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Abstract—Automatic semantic concept detection in video is
important for effective content-based video retrieval and mining
and has gained great attention recently. In this paper, we propose
a general post-filtering framework to enhance robustness and
accuracy of semantic concept detection using association and tem-
poral analysis for concept knowledge discovery. Co-occurrence
of several semantic concepts could imply the presence of other
concepts. We use association mining techniques to discover such
inter-concept association relationships from annotations. With
discovered concept association rules, we propose a strategy
to combine associated concept classifiers to improve detection
accuracy. In addition, because video is often visually smooth and
semantically coherent, detection results from temporally adjacent
shots could be used for the detection of the current shot. We pro-
pose temporal filter designs for inter-shot temporal dependency
mining to further improve detection accuracy. Experiments on
the TRECVID 2005 dataset show our post-filtering framework is
both efficient and effective in improving the accuracy of semantic
concept detection in video. Furthermore, it is easy to integrate our
framework with existing classifiers to boost their performance.

Index Terms—Semantic concept detection, association rule
mining, temporal rule mining, post-filtering, content-based video
retrieval and mining.

I. INTRODUCTION

With rapidly increasing capturing, storage and delivery

capabilities, a vast number of video data are available. While

enjoying the luxury of a plenitude of videos, people often

find that videos accessible to them are more than they can

absorb and it is difficult to efficiently retrieve relevant ones.

Therefore, effective video retrieval and mining has become a

research focus to address this need. To facilitate effective video

retrieval and mining, automatic semantic concept detection [1],

[2], i.e. finding video shots that match specific concepts such

as outdoor, face, office and nature, plays an important role

because it bridges the gap between low-level features and high-

level human interpretation.

The concept detection problem can typically be formulated

as a pattern classification problem where multiple classifiers

based on visual, audio and text features are trained from videos

and a set of annotations using machine learning methods. Most
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work in this area focuses on learning the mapping between

the low-level features extracted from videos and the corre-

sponding high-level concept annotations. Unfortunately, due

to the gap between low-level features and high-level semantic

interpretation [3]–[5], semantic concepts are still often difficult

to be accurately detected even after we utilize multi-modal

features and various fusion techniques [6]. Therefore, effective

and efficient semantic concept detection in video remains a

challenging problem to be solved.

Learning for semantic concept detection often requires

a large set of ground truth annotations which demand a

tremendous manual effort. Although such annotations are

precious, most approaches only utilize annotations for learning

a mapping between low-level features and a concept at a time.

However, annotations actually contain more information that

we can explore to improve concept detection performance.

For example, the co-occurrence of several semantic concepts

in a shot could imply the presence of other concepts. For

instance, the presence of the concept building likely implies

the presence of the concept outdoor. Thus, we could discover

such inter-concept associations from the annotations and use

them to improve detection accuracy. In addition, a video

is often visually smooth and semantically coherent. Thus,

the presence of a semantic concept generally spans multiple

consecutive shots. For example, the presence of the concept

sports in a shot indicates that the same concept is likely present

in its previous and next few shots in the same video sequence.

Therefore, the presence of a semantic concept for the current

shot could be inferred from detection results of neighboring

shots. Such inter-shot temporal dependency can also be learned

from annotations.

Motivated by the observations that a video shot usually

is annotated with multiple correlated concepts and that a

semantic concept usually spans multiple shots, this paper

proposes a general post-filtering framework that infers the

presence of a semantic concept from both inter-concept asso-

ciation relationships and inter-shot temporal dependency. We

use the association analysis [7], [8] and temporal rules to

enhance the performance of semantic concept detection for

video data. To exploit inter-concept association relationships,

based on concept annotations of video shots, we discover the

hidden association between concepts, i.e., frequent concept

patterns, which are sets of concepts frequently appearing

together within a shot. The concept association rules that

define implication relationships between concepts are used to
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improve the detection accuracy by integrating the associated

concept detectors using our combined ranking scheme. For

exploring inter-shot temporal coherence, the temporal rules

that model the temporal dependency among neighboring shots

are used to aggregate results from neighboring shots to predict

the current shot with respect to a concept. We explore several

design options and propose an effective smoothing scheme that

exploits temporal coherence to correct the (mis-)prediction for

a shot using its adjacent shots.

Although some previous work shares similar spirit of using

inter-concept relationship or temporal coherence to improve

concept detection, most of them integrated such ideas into their

classifiers using graphical models or other means [9]–[16]. The

complexity of modeling the relationships among all concepts

often grows exponentially as the number of concepts increases.

Therefore, large amount of training data is needed to effec-

tively learn the relations among concepts and such models are

coupled with specific sets of classifiers. The reported improve-

ment on concept detection accuracy using these methods is

often limited due to the usually unreliable outputs from single

concept detectors. In addition, such methods are often difficult

to be integrated with classifiers using different approaches.

Our post-filtering framework does not require separate training

data and uses an efficient data-driven approach to obtain inter-

concept association rules and inter-shot temporal dependency.

Furthermore, our framework is universally applicable to any

given set of independent classifiers to boost their performance.

Finally, our post-filtering scheme is extremely efficient in both

learning and detection.

The rest of this paper is organized as follows. Related work

is discussed in Section II. The semantic concept detection

framework is introduced in Section III. Concept association

analysis and a combined ranking scheme are described in

Section IV. Section V presents temporal rule mining. Exper-

iments are discussed in Section VI, followed by conclusions

in Section VII.

II. RELATED WORK

Association classification [17], [18] has been proposed in

recent studies in data mining to achieve higher classifica-

tion accuracy than traditional rule-based classifiers such as

C4.5 [19]. However, these approaches generate the association

rules between features and class labels for prediction and

do not consider the association between different classes.

Such techniques have also been applied to web image clus-

tering [20]. Analysis of concept annotation data has been

proposed by Kender and Naphade [21] to track news stories.

However, their focus is on clustering of video episodes into

new stories with low-level features instead of improving

semantic concept detection. Xie and Chang tested different

mining schemes on annotations for a fixed lexicon and showed

that discovered patterns can indicate semantics beyond the

lexicon for annotations [22]. Frequent itemsets are defined on

the concept annotations and their consistency is verified on

two different sets of concept lexicons. However, they did not

use them for visual concept detection.

Various multi-concept relational learning approaches via

graphical models, such as Bayesian network, restricted Boltz-

man machines, Markov random fields, and conditional random

fields, have been proposed by researchers [9]–[11] to capture

the relationship between outputs of independent concept clas-

sifiers. Because of their complexity, large amount of training

data is often needed for effective learning. The semantic

pathfinder [12] also considers concepts in context. It utilizes

the Discriminative Model Fusion (DMF) method [13] which

uses an extra layer of contextual SVM classifiers that take

the detection scores of independent detectors to further refine

the detection results. Boosted conditional random field [14]

is used to improve the results of DMF by combining the

power of boosting with Conditional Random Field (CRF). On

the contrary, our post-filtering framework efficiently explores

inter-conceptual association rules and inter-shot temporal de-

pendency within training data. Furthermore, our framework is

more easily applied to other classifiers.

Ebadollahi et al. detected novel visual events by modeling

them as stochastic temporal processes in the semantic concept

space [15]. They used Hidden Markov Model (HMM) to map

the concept score evolution patterns to a visual event. How-

ever, they did not consider inter-shot temporal dependency to

refine concept scores. Yang and Hauptmann studied the effects

of temporal consistency on video retrieval and proposed to use

active learning with temporal sampling strategies to improve

accuracy of concept detectors [16]. They also concluded that

linear smoothing did not have any significant improvement.

However, they did not consider the posterior probability of

positive and negative results. Thus, the smoothed score of a

shot is simply a weighted combination of likelihood scores

of three neighboring shots. The impact of temporal window

size was not considered in their work and the filter weights

were estimated only by logistic regression which may suffer

from outliers or noise in the original prediction scores. On the

contrary, our post-filtering framework explores more effective

smoothing schemes by estimating proper temporal filtering

window sizes and weights based on annotations and statistical

measurements.

III. SEMANTIC CONCEPT DETECTION

Users often input queries to a video database to retrieve

videos corresponding to specific high-level concepts. Due

to the large amount of video data, a general approach for

semantic concept detection is needed to automatically annotate

large-scale video archive based on a fixed concept lexicon to

facilitate such queries [6], [23]. Let C = {c1, c2, ...cM} be

the concept lexicon, i.e. the set of M concepts that the system

attempts to detect. For semantic concept detection, a video

is first segmented into a sequence of scenes; each scene is

segmented into shots; and each shot is comprised of a set

of keyframes. Shots are the commonly-used basic semantic

units for annotation and retrieval. To train concept detectors,

some shots are annotated manually to create the ground truth.

Let S = {s1, s2...st, ..., sN} be the training set of N shots

and {A1, A2, ...AN} be the set of corresponding annotations,

in which At is the annotation for the t-th shot st. Because

multiple concepts could simultaneously be present in a shot,

the annotation At is a subset of C. We could use a binary
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Fig. 1. Our post-filtering framework for semantic concept detection in video
with concept association rules and temporal rules.

variable lit = |At

⋂

{ci}|, where |.| indicates the number of

elements in a set, to represent whether the concept ci is present

in the shot st. Each keyframe within a shot is processed to

extract a set of features characterizing the visual properties

of the annotated concept. These visual features could include

color, texture, motion, structure, color moments and so on.

Audio and speech information could also be included to

enhance the performance. Finally, let {x1,x2, ...xN} be the set

of features for classification, where xt is the feature associated

with the shot st.

Given the feature vectors extracted from the video data

and the corresponding annotations given by users, a typical

approach to the semantic concept detection task is to use

supervised learning. Classification techniques such as support

vector machines (SVMs) find patterns associated with a spe-

cific concept in the features of the video data. The SVM

classifier di for each of the semantic concepts ci can be trained

from the manually annotated training data. Platt’s conversion

method [24], [25] can be used to convert the output margin of

the SVM method into a posterior probability. Thus, for each

concept ci, each concept classifier di provides a prediction

value within [0, 1] as the probability measurement P (lit|xt)
for the presence of the concept ci in the test shot st given

st’s associated feature vector xt. The retrieval result is often

presented to the user as a ranked list of all shots in the order

of their prediction values.

Due to the semantic gap, discrepancy between low-level

features and high-level semantic interpretation [3], some se-

mantic concepts may be difficult to detect solely based on

the concept classifiers. In this paper, we propose a post-

filtering technique to incorporate context knowledge (both

inter-concept and inter-shot) to further improve the accuracy of

semantic concept detection in video. Figure 1 shows our post-

filtering framework for semantic concept detection using con-

cept association rules and temporal rules. During the training

phase, these rules are discovered from manual shot annotations

without any extra training data and are independent of the

types of classifiers. Concept association rules capture the

inter-concept relationships between multiple concepts while

temporal rules model the temporal intra-concept dependency

among multiple neighboring shots. At the detection stage,

given only the prediction values for shots, our rule-based post-

filtering module uses the learned association and temporal

rules to re-rank the test shots.

IV. ASSOCIATION RULE MINING

The co-occurrence of semantic concepts in a shot represents

a context that can be used to discover hidden relationships

between semantic concepts. Such context can be modeled

as concept association rules that can be used to infer the

presence of a concept based on the presence of other associated

concepts. In Section IV-A, we first present formal definitions

of concept association rules to clearly show what we aim to

discover from the annotation data, followed by efficient algo-

rithms to discover frequent patterns and generate these rules.

We then present a combined ranking scheme in Section IV-B

for post-filtering of semantic concept detection results based

on the discovered concept association rules.

A. Concept Association Rules

Let A and B be two annotations containing concepts from

C. We say that annotation A contains B if and only if B ⊆ A.

Definition (Concept Association Rule) A concept association

rule is an implication of the form A =⇒ B, where A ⊂ C,

B ⊂ C, and A ∩ B = φ.

Definition (Support) The support of a concept association

rule, A =⇒ B, is the percentage of annotations that contain

A ∪ B.

Definition (Confidence) The confidence of a concept associa-

tion rule, A =⇒ B, is the percentage of annotations containing

A that also contain B.

Intuitively, a concept association rule A =⇒ B means the

co-occurrence of concepts in set A in a shot implies the

presence of concepts in set B in that shot. The support of the

concept association rule measures how often such an associ-

ation occurs in the ground truth and the confidence indicates

how likely such an implication happens when concepts in A

co-occur. For example, the rule, building⇒outdoor, indicates

that appearance of the concept building implies it is likely that

the concept outdoor also appears in the same shot. The support

and confidence represent the interestingness of a discovered

rule. A support of 2% means that 2% of the annotations

of all shots show that these two concepts appear together.

A confidence of 60% means that 60% of the shots whose

annotations contain building also contain outdoor. Typically,

we are interested in association rules that satisfy both a user-

given minimum support threshold min supp and a minimum

confidence threshold min conf.

Example 1 The following table shows an example of an

annotated training video dataset. {aircraft} =⇒ {sky} is an

example of a concept association rule with support of 2/5 and

confidence of 2/3. �

Shot Annotation

s1 A1={aircraft, sky}
s2 A2={urban, people, outdoor}
s3 A3={aircraft, outdoor}
s4 A4={aircraft, sky, outdoor}
s5 A5={people, walking running, military}
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To discover concept association rules, ground truth an-

notations are analyzed to find hidden frequent patterns, or

itemsets, reflecting which concepts are frequently associated

or appear together in a shot. These patterns can then be used

to discover concept association rules. The Apriori algorithm

[26] is an iterative approach to perform a level-wise search for

frequent itemsets, where frequent k-itemsets, i.e., itemsets that

contain exactly k distinct items, are used to generate frequent

(k+1)-itemsets. The level-wise search space can be reduced

effectively by using the following property:

(Apriori Property) All nonempty subsets of a frequent itemset

must also be frequent..

For example, if an itemset I is not frequent, i.e., Support(I)
< min supp, then the itemset with another added item A, I∪A

cannot occur more frequently than I , i.e., Support(I ∪ A) <

min supp. The algorithmic form of the Apriori algorithm is

as follows.

Algorithm 1 APRORI. Given an annotation data set

{A1, A2, ...AN} and the minimum support threshold,

min supp, find frequent itemsets.

1: procedure APRORI({A1, A2, ...AN}, min supp)
2: F1 = the set of frequent 1-itemset
3: for (k=2; Fk−1 6=φ; k++) do
4: Ck = candidates generated from Fk−1

5: for each annotation At

6: increment the count of all sets c ∈ Ck that are
subsets of At

7: end for
8: Fk = {c ∈ Ck | Support(c) ≥ min supp}
9: end for

10: return F = ∪kFk

11: end procedure

The association rules can then be generated from the

frequent itemsets discovered with the Apriori algorithm by

enumerating nonempty subsets and testing the confidence

against the minimum confidence threshold, min conf. For

semantic concept association rules, we are only interested in

rules that have a single concept on their right-hand sides. That

is, we only generate rules of the form {c1, ..., ck−1} ⇒ ck,

where c1, ..., ck−1, ck ∈ C. We are only interested in the

rules with one-concept right-hand side because a rule with n

concepts on its right-hand side, A ⇒ {b1, · · · , bn}, can be

equivalently captured using n rules, A ⇒ {bk}, k = 1..n.

Thus, it is enough to only consider the rules with a single

concept on their right-hand sides. Specifically, the semantic

concept association rules are generated using Algorithm 2.

Example 2 Using the annotation dataset in Example 1, sup-

pose the minimum support count is 2 and minimum confidence

is 50%. The Apriori algorithm first obtains F1: {aircraft <3>,

sky <2>, outdoor <3>, people <2>} by scanning through

the table. Then, the Apriori algorithm generates C2: {{aircraft,

sky} <2>, {aircraft, outdoor} <2>, {aircraft, people} <0>,

{sky, outdoor} <1>, {sky, people} <0>, {outdoor, people}
<1>} and obtains the corresponding support counts in the

brackets. Therefore, we have F2: {{aircraft, sky}, {aircraft,

Algorithm 2 RuleGen. Given the frequent itemset F and the

minimum confidence threshold, min conf, generate association

rules.

1: procedure RULEGEN(F , min conf )
2: for each concept ci in frequent itemset F
3: generate two subsets {F − ci}, {ci}
4: if

Support(F )
Support(F−{ci})

≥ min conf then

5: Output the rule “F − {ci} =⇒ ci”
6: end if
7: end for

8: end procedure

outdoor}}. Before we continue to generate C3, note that

in order for {aircraft, sky, outdoor} to be frequent, {sky,

outdoor} needs to be frequent, but it is not. Therefore, we have

obtained all the frequent itemsets and can proceed to generate

the concept association rules and calculate their confidence

values as follows: aircraft =⇒ sky < 2

3
>, sky =⇒ aircraft

< 2

2
>, aircraft =⇒ outdoor < 2

3
>, and outdoor =⇒ aircraft

< 2

3
>. Note that all these rules are valid since their confidence

values are all larger than the minimum confidence threshold.

�

The Apriori algorithm finds a complete set of rules based

on a user-given minimum support and a minimum confidence

threshold. It is often the case that we have multiple rules which

all imply the same concept association. Redundant rules are

pruned by testing if the left-hand side of the rule is a subset of

the left-hand side of a more general rule. After rule pruning,

the best rule for each inferred concept is selected based on the

confidence and support values, in that order. Specifically, given

two rules R1 and R2 that both infer the same concept, i.e., both

rules have the same right-hand side. R1 is selected over R2 if

and only if (1) R1 is not redundant with respect to R2; and

(2) one of the following conditions holds: confidence(R1)
> confidence(R2), or support(R1) > support(R2) if

confidence(R1) = confidence(R2).

B. Combined Ranking

Based on the concept association rules, we can integrate the

output from an ensemble of concept detectors corresponding to

the left-hand side of a discovered association rule. Given a shot

st with a feature vector xt, assume that the concept detector

for concept ci outputs a prediction value pi
t = P (lit|xt) ∈

[0, 1], where i = 1, 2, . . . , M and t = 1, 2, . . . , N . This value

indicates the likelihood the concept detector regards the pres-

ence of concept ci in shot st. The discovered association rules

are used to combine the prediction values of the associated

concept detectors and generate the combined ranking.

The distribution of prediction values over all the shots

differs from one concept classifier to another. Note that a

high/low prediction value means that the classifier is more

certain about the presence/absence of the corresponding con-

cept. In this paper, we propose to use the entropy function H

to transform prediction values p into recommendation values
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R ∈ [−1, 1].

H(p) = −p log2(p) − (1 − p) log2(1 − p),

R(p) =

{

1 − H(p) for 0.5 ≤ p ≤ 1
H(p) − 1 for 0 ≤ p < 0.5

.

The entropy function is in essence a measure of the uncertainty

[27]. A recommendation value R is positive when the concept

is more likely to be present, i.e., p > 0.5, and is negative

when the concept is more likely to be absent, i.e., p < 0.5.

In addition, the absolute value of a recommendation value

reflects certainty on the detection output. For example, when

the prediction value of a video shot from a concept classifier is

0.5, the value of the entropy function, H(p) = 1, is the highest

since we are most uncertain about the outcome of this video

shot. Thus, its recommendation value is 0 and this concept

classifier will not have any contribution to the final combined

ranking for this shot. On the other hand, a prediction value

closer to 1.0 or 0.0 will have a higher recommendation value

and more contribution to final ranking results. From our exper-

iments, we found that combined ranking with recommendation

values gives better performance than prediction values because

it combines results from associated classifiers in a uniform and

normalized way that considers certainty on both the presence

and the absence of the corresponding concepts.

Consider the rule {c1, c2, · · · , ck−1} =⇒ {ck} with con-

fidence f , the recommendation metrics for the associated

classifier which outputs {p1, p2, ..., pk−1, pk} are combined

as follows:

Rcombined(ck) =
1

K−1

(

k−1
∑

i=1

R(pi)

)

∗ f + R(pk),

The combined recommendation value increases the original

recommendation value for the right-hand side concept (implied

concept) by an amount of the average recommendation value

of the left-hand side concepts (associated concepts). Since

the association rule has a confidence value f on such an

implication relationship, the increase on the recommendation

value is adjusted by multiplying with f . We are in effect

exploiting associated concept detectors to infer the presence

of the implied concept and re-rank shots. Therefore, such a

combined ranking scheme can be more effective and robust

than ranking solely based on a single concept detector.

V. TEMPORAL RULE MINING

Videos exhibit temporal continuity in both visual content

and semantics. This section attempts to exploit this coherence

to improve the performance of detectors by learning temporal

association rules from the ground truth annotations. We first

explore several measurements for testing whether temporal de-

pendence among neighboring shots are statistically significant.

Next, we present our design of the temporal filter for effective

temporal smoothing of the prediction values with respect to a

concept.

A. Temporal Dependency Test

Recall that lit ∈ {0, 1} is a binary random variable indicating

whether a shot st is relevant to a semantic concept ci. In this

section, we only consider the temporal consistency between

neighboring shots for a concept ci at a time. For simplicity,

we can drop the index i without ambiguity. We first estimate

the conditional probabilities from annotations. The conditional

probabilities of the shot st being relevant to the concept c

given that its neighboring shot of a temporal distance k, st−k,

is relevant or irrelevant to c are calculated as:

P (lt = 1|lt−k = 1) =
#(lt = 1, lt−k = 1)

#(lt−k = 1)
and

P (lt = 1|lt−k = 0) =
#(lt = 1, lt−k = 0)

#(lt−k = 0)
,

where #(lt−k =1) and #(lt−k =0) are equivalent to the total

numbers of relevant and irrelevant shots in the training dataset,

respectively; #(lt = 1, lt−k = 1) is the total number that two

shots are k shots apart and both relevant to the concept c; and

#(lt =1, lt−k =0) is the total number that shot st is relevant

to c but its k-shot-preceding shot st−k is irrelevant.

Next, we present several statistical measurements for test-

ing dependency between random variables, chi-square test,

likelihood ratio, mutual information and pointwise mutual

information [28].

Chi-square test. Chi-square test is a statistical test for depen-

dency. For our temporal dependency test, it is used to compare

the observed frequencies in the following 2-by-2 table,

lt−k =0 lt−k =1
lt =0 ζ00 =#(lt =0, lt−k =0) ζ01 =#(lt =0, lt−k =1)
lt =1 ζ10 =#(lt =1, lt−k =0) ζ11 =#(lt =1, lt−k =1)

and the χ2 value is then calculated by

χ2

k =
N(ζ00ζ11 − ζ01ζ10)

2

(ζ00 + ζ01)(ζ00 + ζ10)(ζ01 + ζ11)(ζ10 + ζ11)
.

A high χ2 value means two events are likely associated. One

disadvantage of using χ2 values is that they are not intuitively

interpretable. A table lookup is necessary to convert them into

confidence values for the dependency hypothesis.

Likelihood ratio. Likelihood ratio is used to tell us how much

more likely one of the following two hypothesis is than the

other.

• Hypothesis 1 (a formulation of independence): the occur-

rence of the concept c in the shot st is independent to

the occurrence in the shot st−k. Thus,

P (lt = 1|lt−k = 1) = p = P (lt = 1|lt−k = 0)

• Hypothesis 2 (a formulation of dependence):

P (lt = 1|lt−k = 1) = p1 6= p2 = P (lt = 1|lt−k = 0).

The probabilities p, p1 and p2 are estimated as

p =
#(lt = 1)

N
=

ξ1

N
,

p1 =
#(lt = 1, lt−k = 1)

#(lt−k = 1)
=

ξ12

ξ2

,

p2 =
#(lt = 1) − #(lt = 1, lt−k = 1)

N − #(lt−k = 1)
=

ξ1 − ξ12

N − ξ2

,
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Fig. 2. Temporal dependency of shots at different temporal distances for
four different concepts, Sports, Weather, Maps and Explosion, evaluated using
four different statistical measurements. These concepts show that the temporal
dependency is highly concept dependent. Some concepts such as Sports have
stronger temporal dependency than others like Maps.

where ξ1 = #(lt = 1), ξ2 = #(lt−k = 1) and ξ12 = #(lt =
1, lt−k =1). Assuming a binomial distribution, the likelihood

ratio of hypothesis 2 over hypothesis 1 is then calculated as

λk =
L(ξ12, ξ2, p1)L(ξ1 − ξ12, N − ξ2, p2)

L(ξ12, ξ2, p)L(ξ1 − ξ12, N − ξ2, p)
,

where L(m, n, q) = qm(1 − q)n−m. The likelihood ratio

λk means that hypothesis 2 is λk times more likely than

hypothesis 1, meaning the chance that shots st and st−k

are associated is λk times larger than the one that they are

independent.

Mutual information. Mutual information is the entropy differ-

ence between two random variables, in our case, lt and lt−k.

It is thus defined as

Ik =
∑

α,β∈{0,1}

P (lt =α, lt−k =β) log
P (lt =α, lt−k =β)

P (lt =α)P (lt−k =β)
,

and tells us the reduction of uncertainty of one variable due

to knowing about the other.

Pointwise mutual information. Pointwise mutual information

measures dependency between two particular events, instead

of random variables. In our case, we are most concerned about

how much the fact that the concept c is present in st−k reduces

the uncertainty of the event that c is present in st. Thus, we

define the pointwise mutual information as

Jk =log
P (lt = 1|lt−k = 1)

P (lt = 1)
.

Note that Yang and Hauptmann also used pointwise mutual

information to measure temporal dependency [16].

Figure 2 shows these dependency measurement values of

various temporal distances (from 1 to 20) for different concepts

(Sports, Weather, Maps and Explosion). It is obvious that

the temporal dependency varies a lot among concepts. For

example, concepts like Sports and Weather show temporal

dependency over a relatively large range of temporal distances

while those like Explosion and Maps only show temporal

dependence over a relatively short range of temporal distances.
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Fig. 3. Temporal smoothing by a weighted combination of inference values
from the neighboring shots.

B. Temporal Smoothing

We can exploit temporal coherence to “smooth” the pre-

diction of a shot with respect to a concept by a weighted

combination of the inference values of its neighboring shots.

Note that we use the inference values that are estimated

with prior probabilities and prediction values instead of using

prediction values directly.

We define the temporal neighborhood distance d for a shot

with respect to a concept as the maximum temporal distance

within which shots will have impacts on predicting the result

for the current shot. Given the temporal neighborhood distance

d, our temporal smoothing filter for a concept can thus be

defined as follows:

P̂ (lt =1) =

d
∑

k=−d

wkP (lt =1|xt−k)

=

d
∑

k=−d

wk[P (lt =1|lt−k =1)P (lt−k =1|xt−k)

+P (lt =1|lt−k =0)P (lt−k =0|xt−k)]

=

d
∑

k=−d

wk[P (lt =1|lt−k =1)P (lt−k =1|xt−k)

+P (lt =1|lt−k =0)(1−P (lt−k =1|xt−k))],

where xt−k is the visual features extracted from the shot

st−k, P (lt = 1|lt−k = 1) and P (lt = 1|lt−k = 0) are prior

probabilities estimated from the annotations, P (lt−k =1|xt−k)
is the prediction value given by the detector indicating how

likely concept c is present in shot st−k, and wk is a concept-

dependent weighting coefficient that measures the contribution

from the shot that is temporally k shots apart from st. The

sum of wk equals one. We call the term, P (lt = 1|xt−k),
inference value because it infers the prediction value P (lt = 1)
by using the feature vector xt−k of shot st−k. It can be

taken as a posterior probability since it takes both likelihood

P (lt−k|xt−k) and prior P (lt|lt−k) into account. On the con-

trary, Yang and Hauptmann used directly the prediction values

P (lt−k = 1|xt−k) of st−k for logistic regression [16].

Figure 3 shows an illustration of the temporal filter for tem-

poral smoothing. Given this framework, to design a temporal

smoothing filter, we have to determine two sets of parameters

for each concept: (1) the temporal neighborhood distance and
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(2) a set of distance-dependent weighting coefficients. Proper

thresholding on statistical measurements could be used to

determine the temporal distance for each concept. However,

after extensive experiments on the results of the training set,

we have empirically decided to use the chi-square test with

confidence level at 99.9% to determine the temporal neighbor-

hood distance and thus reject the shots whose χ2 value is less

than 10.82. In addition, we set a maximal temporal distance

at 20, since we observe that temporal dependency beyond

that distance is negligible. For determining the weighting

coefficients, the values of statistical measurements at different

distances are directly used.

VI. EXPERIMENTS

A. Experimental Setting

To evaluate the performance of our proposed approach, we

have tested our approach on the TRECVID 2005 dataset.

TRECVID is an annual video retrieval evaluation event or-

ganized by National Institute of Standards and Technology

(NIST) to promote progress in content-based retrieval from

digital video via open, metrics-based evaluation [23]. The

TRECVID 2005 training corpus consists of 85 hours of Ara-

bic, Chinese and US broadcast news video sources. Since the

TRECVID 2005 test data does not have ground truth, we only

used the TRECVID 2005 training data in our experiments.

We partitioned the TRECVID 2005 training set into a training

data set of 30,993 shots and a test data set of 12,914 shots,

exactly in the same way as that in MediaMill, so as to evaluate

our performance. We used the ground truth annotations from

MediaMill with a lexicon of 101 semantic concepts [6].

Association rules and temporal rules were learned from the

annotations of the training set only. Performance was then

evaluated on the test set.

We use the classifications of MediaMill [6], MM, as one

of the baselines for comparison. These classifiers are learned

from visual feature extraction described in Snoek et al.’s

paper [6]. Specifically, a set of predefined regions in a key

frame image is labeled with similarity scores for a total of 15

low-level visual concepts, like road, water body and so on. The

sizes of the predefined regions were adjusted to obtain a total

of 8 concept occurrence histograms. We have also generated

another optimized classifier, NTU classifier, based on the same

features supplied by MediaMill as another classifier for com-

parison. Since parameters of SVMs have significant influence

on performance of detectors, we adopt Gaussian kernels and

use libSVM [25] to obtain classifiers with optimal gamma

parameters in kernel function and misclassification penalty

cost, selected via five-fold cross validation. The NTU classifier

has better classification performance (MAP=0.285) than the

MM baseline (MAP=0.216). We use the NTU classifier to

show that our post-filtering method helps improve performance

of classifiers with different accuracy.

B. Performance Metrics

To evaluate the performance of the proposed post-filtering

framework, we compare the detection performance using av-

erage precision, which is adopted by NIST [23] to measure

concept association rule confidence

{crowd, face,government leader}=⇒{people} 100%
{military, outdoor, people, walking running}=⇒{violence} 100%
{car, outdoor, people}=⇒{vehicle} 100%
{building, sky, urban}=⇒{outdoor} 100%
{male, people}=⇒{face} 100%
{face, people, studio}=⇒{indoor} 100%
{military, outdoor, people, violence}=⇒{walking running} 100%
{anchor, face, indoor ,overlayed text, people}=⇒{studio} 100%

TABLE I
SAMPLES OF NON-TRIVIAL CONCEPT ASSOCIATION RULES.

the accuracy of a ranked concept detection result. Average

precision is proportional to the area under a recall-precision

curve and favors highly ranked relevant shots. Let S be the

size of the test set and R the number of relevant shots. At

any given index j, let Rj be the number of relevant shots in

the top j shots. Let Ij = 1 if the jth shot is relevant and 0

otherwise. The average precision is then defined as

AP =
1

R

S
∑

j=1

Rj

j
∗ Ij .

C. Concept Association Rules

The training dataset consists of annotations for 101 con-

cepts, in which each shot is annotated with a subset of the

given concept lexicon. We have observed that the average

number of annotated concepts per shot is roughly 4. Then

we performed the Apriori algorithm with min supp=2% and

min conf=80% on the annotations. As a result, we have found

32 concepts that have statistically significant rules for infer-

ence. Among them, some of the discovered concept association

rules are intuitive, such as {car} =⇒ {vehicle}, while others

represent frequent patterns that may otherwise remain hidden

due to the large number of shot annotations given by the

users, for example, {military, outdoor, people, violence} =⇒
{walking running}. Table I shows examples of association

rules that are not trivial.

Baseline classifiers are used to obtain the posterior prob-

ability scores p(li|xj) for each concept i in the lexicon and

each shot j in the test dataset. For the concept with association

rules, we re-rank all the shots based on the combined ranking

algorithm in Section IV-B. Figure 4 shows the performance

of our combined re-ranking based on the MM baseline results

for the 32 concepts that have association rules. Our re-ranking

improves performance for 24 concepts. Among them, 40%

have improvements more than 5% in average precision values.

Overall, we observe 3.3% and 2.0% improvement over the

MM baseline and the NTU classifier respectively in terms of

mean average precision.

D. Temporal Smoothing

In this experiment, we test the performance of our temporal

filtering scheme. We first perform experiments on the effec-

tiveness of different dependency measures. Figure 5 compares

the mean AP of the 101 concepts using these measures on both

the MM baseline and the NTU classifier. Overall, we observe
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Fig. 4. Performance of our combined re-ranking using inter-concept association rules on the MM baseline classifications [6] for the 32 concepts which are
found to have association rules. For these 32 concepts, combined re-ranking improves accuracy for 24 of them. The average performance gain is 3.3%.
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Fig. 5. Mean average precision of 101 concepts on both the MM and the NTU
baseline classifiers for temporal smoothing using four different dependency
measures. Pointwise mutual information consistently outperforms others. With
temporal filtering, the overall performance gains for the MM baseline and the
NTU classifier are 15% and 10% respectively.

that temporal filtering is effective on improving accuracy

for both classifiers (around 15% and 10%, respectively) as

shown in Figure 5. It shows that post-filtering is useful for

classifiers with different performance. Although not much,

pointwise mutual information consistently outperforms other

measures. The problem with χ2 and likelihood ratio is that

it is difficult to find a proper normalization factor because

of their extremely high values for strong dependency. We

suspect that mutual information does not perform as well as

pointwise mutual information because it also measures less

relevant dependencies other than P (lt = 1|lt−k = 1).
Figure 6 shows the average precision for 101 concepts

using the MM baseline results [6], temporal logistic regression

on prediction values [16] and our temporal smoothing on

inference values. The performance gain of the temporal filter

varies among concepts, ranging from -87% to 394%. Temporal

filtering improves performance for more than 85% of the

concepts. Overall, 72% and 59% of the concepts with improve-

ment have more than 5% and 10% improvement respectively.

Our temporal filtering outperforms logistic regression in 77

concepts. Overall, our proposed method improves the mean

average precision by 20.4% and 10.9% for the MM baseline

and the NTU classifier respectively. It is, not surprisingly,

especially effective for the concepts that have strong temporal

dependency. Among these 101 concepts, there are totally 46

concepts whose average pointwise mutual information values

are larger than 3. For these concepts, the average performance

gains are respectively 40% and 14% for the MM baseline and

the NTU classifier. For those 20 concepts whose average PMIs

are larger than 4, the average performance gains significantly

reach 58% and 16%.

Yang and Hauptmann suggested that linear smoothing does

not work well on improving performance of concept detec-

tion [16]. We observe the contrary. We think that there are

two main reasons. First, we use the inference values instead

of predication values. We notice that the performance of using

inference value improves when increasing the temporal win-

dow. On the other hand, regression with prediction values leads

to performance degradation when the temporal window size

grows. Second, they only tested for the first order neighboring

shots while we include more neighbors. Yang and Hauptmann

suggested that temporal smoothing might not work because

it can’t pick up a missed shot at some distance. Because we

consider neighbors of higher orders, we can overcome this

problem. As they suggested, a missed shot is often very close

to the decision boundary. Thus, a little contribution from its

positive neighboring shots is often enough for it to become

positive.

E. Combined Post-Filtering

We also performed experiments to evaluate the performance

of the combination of both association rules and tempo-

ral filtering. We perform combined re-ranking and temporal

smoothing separately first. Then, the scores of both methods

are normalized to have zero-valued mean and unit standard

deviation. The normalized scores are then averaged to give

the final score. We applied the combined post-filtering to the

32 concepts with association rules. Figure 7 shows average

precision using combined post-filtering for these concepts. The

results for mean average precision for all 101 concepts and the

32 concepts that have association rules are shown in Figure 8
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Fig. 6. Average precision for the 101 concepts from the MM baseline results [6], temporal logistic regression [16] and our proposed temporal filtering. The
performance gains vary among concepts, ranging from -87% to 394%. Overall, temporal filtering improves accuracy for 85 of these 101 concepts.

and Figure 9 respectively. We observe that the combination of

inter-concept association rules and inter-shot temporal filters

can further improve classification.

In our training dataset, there are many concepts with few

positive examples and it often leads to moderate or inferior

performance for the corresponding classifiers. Figure 10 shows

the mean average precision for concepts with different percent-

ages of annotated examples. We observe that our combined

post-filtering approach improves performance even for the

concepts that have very few positive examples, less than

0.2% of shots annotated (i.e., around only 60 annotations).

Significant performance improvement is found in both the MM

baseline and the NTU classifier regardless of their annotation

percentages. This shows the effectiveness of our post-filtering

framework with association rules and temporal smoothing

filters.

VII. CONCLUSION

This paper proposes a general post-filtering framework

to improve performance of semantic concept detection by
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Fig. 7. A performance comparison of the MM baseline [6] and our combined post-filtering on the 32 concepts with association rules.
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Fig. 8. Mean average precision of 101 concepts using our combined post-
filtering framework.
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Fig. 9. Mean average precision of the 32 concepts, found to have association
rules, using our combined post-filtering framework.

using association mining and temporal filtering for context

knowledge discovery. To exploit inter-concept association, we

have discovered non-trivial hidden association rules between

concepts and proposed a re-ranking scheme to combine the

associated concept detectors to improve performance. To per-

form inter-shot temporal dependency mining, we have pro-

posed an effective temporal filter to integrate the predictions

of neighboring shots. The combination of association rules

and temporal filters can further improve the accuracy for

concept detection. In addition, our post-filtering methods can

be universally applied to any classifier. Our experiments on

the annotated TRECVID 2005 corpus demonstrate that our

framework can significantly improve the accuracy of concept

detection and enhance effectiveness for concept-based video

retrieval and mining.
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Fig. 10. Performance of our combined post-filtering for concepts with differ-
ent annotation percentages. (Ann. Ratio represents the annotation ratio. Orig.

MAP means the original MAP and Imp. Ratio represents the improvement
ratio.)
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