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RISK PREDICTION IS A CENTRAL

part of cardiovascular dis-
ease prevention and refining
prediction strategies remains

important for targeting treatment rec-
ommendations. One area of potential
improvement has been the discovery of
genetic markers for cardiovascular dis-
ease as well as intermediate phenotypes
such as cholesterol and blood pressure.
Recent efforts using genome-wide as-
sociation studies have greatly expanded
the discovery of genetic markers asso-
ciated with cardiovascular disease.

To date, however, the utility of single
genetic markers to improve cardiovas-
cular risk prediction has shown mixed
results, even for the most promising
marker, located in the 9p21 region.1-3

To combine the relatively small ef-
fects of individual genes and to better
capture the complex relationship be-
tween genetics and cardiovascular dis-
ease, the use of a multilocus genetic risk
score has been proposed.4 One such
score developed by Kathiresan et al5 in-
cluded 9 genetic markers associated
with increased lipid levels but showed
no improvement in discrimination and

only a slight improvement in reclassi-
fication. In large part, however, the pre-
dictive abilities of recently discovered
genetic markers have not been tested.6

In particular, there has been no evalu-
ation of a literature-based genetic risk
score for cardiovascular disease, a pos-
sibility that is facilitated by the online
catalog maintained by the National

Human Genome Research Institute
(NHGRI) of all genetic markers iden-
tified through genome-wide associa-
tion studies.7

See also p 648.

Author Affiliations are listed at the end of this article.
Corresponding Author: Nina P. Paynter, PhD, Divi-
sion of Preventive Medicine, Brigham and Women’s
Hospital, 900 Commonwealth Ave E, Boston, MA
02215 (npaynter@partners.org).

Context While multiple genetic markers associated with cardiovascular disease have
been identified by genome-wide association studies, their aggregate effect on risk be-
yond traditional factors is uncertain, particularly among women.

Objective To test the predictive ability of a literature-based genetic risk score for
cardiovascular disease.

Design, Setting, and Participants Prospective cohort of 19 313 initially healthy
white women in the Women’s Genome Health Study followed up over a median of
12.3 years (interquartile range, 11.6-12.8 years). Genetic risk scores were con-
structed from the National Human Genome Research Institute’s catalog of genome-
wide association study results published between 2005 and June 2009.

Main Outcome Measure Incident myocardial infarction, stroke, arterial revascu-
larization, and cardiovascular death.

Results A total of 101 single nucleotide polymorphisms reported to be associated with
cardiovascular disease or at least 1 intermediate cardiovascular disease phenotype at a
published P value of less than 10−7 were identified and risk alleles were added to create a
genetic risk score. During follow-up, 777 cardiovascular disease events occurred (199 myo-
cardial infarctions, 203 strokes, 63 cardiovascular deaths, 312 revascularizations). After
adjustment for age, the genetic risk score had a hazard ratio (HR) for cardiovascular dis-
ease of 1.02 per risk allele (95% confidence interval [CI], 1.00-1.03/risk allele; P=.006).
This corresponds to an absolute cardiovascular disease risk of 3% over 10 years in the
lowest tertile of genetic risk (73-99 risk alleles) and 3.7% in the highest tertile (106-125
risk alleles). However, after adjustment for traditional factors, the genetic risk score did
not improve discrimination or reclassification (change in c index from Expert Panel on
Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults [ATP III] risk
score, 0; net reclassification improvement, 0.5%; [P=.24]). The genetic risk score was
not associated with cardiovascular disease risk (ATP III–adjusted HR/allele, 1.00; 95%
CI, 0.99-1.01). In contrast, self-reported family history remained significantly associated
with cardiovascular disease in multivariable models.

Conclusion After adjustment for traditional cardiovascular risk factors, a genetic risk
score comprising 101 single nucleotide polymorphisms was not significantly associ-
ated with the incidence of total cardiovascular disease.
JAMA. 2010;303(7):631-637 www.jama.com
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We constructed 2 genetic risk scores
based on a comprehensive literature-
basedselectionofgeneticmarkersknown
tobeassociatedwitheithercardiovascu-
lardiseaseoran intermediatephenotype
selected from the NHGRI catalog. The
scoreswerethentestedtoassesstheirpre-
dictive ability in the Women’s Genome
Health Study. We additionally assessed
thepredictiveabilityof genetic informa-
tionalone,aswellas incombinationwith
known cardiovascular risk factors, and
comparedthegenetic informationtoself-
reported family history.

METHODS
Genetic Marker Selection

The single-nucleotide polymorphisms
(SNPs) that make up the genetic risk
scores tested were selected using the on-
line catalog from the NHGRI of genome-
wide association studies published be-
tween 2005 and June 5, 2009.7 In brief,
the catalog is a curated and regularly up-
dated list of all published associations
between SNPs and human disease phe-
notypes with a P value of less than 10−5

from studies that examined at least
100 000 SNPs. From this list, all SNPs
were selected with published associa-
tions with either cardiovascular dis-
ease (myocardial infarction [MI], stroke,
coronary disease, and/or cardiovascu-
lar death) or an intermediate pheno-
type (total cholesterol, high-density li-
poprotein cholesterol, low-density
lipoprotein cholesterol, triglycerides,
blood pressure, diabetes, hemoglobin A1c

or fasting blood glucose, and high-
sensitivity C-reactive protein), in which
the P value was less than 10−7.

The original reports for all identi-
fied SNPs were used to confirm the pub-
lished risk allele (the allele associated
with an increased level or probability)
for the phenotype. The published risk
allele was designated the cardiovascu-
lar risk allele for all phenotypes ex-
cept high-density lipoprotein choles-
terol, for which the allele associated
with lower levels was designated. To
limit our results to independent ef-
fects, SNPs in each chromosome were
pruned to ensure linkage disequilib-
rium (r2�0.5) using the pairwise prun-

ing function in Plink (http://pngu
.mgh.harvard.edu/purcell/plink/).8

Two genetic risk scores were con-
structed on an a priori basis. The first ge-
netic risk score was the sum of all car-
diovascular risk alleles from all SNPs,
both those associated with cardiovascu-
lar disease and those associated with risk
factors. The SNPs affecting more than 1
phenotype were only included once. The
second genetic risk score was created by
limiting the list to only SNPs with a pub-
lished association with cardiovascular
disease before pruning and then adding
the number of risk alleles. Additive and
independent effects for each risk allele
were assumed. Simple counts of the total
number of risk alleles for both risk scores
were used rather than weighting by the
effect of each SNP. An unweighted ap-
proach was chosen because the current
literature was insufficient to provide
stable estimates for each effect, all an-
ticipated effects based on the published
data were of small magnitude, and using
weights from the Women’s Genome
Health Study data itself would have in-
troduced bias into the results.

Study Population

The Women’s Genome Health Study9

is an ongoing prospective cohort, which
was derived from the Women’s Health
Study.10 It includes more than 25 000
initially healthy female health profes-
sionals who provided a baseline blood
sample as well as extensive survey data.
For this study, the analyses were lim-
ited to participants for whom com-
plete data were available for both the
traditional risk factors and for the ge-
netic risk scores. The analyses were fur-
ther restricted to self-reported white
participants to avoid population strati-
fication and because many of the pub-
lished genetic associations have been
explored in white populations only.
These restrictions resulted in 19 313
women for the testing of the genetic
scores. All participants provided con-
sent for blood-based analyses and long-
term follow-up. The study was ap-
proved by the institutional review board
of the Brigham and Women’s Hospital
(Boston, Massachusetts).

Information on age, race, smoking
status, blood pressure, hypertension
treatment, diabetes, and parental his-
tory of MI before the age of 60 years was
collected by questionnaire at the be-
ginning of the study. Plasma biomar-
kers for total cholesterol, high-density
and low-density lipoprotein choles-
terol, triglycerides, hemoglobin A1c, and
high-sensitivity C-reactive protein were
analyzed in a core laboratory facility,
certified by the National Heart, Lung,
and Blood Institute and the Centers for
Disease Control and Prevention’s Lipid
Standardization Program.

Genetic information was collected
using the HumanHap300 Duo �
platform (Illumina Inc, San Diego,
California), which contains both a
standard panel of approximately
317 000 SNPs for capturing variation
among individuals with European
ancestry as well as approximately
45 000 SNPs selected specifically for
their potential relationship with car-
diovascular disease and other dis-
eases. The SNPs defining the APOE
alleles were available using an oligo-
nucleotide ligation procedure.11,12 To
use published SNPs that were not
directly genotyped, the MACH 1.0.16
program (http://www.sph.umich.edu
/csg/abecasis/mach/index.html) and
data from HapMap13 were used to im-
pute additional genotypes. The MACH
program has been shown to have high
accuracy14 and only SNPs with an es-
timated squared correlation between the
imputed and true genotype of greater
than 0.3 were included, which pro-
vides high sensitivity and specificity.15

Of the 101 SNPs selected, 46 were mea-
sured directly and 55 were imputed
(minimum R2 of 0.6). The estimated
maximum likelihood number of alleles
was used in the risk score.

Participants were followed up for a
median of 12.3 years (interquartile
range, 11.6-12.8 years) for incident MI,
ischemic stroke, coronary revascular-
ization, and cardiovascular deaths,
which were combined to calculate total
cardiovascular disease. All end points
were adjudicated using additional medi-
cal records.
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Statistical Methods
Cox proportional hazards models were
usedtogenerateestimatesofpredictedrisk
usingabasemodelwithandwithouteach
genetic risk score. The base models ex-
amined were age alone, covariates from
theThirdReportof theNationalCholes-
terolEducationProgramExpertPanelon
Detection,Evaluation, andTreatmentof
High Blood Cholesterol in Adults (ATP
III) risk score based on the Framingham
cohortwiththeadditionofahistoryofdia-
betes (notedasahigh-riskequivalent),16

and covariates from the Reynolds risk
score, which is a previously published
model that includeshemoglobinA1c and
C-reactiveproteinanddataonfamilyhis-
tory.17 Theestimatedpredictedriskswere
thencomparedusingtheHarrellc index18

toexaminediscrimination,asdefinedby
whetherapredictionmethodrankscases
higher than noncases. The Hosmer-
Lemeshowgoodness-of-fit test19wasused
toexaminecalibration,asdefinedbyhow
wellthepredictednumberofeventsmatch
up with the observed number of events.

Reclassification was assessed by com-
paring the predicted 10-year risk for
each pair of models (base model alone
vs base model plus genetic score) across
the categories of less than 5% risk, 5%
to less than 10% risk, 10% to less than
20% risk, and 20% or higher risk. From
the resulting reclassification table, the
reclassification calibration statistic20 was
used to assess the match between pre-
dicted and observed event rates for each
model in each division of the table, with
lower values and higher P values sug-
gesting better fit. Reclassification cali-
bration statistics cannot be directly
compared across different models, but
large differences between models can
suggest differences in fit. The net re-
classification improvement21 also was
computed for the women with com-
plete 10-year follow-up. This statistic
examines whether the addition of the
genetic risk score moves cases to higher
risk categories more often than lower
risk categories and controls to lower risk
categories more often than higher risk
categories. The null value is 0%, cor-
responding to equal movement in both
directions.

Statistical significance was consid-
ered to be met with a P value of less than
.05 and all testing was 2-sided. All sta-
tistical analyses were performed using R
version 2.6 (R Foundation for Statisti-
cal Computing, Vienna, Austria). Using
the distribution of the 101 SNP genetic
risk score in the data analyses, there was
90% power to detect a 10-year odds ra-
tio per allele as low as 1.0124.

RESULTS
UsingtheNHGRIcatalog,157SNPswere
identifiedwithapublishedriskalleleand
a P value of less than or equal to 10−7 for
the association with cardiovascular dis-
easeoran intermediatephenotype; these
werematchedwiththegeneotypedorim-
puteddata.FiveSNPswerenotmatched
(rs17465637 in MIA3 gene region,
rs28927680 in the APOA1/C3/A4/A5 re-
gion,rs3812316andrs326intheMLXIPL
generegion,andrs4712524intheKCNQ1
generegion).7 Afterpruningtoeliminate
correlatedSNPs inhigh linkagedisequi-
librium, 101 SNPs were used in the con-
structionoftheprimarygeneticriskscore.
The second score, limited to SNPs with
apublishedassociationwithincidentcar-
diovasculardisease, included12SNPsaf-
ter pruning.

The resulting genetic scores were
evaluated in the 19 313 white partici-
pants fromtheWomen’sGenomeHealth
Study. At baseline, the participants had
a median age of 52.8 years (25th-75th
percentile, 48.9-58.9 years), a median
systolic blood pressure of 125 mm Hg
(25th-75thpercentile,115-135mmHg),
a median total cholesterol level of 208
mg/dL (25th-75th percentile, 184-235
mg/dL [to convert to mmol/L, multiply
by 0.0259]), a median high-density li-
poprotein cholesterol level of 52 mg/dL
(25th-75th percentile, 43.3-62.5 mg/dL
[to convert to mmol/L, multiply by
0.0259]), and a median high-sensitivity
C-reactiveproteinlevelof2mg/dL(25th-
75th percentile, 0.8-4.3 mg/dL [to con-
vert tonmol/L,multiplyby9.524]).Also
at baseline, 2248 women were current
smokers (12%) and 479 had been diag-
nosed with diabetes (2%). In the indi-
vidualswithdiabetes, themedianhemo-
globinA1c levelwas6.9%(25th-75thper-

centile, 5.9%-8.3%). Thirteen percent
of the women (n=2499) reported a
parental history of MI before the age of
60 years. Over the follow-up period
(median,12.3years; interquartile range,
11.6-12.8 years), 777 incident cardio-
vascular events (199 MIs, 203 strokes,
63cardiovasculardeaths,312revascular-
izations)werereportedbythestudypar-
ticipantsandconfirmedbytheendpoints
committee (634 in the first 10 years).

The 101 SNPs used in the genetic risk
score are shown in eTable 1 arranged by
the category of the phenotype for the
published association. The 12 SNPs used
for the score based only on the SNPs
known to be associated with cardiovas-
cular disease are listed in the pheno-
type category of cardiovascular disease.
EachSNPwas tested forassociationswith
the previously published phenotype and
with incident cardiovascular disease in
the Women’s Genome Health Study.
These results, along the candidate gene,
the published cardiovascular risk al-
lele, and the frequency of the risk allele
in the Women’s Genome Health Study
are included in eTable 1. Of the101 SNPs,
72 replicated the published phenotype
association in the Women’s Genome
Health Study with a P value of less than
.05 and 5 were significantly associated
with incident cardiovascular disease
(rs17249754 in the ATP2B1 gene re-
gion, rs1333049 in the chromosome
9p21.3 region, rs10830963 in the
MTNR1B gene region, rs4607103 in the
ADAMTS9 gene region, and rs1883025
in the ABCA1 gene region). Only
rs1333049 in the chromosome 9p21.3
region has a previously published ge-
nome-wide association with cardiovas-
cular disease.

Among the 19 313 participants in the
Women’s Genome Health Study, the
mean (SD) score (or number of risk
alleles) using the 101 SNPs was 102.1
(6.4) with a range from 73 to 125. The
mean (SD) score using the 12 SNPs was
10.7 (1.9) with a range from 4 to 19.
As anticipated, the 101 SNP genetic risk
score was positively correlated with
total cholesterol, systolic blood pres-
sure, and C-reactive protein, and nega-
tively associated with high-density

GENETIC RISK SCORE AND CARDIOVASCULAR EVENTS IN WOMEN
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lipoprotein cholesterol (eTable 2). The
12 SNP genetic risk score also was posi-
tively correlated with total choles-
terol, but the relationship was sharply
attenuated when the 1 SNP with a pub-
lished association with cholesterol lev-
els (rs599839 in the CELSR2/PSRC1/
SORT1 region) was removed. The odds
of a family history of premature MI also
increased with increasing scores, with
an odds ratio of 1.01 per allele for the
101 SNP score and 1.04 per allele for
the 12 SNP score (both with P�.001).

FIGURE 1 shows the unadjusted sur-
vival curves by tertile for the 101 SNP
and 12 SNP genetic risk scores and for
family history of MI. FIGURE 2 shows
the distribution of risk alleles by event
status at 10 years of follow-up for the
101 SNP and 12 SNP genetic risk scores.
While there is a trend toward increas-
ing risk with greater number of risk
alleles for both scores, only the high-
est tertile of the 101 SNP score had a
significant hazard ratio (HR) of 1.22
(95% confidence interval [CI], 1.02-

1.45; P=.03) for comparison with the
lowest risk group. This corresponds to
an absolute cardiovascular disease risk
of 3% over 10 years in the lowest ter-
tile of genetic risk (73-99 risk alleles)
and 3.7% in the highest tertile (106-
125 risk alleles). As suggested by the
overlap in the distributions by event sta-
tus, neither genetic risk score alone had
discriminatory capabilities for cardio-
vascular disease risk (c index, 0.523 for
the 101 SNP genetic risk score and
0.517 for the 12 SNP genetic risk score).

Figure 1. Cumulative Incidence of Cardiovascular Events by Genetic Risk Score (GRS) Tertile and Family History of Myocardial Infarction (MI)
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For the 101 single-nucleotide polymorphisms (SNPs) GRS tertile 1, the mean was 95 (range, 73-99); tertile 2, the mean was 102 (range, 100-105); tertile 3, the mean was
110 (range, 106-125). For the 12 SNP GRS tertile 1, the mean was 9 (range, 4-10); tertile 2, the mean was 11 (range, 11-12); tertile 3, the mean was 14 (range, 13-19).

Figure 2. Distribution of Risk Alleles by 10-Year Cardiovascular Disease (CVD) Event Status at 10 Years of Follow-up for the Genetic Risk
Scores (GRS)
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The y-axis is the proportion of the group (either with or without a CVD event at 10 years) with a given GRS. The curves were generated with a Gaussian kernel density smoother.
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Both the 101 SNP and 12 SNP genetic
riskscoreswereassociatedwithincreased
risk of cardiovascular disease after ad-
justing for age (TABLE 1). Specifically,
the age-adjusted HR for cardiovascular
diseaseperallele for the101SNPgenetic
risk score was 1.02 per risk allele (95%
CI, 1.00-1.03/risk allele; P=.006) and
1.05 per risk allele (95% CI, 1.01-1.09/
riskallele;P=.01) for the12SNPgenetic
risk score. Neither genetic risk score re-

mained independently associated once
the ATP III or Reynolds covariates were
adjustedfor intheanalyses.TheATPIII–
adjustedHRperallelewas1.00(95%CI,
0.99-1.01) for the 101 SNP genetic risk
score and 1.04 (95% CI, 1.00-1.08) for
the 12 SNP genetic risk score. In con-
trast, family history of premature MI re-
mained an independent risk factor for
incident cardiovascular disease even af-
ter adjustment (HR, 1.57; 95% CI, 1.31-

1.89).Theeffectsof thestandardriskfac-
tors were not affected by the addition of
the genetic markers (models shown in
eTable 3 and eTable 4).

All of themodelswerecalibratedwith
and without with the addition of the ge-
neticriskscoresorfamilyhistory.Neither
genetic risk score improved prediction
when added to the ATP III or Reynolds
covariates(TABLE2).Addingthe101SNP
genetic risk score to the ATP III covari-

Table 1. Association of Genetic Risk Score (GRS) and Family History of Cardiovascular Disease (CVD)

101 SNP GRSa 12 SNP GRSb Family History of Premature MI

HR/Allele (95% CI) P Value HR/Allele (95% CI) P Value HR (95% CI) P Value
Age 1.02 (1.00-1.03) .006 1.05 (1.01-1.09) .01 1.67 (1.39-1.03) �.001
Covariates

ATP III c 1.00 (0.99-1.01) .63 1.04 (1.00-1.08) .05 1.57 (1.31-1.89) �.001
Reynoldsd 1.00 (0.99-1.01) .76 1.04 (1.00-1.07) .06 NA NA

Abbreviations: ATP III, Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults; CI, confidence interval; HR, hazard ratio; MI, myocardial infarction;
NA, data not applicable; SNP, single-nucleotide polymorphism.

a Includes SNPs associated with incident CVD and intermediate phenotypes.
b Includes only SNPs associated with incident CVD.
cThe covariates were age, systolic blood pressure, hypertensive medication use, smoking, diabetes, total cholesterol, and high-density lipoprotein cholesterol.
dThe covariates were age, systolic blood pressure, smoking, diabetes, total cholesterol, high-density lipoprotein cholesterol, C-reactive protein, and family history of premature MI.

Table 2. Discrimination and Reclassification After Addition of Genetic Risk Score (GRS) or Family History of Cardiovascular Disease (CVD)
to Base Model

Base Model
C Index

101 SNP GRSa 12 SNP GRSb Family History of Premature MIc

Discrimination Reclassification Discrimination Reclassification Discrimination Reclassification

C Index P Valued NRI P Valuee C Index P Valued NRI P Valuee C Index P Valued NRI P Valuee

Age 0.701 0.704 .14 1.2 .13 0.705 .01 0.6 .52 0.709 .01 3.1 .02
Covariates

ATP III f 0.793 0.793 .92 0.5 .24 0.794 .12 0.5 .59 0.796 .06 1.4 .28
Reynoldsg 0.796 0.796 .84 0.4 .21 0.796 .12 0.8 .36 NA NA NA NA

Abbreviations: ATP III, Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults; MI, myocardial infarction; NA, data not applicable; NRI, net re-
classification improvement; SNP, single-nucleotide polymorphism.

a Includes SNPs associated with incident CVD and intermediate phenotypes.
b Includes only SNPs associated with incident CVD.
cParental MI before age 60 years.
dP value is for comparison with the base model c index.
eP value is compared with the null NRI of 0% or equal reclassification correctly and incorrectly.
fThe covariates were age, systolic blood pressure, hypertensive medication use, smoking, diabetes, total cholesterol, and high-density lipoprotein cholesterol.
gThe covariates were age, systolic blood pressure, smoking, diabetes, total cholesterol, high-density lipoprotein cholesterol, C-reactive protein, and family history of premature MI.

Table 3. Reclassification Calibration for the Addition of Genetic Risk Score (GRS) or Family History of Cardiovascular Disease (CVD) to Base Model

101 SNP GRSa 12 SNP GRSb Family History of Premature MIc

Base
Model

Base Model
� GRS

Base
Model

Base Model
� GRS

Base
Model

Base Model
� Family History

�2 P Value �2 P Value �2 P Value �2 P Value �2 P Value �2 P Value
Age 9.9 .13 8.9 .18 5.9 .44 4.8 .56 16.9 .01 3.6 .73
Covariates

ATP IIId 11.6 .009 11.6 .009 14.7 .04 14.2 .05 22.1 .005 13.3 .10
Reynoldse 4.1 .25 4.1 .25 9.4 .15 8.4 .21 NA NA NA NA

Abbreviations: ATP III, Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults; MI, myocardial infarction; NA, data not applicable; SNP,
single-nucleotide polymorphism.

a Includes SNPs associated with incident CVD and intermediate phenotypes.
b Includes only SNPs associated with incident CVD.
cParental MI before age 60 years.
dThe covariates were age, systolic blood pressure, hypertensive medication use, smoking, diabetes, total cholesterol, and high-density lipoprotein cholesterol.
eThe covariates were age, systolic blood pressure, smoking, diabetes, total cholesterol, high-density lipoprotein cholesterol, C-reactive protein, and family history of premature MI.
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ates resulted in a change of 0 in the c in-
dexandanetreclassificationimprovement
of 0.5% (P=.24), whereas adding the 12
SNPgeneticriskscoreresultedinachange
of 0.001 (P=.12) in the c index and a net
reclassification improvement of 0.5%
(P=.59). The 12 SNP genetic risk score
and family history of premature MI did
showsomeimprovementinpredictionbe-
yondagealone.Whenthereclassification
calibrationwasexamined(TABLE3),only
family history of premature MI showed
an improvement in fitwhenaddedto the
base models.

Neither repeating the analyses with
only the directly genotyped SNPs, nor
excluding the SNPs associated only with
C-reactive protein, hemoglobin A1c, or
triglycerides had an appreciable effect
on the results.

COMMENT
In this analysis, we constructed 2
literature-basedgeneticriskscoresforcar-
diovascular disease and tested their re-
lationship to incident cardiovascular
eventsandtheirpotential toimprovepre-
diction inaprospectivecohortof19 313
initially healthy white women from the
Women’sGenomeHealthStudy.Therisk
score based on genetic markers for both
cardiovasculardiseaseand intermediate
phenotypes(101SNPscore)andtherisk
score based only on genetic markers for
cardiovascular disease (12 SNP score)
wereassociatedwith increased riskafter
adjustmentforage,buttheabilityofeither
scorealonetodiscriminatebetweenwom-
en at risk for cardiovascular events and
thosenotat riskwasminimalwithac in-
dexof0.52forbothscores.Furthermore,
neither genetic risk score remained as-
sociatedwithincidentcardiovasculardis-
ease after adjustment for traditional risk
factors,norhadanysignificant impacton
discriminationorreclassification.Incon-
trast, self-reported family history re-
mained associated with incident cardio-
vasculardiseaseafteradjustmentforother
risk factors and had a substantive effect
on reclassification fit.

Previous studies using genetic risk
scores for cardiovascular disease have
found some evidence of increased pre-
diction.5,6 However, these studies have

used only genetic markers that repli-
cated in the same population used to
test the score rather than a strictly lit-
erature-based approach, a method that
runs the risk of overfitting and conse-
quently yielding overly optimistic re-
sults. To avoid this potential bias, we
chose to use all genes reported in the
literature to be associated with cardio-
vascular disease or an intermediate phe-
notype with genome-wide signifi-
cance. To the extent that the published
associations identify useful genetic risk
factors, our approach may more accu-
rately reflect the potential of current ge-
netic markers to improve risk predic-
tion on a population basis.

We believe these data have clinical rel-
evance for several reasons. First, ge-
nome-wide testing is increasingly avail-
able and marketed to the general public.
Our study finds no clinical utility in a
multilocus panel of SNPs for cardiovas-
cular risk based on the best available lit-
erature. Second, our data confirm the
utility of intermediate phenotypes such
as total cholesterol, high-density lipo-
protein cholesterol, and blood pres-
sure in as much as genetic risk scores
were no longer significant after adjust-
ment for these phenotypes. This utility
most likely reflects the integration of
both genetic and environmental fac-
tors into measured biomarker levels and
to cardiovascular outcomes. Third, our
findings confirm the importance of fam-
ily history of cardiovascular disease,
which integrates shared genetics, shared
behaviors, and environmental factors. At
the same time, we believe that our data
suggest areas for further biomarker re-
search, which may improve predic-
tion. Given the continued utility of in-
termediate phenotypes, the ongoing
explorations in metabolomics and pro-
teomics could add significantly to the
ability to predict risk.

Limitations of our study merit con-
sideration. As suggested by the strong
effect of family history on cardiovas-
cular disease risk, there is a substan-
tial risk component due to genes and
shared environment, which may be elu-
cidated by future genetic research.
While the NHGRI catalog is based on

all available published genome-wide
studies, these have focused to date only
on common SNPs and, thus, we also
were unable to assess the potential con-
tributions of rare alleles. However, if
only discovered through a major in-
crease in sample size, it is possible that
unidentified variants will have increas-
ingly small effects.22 It also may be pos-
sible in the future to obtain stable es-
timates of the exact effect or HR for use
in a weighted score and to find inter-
actions between genes or within genes
and other markers, both of which may
improve predictive ability.

In conclusion, in this large-scale, pro-
spective cohort of white women, a com-
prehensive literature-based genetic risk
score (although associated with car-
diovascular events after adjustment for
age) did not improve cardiovascular risk
prediction. This was true whether the
component genetic effects were ex-
tended to include polymorphisms act-
ing on intermediate phenotypes or re-
stricted only to those directly associated
with cardiovascular disease outcomes.
While the importance of genetic data
in understanding biology and etiology
is unchallenged, we did not find evi-
dence in this study of more than 19 000
women to incorporate the current body
of known genetic markers into formal
clinical tools for cardiovascular risk
assessment.
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eTable 1. Genetic Variants Used in Construction of Genetic Risk Scores 
 

Phenotype Risk per Allele 
in WGHS 

CVD Risk per Allele 
in WGHS Region Candidate 

Genes SNP Reference
No. 

CVD 
Risk 

Allelea 

Risk Allele 
Frequency 
in WGHS 

Published 
Phenotype HR (95% CI) P 

Value HR (95% CI) P 
Value 

Cardiovascular Disease 

1p13.3 
CELSR2, 
PSRC1, 
SORT1 

rs599839 1-4 A 0.77 CVD 1.01 (0.90-1.12) .92 1.01 (0.90-1.12) .92 

1p32.3 PCSK9 rs11206510 2, 5 T 0.86 MI 0.98 (0.76-1.27) .89 1.05 (0.92-1.20) .46 
2q33.1 WDR12 rs6725887 5 C 0.13 MI 1.10 (0.84-1.43) .49 1.03 (0.90-1.18) .69 
3q22.3 MRAS rs9818870 6 T 0.16 CHD 0.96 (0.83-1.13) .65 1.01 (0.89-1.14) .90 
4q25  rs2200733 7 T 0.11 Stroke 0.86 (0.67-1.12) .27 0.93 (0.81-1.08) .36 

6p24.1 PHACTR1 rs12526453 5 C 0.64 MI 1.11 (0.92-1.34) .28 1.07 (0.97-1.17) .19 
6q25.1 MTHFD1L rs6922269 4 A 0.27 CHD 1.10 (0.97-1.25) .13 1.07 (0.97-1.18) .19 
9p21.3 CDKN2A/2B rs1333049 4, 8 C 0.49 CHD 1.21 (1.08-1.36) <.001 1.16 (1.05-1.27) .002 

10q11.21 CXCL12 rs1746048 5 C 0.87 MI 1.06 (0.80-1.39) .69 1.04 (0.91-1.20) .54 
12p13.33 NINJ2 rs12425791 9 A 0.16 Stroke 0.93 (0.74-1.16) .52 0.97 (0.86-1.11) .69 
19p13.2 LDLR rs1122608 5 G 0.75 MI 0.98 (0.80-1.20) .82 1.04 (0.94-1.16) .45 

21q22.11 
SLC5A3, 
MRPS6, 
KCNE2 

rs9982601 5 T 0.16 MI 0.90 (0.70-1.17) .44 1.02 (0.90-1.15) .78 

Blood Pressure Increase, mg/dL 
(95% CI)  

1p36.22 

MTHFR, 
NPPA, 
CLCN6, 
NPPB, 

AGTRAP 

rs17367504 10 A 0.84 SBP 0.56 (0.21-0.91) .002 0.94 (0.83-1.06) .29 

3p22.1 ULK4 rs9815354 11 A 0.16 DBP 0.11 (−0.12 to 
0.34) .35 1.00 (0.88-1.13) .95 

3q26.2 MDS1 rs1918974 10 C 0.46 DBP 0.08 (−0.09 to 
0.25) .37 0.98 (0.90-1.07) .67 

4q21.21 
FGF5, 

PRDM8, 
c4orf22 

rs16998073 10 T 0.25 DBP 0.08 (−0.11 to 
0.28) .41 0.92 (0.83-1.03) .16 
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Phenotype Effect per Allele 

in WGHS 
CVD Risk per Allele 

in WGHS Region Candidate 
Genes SNP Reference

No. 
CVD 
Risk 

Allelea 

Risk Allele
Frequency
in WGHS 

Published 
Phenotype Increase, mg/dL 

(95% CI) 
P 

Value HR (95% CI) P 
Value 

DBP 0.40 (0.22-0.57) <.001 
HTN b1.03 (0.98-1.07) .28 10p12.33 CACNB2 rs11014166 11 A 0.65 
SBP 0.48 (0.20-0.75) <.001 

1.01 (0.91-1.11) .90 

10q21.2 

c10orf107, 
TMEM26, 
RTKN2, 

RHOBTB1, 
ARID5B 

rs1530440 10 C 0.81 DBP 0.33 (0.11-0.54) .003 0.91 (0.81-1.02) .10 

10q24.32 

CYP17A1, 
AS3MT, 
CNNM2, 
NT5C2 

rs11191548 10 T 0.91 SBP 0.53 (0.08-0.99) .02 1.12 (0.95-1.33) .18 

11p15.1 PLEKHA7 rs381815 11 T 0.27 SBP 0.39 (0.10-0.68) .008 0.94 (0.85-1.05) .27 
12q21.33 ATP2B1 rs17249754 12 G 0.83 SBP 0.56 (0.21-0.90) .001 0.85 (0.76-0.95) .006 

12q24.12 ATXN2, 
SH2B3 rs653178 10 C 0.49 DBP 0.20 (0.03-0.37) .02 1.04 (0.95-1.14) .44 

12q24.21 TBX3/X5 rs2384550 11 G 0.65 DBP 0.12 (−0.05 to 
0.30) .17 1.09 (0.99-1.20) .07 

15q24.1 CSK, ULK3 rs6495122 11 A 0.43 DBP 0.25 (0.08-0.42) .004 1.01 (0.92-1.10) .90 

17q21.31 

PLCD3, 
ACBD4, 
HEXIM1, 
HEXIM2 

rs12946454 10 T 0.26 SBP 0.01 (−0.29 to 
0.30) .96 1.07 (0.96-1.18) .21 

17q21.32 ZNF652, 
PHB rs16948048 10 G 0.38 DBP 0.29 (0.12 to 0.47) <.001 1.08 (0.98-1.19) .10 

Diabetes OR (95% CI)  

1p12 NOTCH2, 
ADAM30 rs10923931 13 T 0.10 DM 1.10 (0.97-1.26) .14 0.99 (0.85-1.16) .93 

2p21 THADA rs7578597 13 T 0.90 DM 1.06 (0.92-1.21) .42 1.04 (0.89-1.21) .65 

2q24.3 G6PC2 rs560887 14, 15 C 0.71 FBG/HbA1
c 

c0.01 (0-0.03) .03 0.97 (0.88-1.07) .53 
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Phenotype Effect per Allele 

in WGHS 
CVD Risk per Allele 

in WGHS Region Candidate 
Genes SNP Reference

No. 
CVD 
Risk 

Allelea 

Risk Allele
Frequency
in WGHS 

Published 
Phenotype OR (95% CI) P 

Value HR (95% CI) P 
Value 

3p14.1 ADAMTS9 rs4607103 13 C 0.74 DM 1.08 (0.98-1.18) .12 1.12 (1.00-1.24) .04 
3q27.2 IGF2BP2 rs6769511 16 C 0.32 DM 1.18 (1.08-1.28) <.001 1.10 (1.00-1.21) .05 
6p22.3 CDKAL1 rs6931514 13 G 0.27 DM 1.08 (0.98-1.18) .10 0.91 (0.82-1.01) .07 

7p13 GCK rs4607517 14 A 0.17 FBG/HbA1
c 

c0.03 (0.01-0.04) <.001 0.92 (0.82-1.05) .22 

7p15.1 JAZF1 rs864745 13 T 0.50 DM 1.02 (0.94-1.10) .70 1.04 (0.95-1.14) .36 
8q24.11 SLC30A8 rs13266634 17-23 C 0.70 DM 1.12 (1.03-1.23) .01 1.06 (0.96-1.18) .23 
9p21.3 CDKN2B/2A rs10811661 17-20 T 0.82 DM 1.11 (1.00-1.24) .05 1.02 (0.91-1.15) .71 

10p13 CDC123, 
CAMK1D rs12779790 13 G 0.18 DM 1.07 (0.97-1.19) .71 1.00 (0.89-1.13) .94 

10q23.33 HHEX rs5015480 13, 19 C 0.59 DM 1.12 (1.03-1.21) .009 0.98 (0.89-1.07) .61 

10q25.2 TCF7L2 rs7903146 
13, 17, 
18, 20-

24 
T 0.29 DM 1.34 (1.24-1.47) <.001 1.06 (0.96-1.17) .24 

11p15.1 KCNJ11 rs5219 17, 18, 
22 A 0.37 DM 1.09 (1.00-1.19) .04 0.97 (0.88-1.07) .24 

11p15.4 KCNQ1 rs2237897 16 C 0.94 DM 1.24 (1.02-1.49) .03 0.98 (0.81-1.19) .85 

11q21 MTNR1B rs10830963 14 G 0.29 FBG/HbA1
c 

c0.01 (0-0.03) .04 1.14 (1.04-1.26) .008 

12q21.1 TSPAN8, 
LGR5 rs7961581 13 C 0.27 DM 1.03 (0.94-1.13) .52 0.98 (0.89-1.09) .73 

16q12.2 FTO rs8050136 13 A 0.40 DM 1.14 (1.05-1.24) .002 1.08 (0.98-1.18) .11 
C-Reactive Protein Increase, mg/dL 

(95% CI)    
1p31.3 LEPR rs1892534 25 C 0.62 CRP 0.15 (0.13-0.17) <.001 1.06 (0.96-1.16) .23 
1q21.3 IL6R rs8192284 25 A 0.60 CRP 0.09 (0.07-0.12) <.001 1.00 (0.92-1.10) .92 
1q23.2 CRP rs2794520 26, 27 C 0.67 CRP 0.21 (0.19-0.24) <.001 1.05 (0.96-1.16) .29 
1q23.2 CRP rs3091244 25 A 0.37 CRP 0.22 (0.20-0.25) <.001 1.08 (0.98-1.18) .12 
2p23.3 GCKR rs780094 25 T 0.40 CRP 0.10 (0.08-0.13) <.001 0.96 (0.87-1.05) .37 
12q23.2  rs10778213 25 T 0.53 CRP 0.09 (0.07-0.11) <.001 0.98 (0.90-1.08) .72 

12q24.31 HNF1A rs1169310 28 G 0.65 CRP 0.17 (0.14-0.19) <.001 0.93 (0.84-1.02) .12 
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Phenotype Effect per Allele 

in WGHS 
CVD Risk per Allele 

in WGHS Region Candidate 
Genes SNP Reference

No. 
CVD 
Risk 

Allelea 

Risk Allele
Frequency
in WGHS 

Published 
Phenotype Increase, mg/dL 

(95% CI) 
P 

Value HR (95% CI) P 
Value 

Lipids 

1p13.3 
CELSR2, 
PSRC1, 
SORT1 

rs599839 1-3 A 0.77 LDL 5.79 (5.04-6.55) <.001 1.01 (0.90-1.12) .92 

LDL 2.23 (1.55-2.90) <.001 0.94 (0.85-1.03) .20 1p31.3 DOCK7, 
ANGPTL3 rs10889353 29, 30 A 0.67 TG 5.60 (3.78-7.42) <.001   

1p31.3 
ANGPTL3, 
DOCK7, 
ATG4C 

rs12130333 31 C 0.79 TG 5.38 (3.27-7.49) <.001 0.93 (0.84-1.04) .23 

1p32.3 PCSK9 rs11591147 31 C 0.98 LDL 15.45 (13.02-
17.88) <.001 1.13 (0.78-1.64) .52 

1p36.11 TMEM57 rs10903129 30 G 0.54 LDL 1.23 (0.59-1.87) <.001 1.02 (0.93-1.12) .70 

HDL −0.53 (−0.82 to 
−0.25) <.001 1.04 (0.95-1.15) .37 1q42.13 GALNT2 rs4846914 29, 31 G 0.39 

TG 1.84 (0.08-3.60) .04   
2p21 ABCG8 rs6544713 29 T 0.32 LDL 1.89 (1.21-2.58) <.001 0.97 (0.88-1.07) .52 
2p21 ABCG5 rs6756629 30 G 0.94 LDL 3.49 (2.20-4.79) <.001 1.08 (0.89-1.31) .42 

LDL 1.61 (0.96-2.26) <.001 0.96 (0.87-1.05) .37 2p23.3 GCKR rs780094 2, 3, 30, 
31 T 0.40 TG 10.31 (8.57-12.05) <.001   

2p24.1 APOB rs562338 1, 2 G 0.83 LDL 4.66 (3.82-5.50) <.001 1.11 (0.98-1.26) .09 
LDL 3.12 (2.49-3.76) <.001 1.08 (0.98-1.18) .11 2p24.1 APOB rs693 22, 27, 

30, 31 A 0.50 TG 3.07 (1.35-4.79) <.001   
2p24.1 APOB rs7557067 29 A 0.77 TG 5.67 (3.64-7.71) <.001 1.07 (0.96-1.19) .24 
5q13.3 HMGCR rs3846663 29 T 0.38 LDL 2.43 (1.78-3.08) <.001 1.06 (0.97-1.17) .20 

5q33.3 TIMD4, 
HAVCR1 rs1501908 29 C 0.65 LDL 1.86 (1.19-2.52) <.001 1.03 (0.94-1.14) .50 

6p21.32 B3GALT4 rs2254287 2 G 0.40 LDL 0.61 (−0.04 to 
1.26) .07 1.09 (1.00-1.20) .06 

7p15.3 DNAH11 rs12670798 30 C 0.24 LDL 1.02 (0.27-1.77) .008 0.93 (0.83-1.03) .17 
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Phenotype Effect per Allele 

in WGHS 
CVD Risk per Allele 

in WGHS Region Candidate 
Genes SNP Reference

No. 
CVD 
Risk 

Allelea 

Risk Allele
Frequency
in WGHS 

Published 
Phenotype Increase, mg/dL 

(95% CI) 
P 

Value HR (95% CI) P 
Value 

7q11.23 
BCL7B, 
TBL2, 

MLXIPL 
rs17145738 2, 31 C 0.88 TG 10.40 (7.76-13.04) <.001 0.96 (0.83-1.10) .53 

8p21.3 LPL rs10503669 2 C 0.90 HDL −1.90 (−2.36 to 
−1.44) <.001 1.07 (0.92-1.24) .41 

8p21.3 LPL rs2083637 30 A 0.73 HDL −1.52 (−1.84 to 
−1.21) <.001 1.11 (1.00-1.23) .05 

8p23.1 XKR6, 
AMAC1L2 rs7819412 29 A 0.52 TG 0.15 (−1.56 to 

1.86) .86 0.96 (0.88-1.05) .36 

8q24.13 TRIB1 rs6987702 30 C 0.27 LDL 0.88 (0.17-1.60) .02 1.02 (0.92-1.13) .68 
8q24.13 TRIB1 rs2954029 29 A 0.53 TG 5.82 (4.09-7.54) <.001 1.06 (0.96-1.16) .25 

9p22.3 TTC39B rs471364 29 C 0.12 HDL −0.75 (−1.19 to 
−0.31) <.001 1.04 (0.90-1.20) .57 

9q31.1 ABCA1 rs1883025 29 T 0.27 HDL −0.88 (−1.20 to 
−0.56) <.001 1.11 (1.00-1.23) .04 

9q31.1 ABCA1 rs3905000 30 A 0.14 HDL −1.08 (−1.48 to 
−0.67) <.001 0.98 (0.86-1.12) .77 

11p11.2 NR1H3 rs7120118 27 T 0.70 HDL −0.49 (−0.80 to 
−0.18) .002 0.99 (0.89-1.09) .80 

11p11.2 MADD, 
FOLH1 rs7395662 30 G 0.63 HDL −0.19 (−0.48 to 

0.10) .21 1.02 (0.93-1.13) .62 

HDL −0.62 (−0.92 to 
−0.33) <.001 0.97 (0.88-1.06) .49 11q12.2 FADS1/2/3 rs174547 29 C 0.34 

TG 4.18 (2.37-5.99) <.001   

HDL −0.64 (−1.05 to 
−0.22) .003 1.07 (0.94-1.23) .31 11q12.2 FADS2/3 rs174570 30 C 0.87 

LDL 1.41 (0.48-2.34) .003   

HDL −1.67 (−2.08 to 
−1.25) <.001 0.95 (0.83-1.09) .44 

11q23.3 APOA1/3/4/5 rs964184 29 G 0.13 
TG 25.35 (22.85-

27.85) <.001   

11q23.3 APOA1/3/5 rs6589566 3 G 0.07 LDL 1.89 (0.66-3.12) .003 1.03 (0.87-1.23) .70 
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Phenotype Effect per Allele 

in WGHS 
CVD Risk per Allele 

in WGHS Region Candidate 
Genes SNP Reference

No. 
CVD 
Risk 

Allelea 

Risk Allele
Frequency
in WGHS 

Published 
Phenotype Increase, mg/dL 

(95% CI) 
P 

Value HR (95% CI) P 
Value 

11q23.3 
APOA1/3/4/5

, 
DSCAML1 

rs10892151 32 C 0.98 TG 5.79 (0.30-11.28) .04 1.01 (0.75-1.36) .95 

11q23.3 APOA1/3/4/5 rs12286037 2 T 0.06 TG 24.36 (20.83-
27.89) <.001 0.87 (0.71-1.06) .16 

11q23.3 
APOA1, 

KIAA0999, 
LOC645044 

rs2075292 33 G 0.11 TG 9.61 (6.95-12.28) <.001 1.01 (0.88-1.17) .85 

12q24.11 MMAB, MVK rs2338104 2, 29 C 0.47 HDL −0.53 (−0.82 to 
−0.25) <.001 1.03 (0.94-1.12) .58 

15q22.1 LIPC rs1532085 27, 30 G 0.63 HDL −1.38 (−1.67 to 
−1.09) <.001 0.96 (0.87-1.05) .39 

15q22.1 LIPC rs1800588 31 C 0.78 HDL −2.02 (−2.37 to 
−1.68) <.001 0.98 (0.88-1.10) .74 

16q13 CETP rs1532624 30 C 0.56 HDL −3.02 (−3.30 to 
−2.74) <.001 1.05 (0.95-1.15) .33 

16q13 CETP rs1864163 2 A 0.25 HDL −3.16 (−3.49 to 
−2.84) <.001 0.97 (0.87-1.08) .57 

16q13 CETP rs9989419 2 A 0.39 HDL −2.18 (−2.47 to 
−1.89) <.001 1.04 (0.94-1.14) .46 

16q22.1 LCAT rs255049 27 T 0.81 HDL −0.63 (−0.99 to 
−0.28) <.001 1.11 (0.98-1.25) .09 

18q21.1 LIPG, 
ACAA2 rs2156552 2, 31 A 0.18 HDL −1.19 (−1.56 to 

−0.83) <.001 0.98 (0.87-1.11) .81 

LDL 1.34 (0.18-2.50) .02 1.02 (0.86-1.21) .81 
19p13.11 NCAN rs2304130 30 A 0.92 TG 2.58 (−0.55 to 

5.70) .11   

19p13.11 
NCAN, 
CILP2, 
PBX4 

rs17216525 29 C 0.92 TG 5.34 (2.25-8.44) <.001 1.05 (0.89-1.24) .56 

19p13.2 ANGPTL4 rs2967605 29 T 0.18 HDL −0.33 (−0.70 to 
0.03) .08 1.02 (0.91-1.15) .71 



 

8 

 
Phenotype Effect per Allele 

in WGHS 
CVD Risk per Allele 

in WGHS Region Candidate 
Genes SNP Reference

No. 
CVD 
Risk 

Allelea 

Risk Allele
Frequency
in WGHS 

Published 
Phenotype Increase, mg/dL 

(95% CI) 
P 

Value HR (95% CI) P 
Value 

19p13.2 LDLR rs2228671 30 C 0.88 LDL 5.16 (4.19-6.13) <.001 0.94 (0.82-1.08) .36 

HDL −0.41 (−0.70 to 
−0.12) .005 0.94 (0.86-1.04) .23 19q13.32 

TOMM40, 
APOE 

APO cluster 
rs157580 27, 30 A 0.61 

LDL 3.65 (3.00-4.30) <.001   

19q13.32 

APOE, 
APOC1, 
APOC4, 
APOC2 

rs4420638 
1, 2, 22, 
29, 31, 

34 
G 0.15 LDL 5.38 (4.50-6.27) <.001 1.02 (0.90-1.16) .73 

19q13.32 TOMM40, 
APOE rs439401 30 C 0.63 TG 7.13 (5.36-8.90) <.001 0.95 (0.87-1.05) .33 

20q12 MAFB rs6102059 29 C 0.69 LDL 1.27 (0.57-1.97) <.001 0.92 (0.84-1.02) .11 

HDL −1.17 (−1.53 to 
−0.81) <.001 0.94 (0.84-1.06) .32 20q13.12 PLTP rs7679 29 C 0.19 

TG 6.13 (3.95-8.32) <.001   

20q13.2 HNF4A rs1800961 29 T 0.03 HDL −2.25 (−3.08 to 
−1.43) <.001 0.85 (0.64-1.14) .28 

Abbreviations: CHD, coronary heart disease; CRP, C-reactive protein; CVD, cardiovascular disease; DBP, diastolic blood pressure; DM, diabetes 
mellitus; FBG, fasting blood glucose; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein cholesterol; HR, hazard ratio; HTN = hypertension; LDL, 
low-density lipoprotein cholesterol; MI, myocardial infarction; OR, odds ratio; SBP, systolic blood pressure; SNP, single-nucleotide polymorphism; TG, 
triglycerides; WGHS, Women’s Genome Health Study. 
aThe allele which increased the level or probability of the phenotype was designated the cardiovascular risk allele for all phenotypes except HDL, for 
which the lowering allele was designated. 
bOdds ratio for hypertension. 
cIncrease in percent hemoglobin A1c in the Women’s Genome Health Study, published effect was in fasting blood glucose. 
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eTable 2. Pearson Correlation Coefficients for Genetic Risk Scores and Baseline Characteristics 

Genetic Risk Score  
101 SNP 12 SNP 

Age (years) −0.009 −0.016 
Systolic Blood Pressure (mm Hg) 0.033* −0.005 
Total Cholesterol (mg/dL) 0.075* 0.040* 
High Density Lipoprotein Cholesterol (mg/dL) −0.127* −0.001 
Current Smoker −0.004 −0.003 
Antihypertensive Use 0.008 −0.009 
History of Diabetes 0.013 0.004 
Hemoglobin A1c if Diabetic (%) −0.068 −0.039 
High Sensitivity C-reactive Protein (mg/dL) 0.059* 0 
Family History of Myocardial Infarction 0.024* 0.026* 
*P<.05. 
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eTable 3. Beta-Coefficients for Cardiovascular Risk Prediction Cox Models With and Without 101 SNP Genetic Risk Score 
(GRS) 

ATP III Predictors ATP III With 101 SNP GRS Reynolds Risk Score Reynolds Risk Score 
With 101 SNP GRS 

Predictors Beta (SE) P value Beta (SE) P value Beta (SE) P value Beta (SE) P value 
Age (years)a 4.433 (0.280) <.001 4.437 (0.280) <.001 0.078 (0.005) <.001 0.079 (0.005) <.001 
Systolic Blood Pressure 
(mm Hg)b 3.117 (0.361) <.001 3.114 (0.362) <.001 3.293 (0.337) <.001 3.291 (0.337) <.001 

Total Cholesterol (mg/dL)b 1.238 (0.191) <.001 1.228 (0.192) <.001 1.088 (0.192) <.001 1.081 (0.193) <.001 
HDL Cholesterol (mg/dL)b -1.195 (0.136) <.001 -1.186 (0.136) <.001 -1.060 (0.128) <.001 -1.054 (0.139) <.001 
Current Smoker 0.779 (0.090) <.001 0.780 (0.090) <.001 0.782 (0.091) <.001 0.783 (0.091) <.001 
Antihypertensive Use 0.310 (0.088) .009 0.311 (0.088) .009 - - - - 
History of Diabetes 1.176 (0.112) <.001 1.176 (0.112) <.001 - - - - 
HbA1C if have diabetes - - - - 0.146 (0.014) <.001 0.147 (0.014) <.001 
hsCRP (mg/dL)c - - - - 0.171 (0.035) <.001 0.170 (0.035) <.001 
Family History of MI - - - - 0.455 (0.095) <.001 0.454 (0.095) <.001 
Genetic Risk Score (allele)   0.003 (0.006) .63   0.002 (0.006) .76 
aThe natural logarithm was used for the ATP II models only. 
bThe natural logarithm was used for all models. 
cThe natural logarithm was used for the Reynolds models only. 
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eTable 4. Beta-Coefficients for Cardiovascular Risk Prediction Cox Models With and Without 12 SNP Genetic Risk Score 
(GRS) 

ATP III Predictors ATP III With 12 SNP GRS Reynolds Risk Score Reynolds Risk Score 
With 12 SNP GRS 

Predictors Beta (SE) P value Beta (SE) P value Beta (SE) P value Beta (SE) P value 
Age (years) a 4.433 (0.280) <.001 4.452 (0.281) <.001 0.078 (0.005) <.001 0.079 (0.005) <.001 
Systolic Blood Pressure 
(mm Hg)b 3.117 (0.361) <.001 3.109 (0.361) <.001 3.293 (0.337) <.001 3.285 (0.337) <.001 

Total Cholesterol (mg/dL)b 1.238 (0.191) <.001 1.218 (0.191) <.001 1.088 (0.192) <.001 1.068 (0.192) <.001 
HDL Cholesterol (mg/dL)b -1.195 (0.136) <.001 -1.191 (0.138) <.001 -1.060 (0.140) <.001 -1.057 (0.138) <.001 
Current Smoker 0.779 (0.090) <.001 0.783 (0.090) <.001 0.782 (0.091) <.001 0.785 (0.091) <.001 
Antihypertensive Use 0.310 (0.088) <.001 0.313 (0.088) <.001 - - - - 
History of Diabetes 1.176 (0.112) <.001 1.174 (0.112) <.001 - - - - 
HbA1C if have diabetes - - - - 0.146 (0.014) <.001 0.146 (0.014) <.001 
hsCRP (mg/dL)c - - - - 0.171 (0.035) <.001 0.171 (0.035) <.001 
Family History of MI - - - - 0.455 (0.095) <.001 0.449 (0.095) <.001 
Genetic Risk Score (allele)   0.036 (0.019) .05   0.035 (0.019) .06 
aThe natural logarithm was used for the ATP II models only. 
bThe natural logarithm was used for all models. 
cThe natural logarithm was used for the Reynolds models only. 


