis  638 

Locus Name Markername CHR 
POS  

(hg19) 
EA EAF 

Functional 

Evidence 

UKBB+CoG/Exome Meta analysis 

OR (95% CI) P-value FDR Q-value OR (95% CI) P-value 

TDRKH rs11810571 1 151762308 G 0.849 eQTL/coding 1.060 (1.039 , 1.082) 2.21x10-8 8.05x10-5 1.057 (1.036 , 1.079) 4.24x10-8 

FN1 rs1250229* 2 216304384 T 0.256 eQTL/coding 1.072 (1.052 , 1.092) 1.85x10-13 2.05x10-9 1.071 (1.051 , 1.091) 2.77x10-13 

RHOA rs7623687 3 49448566 A 0.855 none 1.074 (1.049 , 1.100) 3.72x10-9 1.62x10-5 1.076 (1.052 , 1.101) 3.44x10-10 

UMPS/ITGB5 rs142695226 3 124475201 G 0.138 eQTL/coding 1.069 (1.045 , 1.094) 1.00x10-8 3.98x10-5 1.071 (1.048 , 1.095) 1.53x10-9 

ARHGEF26 rs12493885* 3 153839866 C 0.886 eQTL 1.074 (1.047 , 1.101) 3.29x10-8 1.15x10-4 1.073 (1.047 , 1.101) 3.16x10-8 

PRDM8/FGF5 rs10857147 4 81181072 T 0.275 none 1.056 (1.036 , 1.075) 8.96x10-9 3.60x10-5 1.054 (1.036 , 1.073) 5.66x10-9 

PDE5A/MAD2L1 rs7678555 4 120909501 C 0.30 eQTL 1.049 (1.031 , 1.069) 1.43x10-7 4.25x10-4 1.052 (1.034 , 1.070) 1.32x10-8 

HDGFL1 rs6909752 6 22612629 A 0.351 none 1.051 (1.034 , 1.069) 5.59x10-9 2.35x10-5 1.051 (1.034 , 1.068) 2.19x10-9 

ARNTL rs3993105 11 13303071 T 0.704 none 1.048 (1.030 , 1.067) 1.06x10-7 3.33x10-4 1.048 (1.031 , 1.066) 4.77x10-8 

HNF1A rs2244608 12 121416988 G 0.355 coding 1.053 (1.035 , 1.070) 2.32x10-9 1.06x10-5 1.053 (1.035 , 1.070) 7.74x10-10 

CDH13 rs7500448 16 83045790 A 0.752 eQTL 1.061 (1.040 , 1.082) 5.14x10-9 2.18x10-5 1.063 (1.043 , 1.083) 4.76x10-10 

TGFB1 rs8108632 19 41854534 T 0.488 none 1.049 (1.031 , 1.067) 5.88x10-8 1.95x10-4 1.048 (1.031 , 1.066) 4.04x10-8 

SNRPD2 rs1964272 19 46190268 G 0.510 none 1.045 (1.028 , 1.063) 2.29x10-7 6.15x10-4 1.047 (1.030 , 1.064) 2.46x10-8 

*Exome marker 639 

EA: effect allele; EAF: Effect allele frequency; CoG = CARDIoGRAMplusC4D 1000G GWAS; Exome = Exome array analysis; UKBB = UK Biobank; 640 

Discovery sample comprised 71,602 cases and 260,875 controls (for exome markers 53,135 and 215,611 respectively); Replication sample 641 

comprised up to 4412 cases and 3910 controls. Functional evidence for the locus is given where the lead variant or a variant in high LD (r2>0.8) 642 

is a coding change, has evidence as an expression quantitative trait locus (eQTL), or both. Further details of functional evidence are provided in 643 

Supplementary Table 7 and Supplementary Figure 6. 644 
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