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Abstract 
Motivation: There is great interest to understand the impact of rare variants in human diseases using large sequence 

datasets. In deep sequences datasets of >10,000 samples, ~10% of the variant sites are observed to be multi-allelic. 

Many of the multi-allelic variants have been shown to be functional and disease relevant. Proper analysis of multi-allelic 

variants is critical to the success of a sequencing study, but existing methods do not properly handle multi-allelic variants 

and can produce highly misleading association results.  

Results: We propose novel methods to encode multi-allelic sites, conduct single variant and gene-level association 

analyses, and perform meta-analysis for multi-allelic variants. We evaluated these methods through extensive simula-

tions and the study of a large meta-analysis of ~18,000 samples on the cigarettes-per-day phenotype. We showed that 

our joint modeling approach provided an unbiased estimate of genetic effects, greatly improved the power of single 

variant association tests, and enhanced gene-level tests over existing approaches.  

Availability: Software packages implementing these methods are available at  (https://github.com/zhanxw/rvtests 

http://genome.sph.umich.edu/wiki/RareMETAL). 

Contact: xiaowei.zhan@utsouthwestern.edu; dajiang.liu@psu.edu  

 

 

 

1 Introduction  

Rare genetic variants are enriched with functional alleles 

that play an important role in a variety of complex human 

diseases, including hematological disorder(Auer, et al., 

2014), coronary artery disease(Do, et al., 2015; Myocardial 

Infarction, et al., 2016; Tg, et al., 2014) and others. The dis-

covery of such rare variant associations has contributed sig-

nificantly to the generation of new mechanistic insights and 

the identification of novel therapeutic targets(Cohen, et al., 

2006; Tg, et al., 2014). These discoveries are critical steps 

toward the successful implementation of precision medi-

cine.  

As the cost of sequencing continues to decrease, many 

sequence-based studies of rare variants have begun to 

emerge. Compared to array-based studies which only gen-

otype variants at known sites, sequence-based studies un-

biasedly reveal both known and novel variants across the 

frequency spectrum. The fraction of novel alleles/variants 

uncovered increases with increasing read depth and sample 

size. In addition to identifying novel variant sites, numer-

ous novel alleles at known variant sites are being uncovered 

as well. As shown in the exome aggregation consortium 

(ExAC)(Lek, et al., 2016), 8% of the variant sites in the hu-

man exome are multi-allelic and contain more than one al-

ternative allele. A number of these multi-allelic variants are 

functional and have been shown to be disease relevant 

(Lek, et al., 2016). Despite the importance of multi-allelic 

variants, most of the methods developed so far for se-

quence-based association analysis consider only bi-allelic 
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variants, and thus do not properly handle multi-allelic sites 

(Chang, et al., 2015; Purcell, et al., 2007).  

The analysis of multi-allelic sites is currently often ig-

nored in GWAS and sequence-based association studies. 

Multi-allelic analysis were considered prior to GWAS era 

for microsatellite markers. Yet, the existing methods all 

have certain limitations, which make it challenging to ana-

lyze sequence data. Some methods focused on how to com-

bine multiple alleles in the same position and perform an 

omnibus test(El Galta, et al., 2005). Another method 

(Terwilliger, 1995) made use of retrospective likelihood to 

model the joint distribution of multi-allelic variants at a sin-

gle variant site. Yet it is challenging to extend this model 

to multiple variant sites in linkage disequilibrium, it is dif-

ficult to generalize this approach to analyze gene-level as-

sociations. To our knowledge, it is still unknown what the 

best strategy is to integrate multiple allelic sites into gene-

level association tests. 

Moreover, it is unclear how to perform meta-analysis 

and combine samples across studies in the presence of 

multi-allelic variants. In addition, most of the identified 

rare variant associations have small to moderate effect 

sizes(Zuk, et al., 2014). There is growing recognition that 

large sample sizes are needed to attain sufficient power to 

uncover rare causal variants. Consortia efforts are under-

way to aggregate large sample sizes for the study of various 

complex human diseases. Meta-analysis plays a critical role 

in the vast majority of consortium efforts, where typically 

only summary level information such as genetic effects and 

p-values are shared across different studies. Compared to 

sharing individual-level genotype and phenotype data from 

study participants, meta-analysis of summary statistics can 

be easier to implement, more protective of study participant 

privacy and more robust against heterogeneity between 

studies(Evangelou and Ioannidis, 2013). It is therefore nec-

essary to extend existing meta-analysis methods and soft-

ware to properly handle multi-allelic sites as well.  

In this article, we propose a series of innovations to ad-

dress the key analysis issues for multi-allelic variants, 

which represent 10% for the genomic variations. We devel-

oped novel methods to jointly model the effects of multiple 

alleles in single variant association tests, and facilitate con-

venient gene-level association analysis and meta-analysis. 

We evaluated these methods using extensive and realistic 

simulations and show that they consistently outperform ex-

isting naïve methods that either ignore multi-allelic sites or 

test each alternative allele separately. We also applied these 

methods to a large scale meta-analysis of nicotine addiction 

phenotypes. We show that our method can uncover multi-

allelic association in known loci of the cigarettes-per-day 

(CPD) phenotype. We have also implemented these meth-

ods in RVTESTS(Zhan, et al., 2016) for association analy-

sis and the generation of summary association statistics and 

RAREMETAL(Feng, et al., 2014) for meta-analysis. Given 

the importance of the multi-allelic variants, we expect these 

methods to play key roles in large scale genetic discoveries 

with sequence data.    

2 Methods 

We describe our method to encode multi-allelic variants, perform single 

variant and gene-level analyses, and carry out meta-analysis. The key idea 

is to jointly model the effects of multiple alternative alleles for multi-al-

lelic variants in single variant and gene-level tests. This joint modeling 

strategy gives a proper estimate of the alternative allele effect and facili-

tates the construction of gene-level tests from single variant association 

test statistics of multi-allelic sites. This method improves power over the 

method that ignores multi-allelic variants and the method that models the 

effect of each alternative allele separately.  

For a multi-allelic variant at site 𝑚 with 𝐿 alternative alleles, we can 

encode the genotype for individual 𝑖  with an 𝐿 -vector 𝐺%& =

𝐺%&
( , 𝐺%&

* , … , 𝐺%&
, , where the 𝑙./  entry is the number of the 𝑙./  alternative 

allele. Assuming Hardy-Weinberg equilibrium, the counts 2 −

𝐺%&
2

2 , 𝐺%&
( , … , 𝐺%&

,  follow a multinomial distribution 

𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚 2, 1 − 𝑓22 , 𝑓(, … , 𝑓, , where 𝑓2  is the alternative allele 

frequency for the 𝑙./  alternative allele, and 1 − 𝑓22  is the frequency for 

the reference allele. The counts for two different alternative alleles 

𝐺%&
2 , 𝐺%&

2:  are negatively correlated with covariance 𝐺%&
2 , 𝐺%&

2: = −2𝑓2𝑓2:  

. The correlation can be large when the two alternative alleles 𝐴2  and 𝐴2:  
are common. We have illustrated this genotype coding with an example of 

a tri-allelic site in Table S1.  

When there are genotype uncertainties in the data, genotype dosages 

are often used instead of hard genotype calls for genetic association anal-

yses(Howie, et al., 2012; Howie, et al., 2009; Li, et al., 2011). Under our 

coding scheme, the calculation of the genotype dosages is similar to bi-

allelic variants.  

Joint Modeling Multi-Allelic Effects  

We are interested in estimating and testing for the effect of each alternative 

allele 𝐴2 , 𝑙 = 1, … , 𝐿. The effect of allele 𝐴2  measures the mean phenotype 

change when having an additional copy of the 𝐴2  allele.  

To properly analyze a multi-allelic variant, we propose a joint model 

that includes the genotypes for all alternative alleles in the model. Specif-

ically, to estimate (or test for) the effect of the 𝑙./  alternative allele, we 

perform the multiple regression 𝑌% = 𝛼 + 𝛽2𝐺%&
2 + 𝛽2:𝐺%&

2:

2:@2 + 𝜖% . The 

multiple regression coefficient 𝛽2  estimates 𝐸 𝑌% 𝐺%&
2 = 1, 𝐺%&

C2 −

𝐸 𝑌 𝐺%&
2 = 0, 𝐺%&

C2  where 𝐺%&
C2  is the genotype vector at site 𝑚 for the rest 

of the alleles 𝐴(, … , 𝐴2C(, 𝐴2E(, … , 𝐴, . The effect of the 𝑙./  alternative al-

lele can be unbiasedly estimated from multiple regression.  

An alternative strategy, which we call single-allelic analysis, is to re-

strict our analysis to the set of individuals with genotypes 

𝐴F 𝐴F , 𝐴F 𝐴2 , 𝐴2 𝐴2 . As the analyzed samples are selected based on gen-

otype only, the regression analysis is still valid and will give us an unbi-

ased estimate of the effect of 𝐴2 . However, depending on the frequency of 

other alternative alleles, the single-allelic analysis may discard a signifi-

cant portion of the sample and the association analysis can be underpow-

ered.  

An additional advantage of joint multi-allelic analysis over single-al-

lelic analysis is the convenience of constructing gene-level tests from sin-

gle variant association statistics. For single-allelic analysis, a different set 

of samples are analyzed for each different alternative allele. This makes it 

impossible to construct gene-level tests using single variant association 

statistics calculated for different samples.  

Finally, it is important to note that directly regressing 𝑌 over the allele 

count (i.e. 𝐺%&
2 ) will lead to biased effect estimates. A numerical example 

is given in the Supplemental Methods and Figure S1, to illustrate the 

considerable bias and inflated type I errors for a naïve approach.  

Meta-analysis of Single Variant Test in the Presence of Multi-allelic Sites  

We propose appropriate meta-analysis methods of single variant and gene-

level association tests in the presence of multi-allelic sites. We denote the 

sample genotype matrix at the multi-allelic site 𝑚 as 𝐆𝐦. We will calcu-

late and share the marginal association statistic obtained from the regres-

sion analysis over the counts of each alternative allele, i.e. 𝑌% = 𝛼 +

𝛽2𝐺%&
2 + 𝑍%𝛾 + 𝜖, where 𝑍%  is the vector of covariate for individual 𝑖. The 

score statistic for the 𝑙./  allele is equal to 𝑈LMN =
(

OP
𝐺%&
2 𝑌% − 𝑌%% , 

where 𝑌% = 𝛼 + 𝑍%𝛾. The parameters 𝛼 and 𝛾 are the model parameter es-
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timates for 𝛼 and 𝛾 and 𝜎* is the residual variance under the null hypoth-

esis. The variance-covariance matrix between the score statistics for dif-

ferent alleles are given by  

𝐕𝐆𝐦𝐆𝐦 = 1/𝜎* 𝐆𝐦
𝐓 𝐆𝐦 − 𝐆𝐦

𝐓 𝐙 𝐙𝐓𝐙 C(𝐙𝐓𝐆𝐦   (1) 

To test for the effect of the 𝑙./  alternative allele, we need to control for the 

effects of the rest of the 𝐿 − 1 alternative alleles. Specifically, in a regres-

sion model that includes the counts of all alternative alleles, i.e.  

𝑌% = 𝛼 + 𝐺%&
2 𝛽2 + 𝐺%&

2: 𝛽2:2:@2 + 𝜖% , 

the conditional score statistic for the 𝑙./  alternative allele is equal to 

𝐔𝐆𝐦𝐥 |𝐆𝐦Y𝐥 = 𝐺%&
2 𝑌% − 𝑌%% , where 𝑌% = 𝐺%&

2: 𝛽2:2:@2  and 𝛃C𝐥 =

𝛽(, … , 𝛽2C(, 𝛽2E(, … , 𝛽, = 𝐕
𝐆𝐦
Y𝐥𝐆𝐦

Y𝐥
C𝟏 𝐔𝐆𝐦Y𝐥   

The conditional score statistic can be calculated using marginal associa-

tion statistics:  

𝐔𝐆𝐦𝐥 |𝐆𝐦Y𝐥 = 𝐔𝐆𝐦𝐥 − 𝐕𝐆𝐦𝐥 𝐆𝐦Y𝐥𝐕𝐆𝐦Y𝐥𝐆𝐦Y𝐥
C𝟏 𝐔𝐆𝐦Y𝐥 .	  (2) 

The variance of the conditional score statistic is equal to  

𝐕𝐆𝐦𝐥 |𝐆𝐦Y𝐥 = 𝐕𝐆𝐦𝐥 𝐆𝐦𝐥 − 𝐕𝐆𝐦𝐥 𝐆𝐦Y𝐥𝐕𝐆𝐦𝐥 𝐆𝐦Y𝐥
C𝟏 𝐕𝐆𝐦Y𝐥𝐆𝐦𝐥 𝜎

^|_`
Ya

*  

In meta-analysis, we will combine score statistics using the Mantel 

Haenszel method. Specifically, given the score statistics at site 𝑚  (i.e. 

U(,_`a |_`Ya , … , Uc,_`a |_`Ya ) and their variances in 𝐾  studies (i.e. 

𝐕𝟏,𝐆𝐦𝐥 |𝐆𝐦Y𝐥 , … , 𝐕𝐊,𝐆𝐦𝐥 |𝐆𝐦Y𝐥), the meta-analysis score statistic can be calculated 

by 𝐔𝐌𝐄𝐓𝐀,𝐆𝐦𝐥 |𝐆𝐦Y𝐥 = 𝐔𝐤,𝐆𝐦𝐥 |𝐆𝐦Y𝐥 ,j  and 𝐕𝐌𝐄𝐓𝐀,𝐆𝐦𝐥 |𝐆𝐦Y𝐥 = 𝐕𝐤,𝐆𝐦𝐥 |𝐆𝐦Y𝐥j .  

The standardized score statistic is equal to 𝑇lmno,LMN =
𝐔
𝐌𝐄𝐓𝐀,𝐆𝐦

𝐥 |𝐆𝐦
Y𝐥

𝟐

𝐕
𝐌𝐄𝐓𝐀,𝐆𝐦

𝐥 |𝐆𝐦
Y𝐥

, which 

follows a chi-square distribution with 1 degree of freedom.  

Meta-analysis of Gene-level Association Test in the Presence of Multi-

allelic Sites  

As we showed for single variant analysis, it is necessary to jointly model 

the effects of all alternative alleles in the same site in order to attain unbi-

ased association analysis of each allele. Most commonly used gene-level 

association tests, such as the burden test, SKAT and VT, can be con-

structed using single variant association statistics and their covariance ma-

trices(Lee, et al., 2013). When the gene region contains rare alternative 

alleles from multi-allelic sites, the score statistic from joint multi-allelic 

analysis (i.e., 𝐔𝐆𝐦𝐥 |𝐆𝐦Y𝐥) needs to be used to construct a gene-level test. As 

in single variant analysis, using the marginal score statistic 𝑈LMN  without 

adjusting the effects of other alternative alleles leads to biased results and 

inflated type I errors.  

 Below, we describe an extension of gene-level tests to scenarios 

where the gene region contains multi-allelic sites. The calculation of gene-

level tests requires score statistics from variant sites that contain rare al-

leles, including the score statistics from bi-allelic sites, the score statistic 

from joint multi-allelic analysis, as well as the covariance matrix between 

them. Single variant association statistics from bi-allelic and multi-allelic 

sites have been described in the above section. We next derive the vari-

ance-covariance matrix between these score statistics and then discuss 

how to use them to construct commonly used rare variant tests. 

For notational convenience, we denote the genotype matrices for 

common alternative alleles from multi-allelic sites as 𝐆𝐂, the rare allele 

from the multi-allelic sites as 𝐆𝐑 and the rare alleles from bi-allelic sites 

as 𝐆𝐁 . We denote the vector of score statistics for all rare alleles as 

𝐔𝐆𝐄𝐍𝐄 = 𝐔𝐆𝐁|𝐆𝐂 , 𝐔𝐆𝐑|𝐆𝐂 , which includes the score statistics from bi-al-

lelic sites (conditional on the common alternative alleles from multi-allelic 

sites) and the score statistics from joint multi-allelic analysis.  

 Below, we illustrate how to calculate the covariance matrix between 

score statistics. The covariance matrix between score statistics of rare al-

leles at multi-allelic sites equals to 

𝐕𝐆𝐑𝐆𝐑 =
1

𝜎*
𝐆𝐑
𝐓𝐆𝐑 − 𝐆𝐑

𝐓𝐆𝐂 𝐆𝐂
𝐓𝐆𝐂

C(𝐆𝐑
𝐓𝐆𝐂  

the covariance between rare bi-allelic variants equals to  

𝐕𝐆𝐁𝐆𝐁 =
1

𝜎*
𝐆𝐁
𝐓𝐆𝐁 − 𝐆𝐁

𝐓𝐆𝐂 𝐆𝐂
𝐓𝐆𝐂

C(𝐆𝐂
𝐓𝐆𝐁  

The covariance matrix between rare bi-allelic variants and rare multi-al-

lelic variants equals to  

𝐕𝐆𝐁𝐆𝐑 =
1

σ*
𝐆𝐁
𝐓𝐆𝐑 − 𝐆𝐁

𝐓𝐆𝐂 𝐆𝐂
𝐓𝐆𝐂

C(𝐆𝐂
𝐓𝐆𝐑  

 When non-genetic covariates 𝐙 are present, we just need to replace 

𝐆𝐂 with 𝐆𝐂 = (𝐆𝐂, 𝐙), and the calculation of covariance matrix remains 

the same. 

The covariance matrix for the score statistic is denoted by 𝐕𝐆𝐄𝐍𝐄 =
𝐕𝐆𝐑𝐆𝐑 𝐕𝐆𝐑𝐆𝐁
𝐕𝐆𝐁𝐆𝐑 𝐕𝐆𝐁𝐆𝐁

. The burden test statistic(Li and Leal, 2008) and its vari-

ance are equal to 𝑈xyz{m| = 𝐰𝐓𝐔𝐆𝐄𝐍𝐄  and 𝑉xyz{m| = 𝐰𝐓𝐕𝐆𝐄𝐍𝐄𝐰 , 

where 𝐰 is the weight assigned to each variant. The standardized burden 

statistic satisfies 𝑇xyz{m| =
y������
P

�������
~𝜒���(

* . The SKAT statistic(Wu, et 

al., 2011) is equal to 𝑄��on = 𝐔𝐆𝐄𝐍𝐄
𝐓 𝛀	𝐔𝐆𝐄𝐍𝐄, where 𝛀 is a diagonal ma-

trix with the diagonal entries being the weights assigned to each variant 

site. The SKAT statistic follows a mixture chi-square distribution with 

mixture proportions being the eigenvalues for 𝐕𝐆𝐄𝐍𝐄
(/*

𝛀𝐕𝐆𝐄𝐍𝐄
𝟏/𝟐

. The VT sta-

tistic calculates a burden test statistic for each minor allele frequency 

threshold and corrects for the multiple comparison issue using the minimal 

p-value method(Lin and Tang, 2011; Price, et al., 2010). The p-values can 

be calculated using the distribution function for a multivariate normal dis-

tribution.    

Design of Simulation Evaluation  

We conducted extensive simulations to evaluate the proposed methods. 

To generate genetic data with realistic patterns of multi-allelic sites, we 

used the allele frequency spectra estimated from large-scale exome se-

quencing projects. We downloaded data from the ExAC project (version 

0.3.1), which consists of summary information for coding variants from 

60,706 exomes.  

To benchmark single variant association tests, in each replicate, we 

randomly picked one variant site from 219,680 sites that contain multiple 

alternative alleles. To illustrate the advantage of joint multi-allelic analy-

sis, we separately considered the power for detecting associations with the 

primary alternative allele (i.e. the most frequent alternative allele) and the 

secondary alternative allele (i.e. the less frequency allele(s) ). We simu-

lated the genotype (i.e. the reference and alternative allele counts) for each 

Table 1. The power for single variant association analysis. We compared 

the power of single allelic analysis and joint multi-allelic analysis for de-

tecting associations with each alternative allele. The power was evalu-

ated under the threshold of 𝛼 = 4.5×10C� , adjusting for the increased 

multiple testing burden for analyzing multiple alleles.  

Sample	Size	 Genetic	Effects	
Single	Allelic	

Analysis	

Multi-Allelic	

Analysis	

Type	I	Error/Power	for	the	Analysis	of	the	Primary	Alt	Alleles	

	 0	 4.7x10
-8	

4.2x10
-8
	

10000	 0.1	 0.24	 0.25	

	 0.25	 0.57	 0.57	

	 0.5	 0.75	 0.76	

	 0	 4.6x10
-8
	 4.2x10

-8
	

20000	 0.1	 0.36	 0.37	

	 0.25	 0.67	 0.68	

	 0.5	 0.82	 0.82	

Type	I	Error/Power	for	the	Analysis	of	Secondary	Alt	Alleles	

10000	

0	 4.1x10
-8
	 4.8x10

-8
	

0.1	 0.037	 0.056	

0.25	 0.24	 0.3	

0.5	 0.48	 0.55	

20000	

0	 4.9x10
-8
	 4.3x10

-8
	

0.1	 0.087	 0.12	

0.25	 0.36	 0.43	

0.5	 0.6	 0.66	
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sample based on a multinomial distribution: 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚 2, 1 −

𝑓�� , 𝑓(, … , 𝑓, . For each variant site, we randomly chose one alternative 

allele as causal with effects being 0.1, 0.25 or 0.5 sd. The power for de-

tecting associations with the primary (or secondary) alternative allele was 

assessed by the fraction of the replicates with significant p-values (<5x10-

8) among the replicates where the primary (or secondary) alternative allele 

is causal.  

We also assessed the power for single allelic and joint-multi-allelic 

analysis as omnibus tests to identify associated variant sites (instead of 

identifying associated alleles). We compared it with the off-the-shelf 

method of collapsing the multiple alternative alleles.  

In order to evaluate the gene-level association test under the most re-

alistic patterns of linkage disequilibrium and multi-allelic variant allele 

frequency spectrums, we made use of real genotype data from eight co-

horts included the Minnesota Center for Twin and Family Research 

(MCTFR), SardiNIA, METabolic Syndrome In Men (METSIM), Genes 

for Good, COPDGene with samples of European ancestry, COPDGene 

with samples of African American ancestry, and the Center for Antisocial 

Drug Dependence (CADD). Based upon the real genotype, we simulated 

phenotypes: for each replicate, we randomly chose one gene with at least 

one multi-allelic variant. We chose a fraction (20% or 50%) of the genetic 

variants as causal, with effects simulated from 𝑁(0,0.2*). We considered 

three commonly used tests, including the simple burden test, SKAT and 

VT. The type I error and power for the meta-analyses were evaluated un-

der 𝛼 = 2.5×10C�.  

Analysis of Cigarettes Per Day Phenotype (CPD) 

In order to benchmark our method and its implementation, we applied our 

method to perform a meta-analysis on large genetic datasets from eight 

cohorts for the CPD phenotype. The eight cohorts included the Minnesota 

Center for Twin and Family Research (MCTFR), SardiNIA, METabolic 

Syndrome In Men (METSIM), Genes for Good, COPDGene with samples 

of European ancestry, COPDGene with samples of African American an-

cestry, and the Center for Antisocial Drug Dependence (CADD). Sum-

mary association statistics from the eight cohorts were generated using 

RVTESTS(Zhan, et al., 2016), and meta-analysis was performed centrally 

using RAREMETAL(Feng, et al., 2014). Detailed descriptions of the co-

horts are available in Supplemental Methods Section 2, including infor-

mation on the methods for association analyses and the adjusted covari-

ates. 

In order to ensure the validity of our association analysis results, we 

conducted extensive quality control for the imputed genotype data. We 

filtered out variant sites with the imputation quality metric 𝑅* < .7, and 

removed variant sites that showed large differences in allele frequencies 

from the reference panel. We performed single variant tests using joint 

multi-allelic analysis and single-allelic analysis. We also performed gene-

level tests using the burden test, SKAT and VT under two different allele 

frequency cutoffs, 1% and 5%. As a comparison, we analyzed the data 

using the method that discards the multi-allelic sites as well.  

3 Results 

Type I Error and Power Evaluation for Single Variant As-

sociation Test  

Simulations indicated that jointly modeling the allelic ef-

fects of multiple alternative alleles leads to more powerful 

single variant association tests (Table 1). The power for 

joint multi-allelic analysis is consistently higher than single 

allelic analysis. We separately considered the power for the 

analysis of the primary and secondary alternative alleles. 

For the analysis of secondary alternative alleles, the single 

allelic analysis did not consider samples that carry the pri-

mary alleles. The power for single allelic analysis was 

much lower than multi-allelic analysis. For example, in the 

scenario where the causal allele effect is .25, the power for 

single allelic analysis is .36 whereas the power for multi-

allelic analysis is .43. On the other hand, the power of 

multi-allelic analysis for detecting associations with pri-

mary alternative allele has a smaller advantage.   

 We also compared the power for the single allelic and 

multi-allelic analysis as omnibus tests for identifying asso-

ciated variant sites (Table S2). Testing each allele sepa-

rately may slightly increase the burden for multiple testing. 

In a deep sequencing study, 10% of the variant site can be 

multi-allelic. Using single allelic or multi-allelic analysis as 

omnibus test, a variant site is deemed to be associated if at 

least one alternative allele has p-values < 5x10-8/1.1, a 

threshold that corrects for the increased load of multiple 

testing. The power for the collapsing method was evaluated 

under the threshold of 5x10-8. We considered models where 

1) only the primary alternative allele is causal, 2) only sec-

ondary alternative is causal, and 3) the model where all al-

ternative alleles are causal. The power for single allelic and 

multi-allelic analysis is higher than the method that col-

lapses multiple alleles under nearly all scenarios. When all 

alternative alleles are causal with effects in the same direc-

tion, the collapsing method is only slightly more powerful.  

When only the secondary alternative is causal, the presence 

of non-causal primary alternative allele can severely 

weaken the association signal and substantially reduce the 

power for the collapsing method.   

Type I Error and Power Evaluation for Gene-level Associ-

ation Test  

We evaluated the power for two different analysis strate-

gies for gene-level tests in the presence of multi-allelic 

sites: 1) the joint modeling approach that simultaneously 

considers the effects of multi-allelic and bi-allelic sites, and 

Table 2. The Type I Error and Power for Gene-level Association Tests. 

We compared the power for simple burden, SKAT and VT tests for the joint 

multi-allelic analysis and the analysis that discards multi-allelic sites. The 

power and type I error were assessed under a threshold of 𝛼 = 2.5×10C� 

using 100,0000 replicates. 

MAF 

Cutoff 

Pct of 

Causal 

Variants 

Power 

Burden/SKAT/VT Burden/SKAT/VT 

Joint Multi-allelic 

Analysis 

Discard Multi-al-

lelic Sites 

Type I Error 

0.01 0% 
2.6x10-6/ 

2.1x10-6/3.0x10-6 

2.5x10-6/ 

3.1x10-6/2.6x10-6 

0.05 0% 
2.5x10-6/ 

2.3x10-6/2.3x10-6 

3.0x10-6/ 

2.1x10-6/2.7x10-6 

Power - Causal Variants Have Uni-directional Effects 

0.01 
20% 0.50/0.39/0.68 0.42/0.35/0.61 

50% 0.93/0.79/0.99 0.90/0.77/0.98 

0.05 
20% 0.42/0.39/0.71 0.37/0.36/0.64 

50% 0.88/0.80/0.99 0.87/0.79/0.99 

Power - Causal Variants Have Bi-directional Effects 

0.01 
20% 0.06/0.16/0.13 0.05/0.13/0.11 

50% 0.14/0.44/0.31 0.14/0.40/0.29 

0.05 
20% 0.05/0.17/0.14 0.05/0.15/0.12 

50% 0.12/0.42/0.30 0.12/0.40/0.30 
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2) the approach that discards multi-allelic sites from the 

gene-level analysis.  

We also evaluated the power under a variety of scenar-

ios with different combinations of sample sizes, genetic ef-

fect distributions and proportions of causal variants. Causal 

variant effects were sampled from a normal distribution 

𝑁 0, 𝜎�
* , with 𝜎� = .25. Under each scenario, three gene-

level tests were considered: the simple burden test, SKAT, 

and VT, analyzing rare variants with MAF<1% or 5%.  

Type I errors were well controlled across all scenarios. 

The power for gene-level tests was consistently higher 

when we jointly modeled the effects of all alternative al-

leles for multi-allelic sites (Table 2). The strategy that dis-

cards multi-allelic sites could lead to ~20% decrease in 

power, particularly when the effects of causal alleles are in 

the same directions. For example, when the MAF cutoff of 

0.01 and 20% of the variants were causal, power for the 

burden/SKAT/VT tests were respectively 50%/39%/68%, 

which were substantially higher than the power for the 

three tests analyzing only bi-allelic variants 

(42%/35%/61%). This is consistent with the benchmark of 

rare variant association methods (Li and Leal, 2008; Liu 

and Leal, 2010), where the erroneous exclusion of causal 

variants drastically reduces power.  

When variants have bi-directional effects, SKAT is the 

most powerful test. The power of SKAT based upon multi-

allelic analysis was considerably higher than the method 

that discards multi-allelic sites. Simple burden and VT tests 

were underpowered in this scenario. Yet, the tests based 

upon multi-allelic analysis were still consistently more 

powerful.  

Analysis of Cigarettes-Per-Day Phenotype  

We analyzed the genetic and phenotype data from the eight 

cohorts for the study of the CPD trait. The eight cohorts 

were genotyped with GWAS arrays, and imputed to the 

1000Genome reference panel with the Michigan Imputa-

tion Server(Das, et al., 2016; McCarthy, et al., 2016). After 

quality control, a total of 29,124,949 variants sites were 

segregating in at least one cohort. Among them, 289,809 

(1%) contained multiple alternative alleles. The fraction of 

multi-allelic sites was lower than what was discovered in 

sequence-based studies, due to the sample size of the refer-

ence panel, the exclusion of the variant sites with low alter-

native allele counts from the reference panel, and the re-

moval of rare imputed alleles due to low imputation quality. 

Most of the multi-allelic variants were in the intergenic re-

gion, and only 105,727 belonged to the genic region. 

Among the 19,321 genes that were analyzed, 2,475 con-

tained coding multi-allelic variants (nonsynonymous, stop 

or splice), and 2,319/2,417 contained rare alternative alleles 

with MAF<1%/5% at their multi-allelic sites.   

We first performed single variant association tests. The 

analysis results are well behaved. We examined the ge-

nomic control values for all variants in different frequency 

bins (0, 0.001], (0.001, 0.01] and (0.01, 0.5]. All genomic 

control inflation factors were < 1.03. We also separately 

examined the genomic control inflation factor for multi-al-

lelic variants only, and ensured that the tests all had well-

calibrated type I errors (Figure S3).  

Table 3. Top Single Variant Association Signals for the Cigarettes-Per-Day Phenotype Using Multi-allelic Analysis. Results are shown for variants with p-

values less than 5×10-8. We report the p-values and genetic effect estimates for each alternative allele at multi-allelic sites. As a comparison, we also report the p-

values and test statistics from single-allelic analysis, as well as the omnibus test that collapses multiple alleles.  

POSITION	
REFEREN

CE	ALLELE	

ALT	

ALLELE	

ALT	

ALLELE	

FREQ	

P-VALUE	 BETA	
BETA	

SD	
N	

DIRECTION	

OF	

EFFECTS
*	

ANNO	

STAT	

SINGLE-

ALLELIC	

ANALYSI

S	

P-VALUE	

SINGLE-

ALLELIC	

ANALYSIS	

P-VALUE	

COLLAPSING	

MULTI-

ALLELIC	

SITES	

15:78915370	 CT	 C	 0.41	 1.6×10
-11
	 0.078	 0.012	 17512	 -+++++++	

Inter-

genic	
44.67	 2.3×10

-11
	

1.0×10
-10
	

15:78915370	 CT	 CTTT	 0.019	 0.61	 0.022	 0.044	 17512	 -++++-+-	
Inter-

genic	
0.34	 0.55	

15:78859605	 AAAAAG	 A	 0.33	 2.3×10
-11
	 0.079	 0.012	 17512	 -+++++++	

Deletion	

CHRNA5	
43.74	 3.8×10

-11
	

5.1×10
-10
	

15:78859605	 A	 G	 0.00077	 0.38	 0.29	 0.33	 17512	 +++-+-+-	
Intron	

CHRNA5	
0.091	 0.76	

15:78913353	 CGCGGGCGG	 C	 0.47	 2.4×10
-9
	 0.072	 0.012	 17512	 -+++++++	

Deletion	

CHRNA3	
33.31	 7.8×10

-9
	

2.8×10
-7
	

15:78913353	 CGCGGGCGG	
CGCGGGCGGGC

GG	
0.033	 0.10	 -0.057	 0.035	 17512	 +--+----	

Insertion	

CHRNA3	
0.75	 0.38	

15:78785944	 AT	 ATT	 0.29	 7.7×10
-9
	 0.079	 0.014	 17512	 -+++++++	

Insertion	

IREB2	
31.81	 1.7×10

-8
	

1.5×10
-4
	

15:78785944	 AT	 A	 0.18	 0.71	 0.0056	 0.016	 17512	 +------+	
Deletion	

IREB2	
0.00057	 0.98	

15:78871382	 CT	 CTT	 0.40	 1.4×10
-8
	 0.080	 0.014	 13723	 XX++++++	

Insertion	

CHRNA5	
27.81	 1.3×10

-7
	

6.2×10
-7
	

15:78871382	 CT	 C	 0.070	 0.37	 0.022	 0.025	 17512	 -+-----+	
Deletion	

CHRNA5	
0.29	 0.58	

15:78751667	 G	
GTTTTTTGTTTGT

TTGT	
0.29	 1.6×10

-8
	 0.071	 0.013	 17512	 -+++++++	

Insertion	

IREB2	
22.25	 2.4×10

-6
	

1.1×10
-7
	

15:78751667	 G	
GTTTTTTTGTTTG

TTTG	
0.0019	 0.97	 0.0048	 0.14	 17512	 ++--+---	

Insertion	

IREB2	
0.065	 0.80	

 
*: The direction of effect measures the direction of the effect of the alternative allele in each cohort. The signs +,- represent positive and negative effects. The sign X 

represents that the variant is missing in the corresponding study, which can be due to failed quality control, being monomorphic or unmeasured. The order of the 8 
cohorts in the meta-analysis is MCTFR, SardiNIA, METSIM, Genes for Good, COPDGene European, COPDGene African, and CADD 
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In single variant association analysis, we recovered a 

well-known locus associated with CPD. In fact, all top hits 

in the meta-analysis came from the CHRNA5-CHRNA3-

CHRNB4 locus. The top variant was 15:78886947_G/A 

(rs4887067), which is a variant from the untranslated re-

gion in the gene CHRNA5.  No other loci, or novel loci, 

were uncovered in this study with genome-wide signifi-

cance.  

The top association signals for multi-allelic variants 

also lay in the CHRNA5-CHRNA3-CHRNB4 locus (Table 

3, Figure S2-S4). Most of the top association signals ap-

peared as insertion-deletion polymorphisms (indels). The 

most significant variant 15:78915370(rs34573245) had a p-

value of 1.6×10-11 and is located in the intergenic regions. 

There were five other significantly associated multi-allelic 

variants in the genes CHRNA5, CHRNA3 and IREB2.  

We compared the association results using the new 

method and the method that relies on single-allelic analysis. 

Single-allelic analysis identified only 5 significantly asso-

ciated multi-allelic variants in the locus, while the joint 

multi-allelic analysis identified 6 variants. The p-values for 

multi-allelic analysis were consistently smaller. The mean 

chi-square statistic at known loci could be used as an esti-

mate for the non-centrality parameter and then used as a 

metric to empirically assess the power for an association 

statistic(Zaitlen, et al., 2012). The mean chi-square statis-

tics for the multi-allelic and single allelic analyses were 

34.5 and 33.3 respectively, with multi-allelic variants 4% 

higher. This is consistent with the observations in our sim-

ulation studies. We plotted the − log(F(𝑃)  for the two 

methods (Figure S1). We observed a higher concordance 

between multi-allelic and single-allelic association analysis 

for lower frequency variants (MAF<1%) than for common 

variants (MAF>1%), with rank correlations for common 

and rare variants at 98% and 90% respectively.  

In addition, we also implemented the method that col-

lapses multiple alternative alleles. The collapsing method 

is an omnibus test, which can be used to identify associated 

variant sites, instead of associated alleles. Given that all the 

top association signals are driven by the common primary 

alternative allele, all collapsing p-values were less signifi-

cant than multi-allelic analysis p-values. No additional sig-

nificant variant sites were identified. Among the 6 top var-

iant sites identified using joint multi-allelic analysis, only 

two variant sites 15:78915370 and 15:78859605 had ge-

nome-wide significant collapsing p-values (p < 5×10C�).   

We also performed gene-level association tests analyz-

ing variants with MAF<1% and 5%. Type I errors were 

well controlled for all gene-level tests (Figure S5, S6). For 

genes with rare multi-allelic variants, no significant associ-

ations were found (Table 4). Only one gene SHCBP1L was 

identified as significant under the Bonferroni threshold 

α=2.5×10-6 for testing 20,000 genes (Table S3). The gene 

is a testis-specific spindle-associated factor that plays a role 

in spermatogenesis(Liu, et al., 2014; Sood, et al., 2001), 

which does not have an obvious function related to tobacco 

use phenotypes.  

Finally, we compared the gene-level test p-values for 

the analysis that discards multi-allelic sites, and the analy-

sis that only analyzes rare alternative alleles without con-

trolling for the genotypes of the common alternative allele 

in the same site. Considerable discrepancies were observed 

in the scatterplots for different analysis strategies (Figure 

S7), which shows that the naïve method does not provide a 

useful approximation for the principled methods.    

 Our software implementation scaled well with this 

large-scale analysis. The generation of single variant asso-

ciation statistics took 15.1 CPU hours. The computing time 

scales linearly with the sample size and the number of ge-

netic variants. It required 2.1 CPU hours for single variant 

Table 4. Top Gene-level Association Signals for Genes with Multi-allelic Sites. We performed simple burden, SKAT and VT tests under the two different minor 

allele frequency cutoffs 0.01 and 0.05. No results were significant under the threshold 𝛼 = 2.5×10C�. For each rare variant test performed, we show the test statistics, 

p-values, the number of variant sites and the number of multi-allelic variant sites for the top 3 signals.  

Gene	 Statistic	 P-Value	 Num-

ber	of	

Variant	

Site	

Num-

ber	of	

Multi-

allelic	

Site	

Number	

of	

Multi-

allelic	

Site	

with	

Rare	

Variant	

Gene	 Statistic	 P-Value	 Num-

ber	of	

Variant	

Site	

Num-

ber	of	

Multi-

allelic	

Site	

Num-

ber	of	

Multi-

allelic	

Site	

with	

Rare	

Variant	

Burden	Test	with	MAF<1%	 Burden	Test	with	MAF<5%	

MLKL	 16.81	 4.1×10
-

5
	

28	 4	 4	 PTPN22	 13.49	 0.00024	 32	 3	 1	

DMBX1	 13.11	 0.00029	 15	 2	 2	 CROCC	 11.14	 0.00085	 178	 1	 1	

BRD3	 10.73	 0.0011	 29	 3	 2	 HLA-DQA1	 10.25	 0.0014	 11	 3	 0	

SKAT	Test	with	MAF<1%	 SKAT	Test	with	MAF<5%	

ABTB1	 1654137.32	 5.5×10
-

5	

28	 3	 3	 ABTB1	 1834395.76	 0.00015	 29	 3	 3	

SEMA7A	 1056004.78	 0.00032	 13	 1	 1	 DTNBP1	 4098263.16	 0.00049	 23	 1	 1	

METTL8	 1075541.99	 0.00036	 10	 9	 8	 NRBF2	 1454883.06	 0.00074	 7	 4	 4	

VT	Test	with	MAF<1%	 VT	Test	with	MAF<5%	

TTC15	 21.98	 1.9×10
-

5
	

27	 18	 13	 TTC15	 21.98	 2.46×10
-5
	 27	 18	 15	

MLKL	 16.81	 0.00031	 28	 4	 4	 WNK1	 16.11	 0.00049	 28	 15	 15	

ARHGEF40	 15.08	 0.00078	 28	 3	 1	 MLKL	 15.71	 0.00068	 28	 4	 4	
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meta-analysis and 6.2 CPU hours for three gene-level asso-

ciation tests conducted under two different MAF cutoffs. 

 

4. DISCUSSION  

Multi-allelic variants represent a highly important class of 

genetic variation in large scale sequencing studies. Multi-

allelic variants have been largely ignored in the GWAS era 

due to the extensive use of common bi-allelic SNPs as 

markers to tag regions that harbor causal variants. As deep 

sequence data become increasingly available on larger 

sample sizes, many more low frequency and rare multi-al-

lelic variants are expected to be discovered. Many of the 

novel variants will be identified at previously monomor-

phic sites, while others will appear as novel alleles at 

known sites. For example, in a sample with ~65,000 exo-

mes, 8% of the known variant sites were found to be multi-

allelic. It will be important to be able to properly analyze 

such multi-allelic variants for disease association and as-

sess their functional impact.  

Here, we developed and evaluated a new method for an-

alyzing multi-allelic sites in sequence-based association 

studies and meta-analysis. The method proceeds by jointly 

modeling the effects of different alternative alleles for 

multi-allelic variants. It allows unbiased estimates of multi-

allelic effects and leads to more powerful gene-level tests 

than the method that discards multi-allelic variants.  

Most of the multi-allelic variants from imputation-

based GWAS contain no more than 2 different alternative 

alleles. For single nucleotide variants, there can be at most 

3 different alternative alleles. We focus on testing the effect 

of each alternative allele for association, while jointly mod-

eling the effects of other alternative alleles. This strategy 

appears to be the most biologically relevant. We are inter-

ested in knowing if a given basepair change is associated 

with the phenotype, so that we can follow up with precise 

functional experiment to validate these discoveries.  

For the analysis of other types of variants such as indels 

or copy number variations, there may be more alternative 

alleles. It may be of interest to perform an omnibus test (e.g. 

by collapsing multiple alternative alleles) and examine if at 

least one allele at the site is associated with the disease out-

come. One possibility is to consider multivariate tests, such 

as the multivariate score test(Hotelling, 1931), the method 

by collapsing multiple alternative alleles, or the variance 

component score based test (Lin, 1997). It is well known 

that these multivariate tests can be calculated using the 

shared summary association statistics and their covariance 

matrices. Thus, our framework can be easily adapted to om-

nibus tests for multi-allelic variants. It should be noted that 

the omnibus test can be extremely underpowered if only the 

secondary alternative alleles are causal. As most of the 

novel alternative allele identified by a sequencing study is 

rare, the utility of omnibus test in the association of multi-

allelic variants remain to be understood in the upcoming 

large scale sequencing studies.  

As an application, we applied our method to a large 

scale meta-analysis of the cigarettes-per-day phenotype us-

ing the 1000 Genomes Project based imputations. The anal-

ysis type I error rates were well-behaved and sufficiently 

powerful, confirming the known association for the 

CHRNA5-CHRNA3-CHRNB4 locus. Yet, no new loci were 

uncovered from our meta-analysis using ~18,000 samples. 

This may be because our dataset is smaller than some of the 

largest studies on tobacco addiction(Tobacco and Genetics, 

2010). It is clear that larger sample sizes may be necessary 

to uncover novel nicotine addiction-related loci. 

As multi-allelic variants are often ignored by existing 

GWAS and sequence-based association analysis software 

packages, the representation of multi-allelic variants is still 

not unified. The output from the popular imputation soft-

ware and imputation servers(Das, et al., 2016) represent 

multiple alleles from the same site in separate lines, with 

the genotypes in each line representing the number of the 

corresponding alternative alleles. For instance, the variant 

at chromosome 19 and position 55178198 has reference al-

lele C, and two possible alternative alleles G and T. The 

VCF file contains two lines for this variant site: one line 

with reference/alternative alleles being C/G and the other 

line with reference/alternative alleles C/T. To represent in-

dividual genotypes, one must combine information across 

the two lines in the VCF. For example, genotypes of G/T 

(i.e., heterozygous for both alternative alleles) would be 

represented with a genotype coding of 0/1, 0/1 in the two 

lines of VCF file. Similarly genotypes of C/G would be en-

coded as 1/0 and 0/0. In other VCFs, such as the VCF files 

released by the ExAC project(Lek, et al., 2016), the multi-

allelic variant may be represented in one single line. For 

instance, the same variant 19:55178198, 0,1 and 2 may be 

used to represent the reference allele C, the first and second 

alternative alleles G and T. In this case, the genotype G/T 

is coded as 1/2. Software packages are available to recode 

the genotypes of multi-allelic site in separate lines. Our im-

plementation of the method supports both representations. 

In the future, it will be helpful to standardize the represen-

tation of the multi-allelic sites and streamline the support in 

software packages and libraries.  

In conclusion, we developed a series of methods for 

multi-allelic association analysis and meta-analysis, which 

provide unbiased effect estimates for multi-allelic variants 

and improve power over current available approaches. As 

large scale sequencing studies become more prevalent, 

multi-allelic variants will become an even more important 

class of genetic variation. We envision that our methods 

will be highly applicable for understanding the functional 

impact and disease associations of multi-allelic variants in 

large scale sequencing studies.  
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