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IMPORTANCE Establishment of the infant microbiome has lifelong implications on health and
immunity. Gut microbiota of breastfed compared with nonbreastfed individuals differ during
infancy as well as into adulthood. Breast milk contains a diverse population of bacteria, but
little is known about the vertical transfer of bacteria from mother to infant by breastfeeding.

OBJECTIVE To determine the association between the maternal breast milk and areolar skin
and infant gut bacterial communities.

DESIGN, SETTING, AND PARTICIPANTS In a prospective, longitudinal study, bacterial
composition was identified with sequencing of the 16S ribosomal RNA gene in breast milk,
areolar skin, and infant stool samples of 107 healthy mother-infant pairs. The study was
conducted in Los Angeles, California, and St Petersburg, Florida, between January 1, 2010,
and February 28, 2015.

EXPOSURES Amount and duration of daily breastfeeding and timing of solid food
introduction.

MAIN OUTCOMES AND MEASURES Bacterial composition in maternal breast milk, areolar skin,
and infant stool by sequencing of the 16S ribosomal RNA gene.

RESULTS In the 107 healthy mother and infant pairs (median age at the time of specimen
collection, 40 days; range, 1-331 days), 52 (43.0%) of the infants were male. Bacterial
communities were distinct in milk, areolar skin, and stool, differing in both composition and
diversity. The infant gut microbial communities were more closely related to an infant’s
mother’s milk and skin compared with a random mother (mean difference in Bray-Curtis
distances, 0.012 and 0.014, respectively; P < .001 for both). Source tracking analysis was used
to estimate the contribution of the breast milk and areolar skin microbiomes to the infant gut
microbiome. During the first 30 days of life, infants who breastfed to obtain 75% or more of
their daily milk intake received a mean (SD) of 27.7% (15.2%) of the bacteria from breast milk
and 10.3% (6.0%) from areolar skin. Bacterial diversity (Faith phylogenetic diversity,
P = .003) and composition changes were associated with the proportion of daily breast milk
intake in a dose-dependent manner, even after the introduction of solid foods.

CONCLUSIONS AND RELEVANCE The results of this study indicate that bacteria in mother’s
breast milk seed the infant gut, underscoring the importance of breastfeeding in the
development of the infant gut microbiome.
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M icrobial colonization of the infant gut plays an im-
portant role in lifelong health.1,2 In healthy new-
borns, the gut microbiome composition shows large-

scale longitudinal changes until age 3 years, when it settles into
an adult-like anaerobic pattern.3-5 Perturbations in the micro-
biome are associated with susceptibility to autoimmune dis-
eases, such as diabetes, inflammatory bowel disease, atopy, and
other conditions.6-8 The mechanisms of acquisition and pro-
gression toward a “normal” infant microbiome are poorly un-
derstood. Colonization of the infant gut is a complex process
dependent on multiple overlapping factors, including age,9

mode of delivery,10-12 type of feeding,10,12,13 and environmen-
tal exposures.14

Multiple studies have documented differences in the stool
microbiota of breastfed compared with nonbreastfed indi-
viduals during infancy and adulthood.13,15,16 Studies show that
breastfeeding confers protection against respiratory and gas-
trointestinal tract infections and allergic diseases in addition
to reducing the risk of chronic diseases, such as diabetes, obe-
sity, and inflammatory bowel disease.17 Most microbiota re-
search on the breastfeeding effects to date has focused on in-
fant stool. Little is known about the vertical transfer of breast
milk microbes from mother to infant.18

Breast milk contains a diverse population of bacteria19,20

that are hypothesized to seed the infant’s gut via breastfeed-
ing. We set out to evaluate the association between the ma-
ternal bacterial community and the infant’s stool in healthy
mother-infant pairs. In this report, we show the extent that ma-
ternal milk and areolar skin contribute to the developing in-
fant microbiome. We also describe the predicted functional
profile of milk and infant stool bacterial communities.

Methods
Study Participants
We recruited healthy mothers and their full-term infants in the
community around Children’s Hospital Los Angeles, Los An-
geles, California, and All Children’s Hospital, St Petersburg,
Florida, between January 1, 2010, and February 28, 2015. We
enrolled mother-infant pairs into the following infant age
groups: 0 to 7 days (initial colonization period), 8 to 30 days
(first period of full maternal milk supply), 31 to 90 days (be-
fore introduction of solids), 91 to 180 days (period of solid food
introduction), and 181 to 365 days (after solid food introduc-
tion). Mother-infant pairs were excluded if either had a health
condition or if the infant had received antibiotics. Institu-
tional review boards at Children's Hospital Los Angeles and All
Children's Hospital approved the study; written informed con-
sent was obtained from all mothers, and financial compensa-
tion was provided.

At the initial study visit, study personnel interviewed
mothers to collect clinical data, including basic demograph-
ics, pregnancy and delivery history, current or recent medi-
cations (including antibiotics), and infant feeding character-
istics (age at formula and solid food introduction and frequency
of breastfeeding, formula, and solid foods). On all follow-up
visits, we asked about new medical conditions, antibiotic use,

and feeding characteristics, using the Research Electronic Data
Capture (REDCap Consortium; https://www.project-redcap
.org/) database.

Sample Collection, DNA Extraction, and Sequencing
We collected breast milk and areolar skin swabs from moth-
ers and stool from infants’ soiled diapers during clinic or home
study visits. Mothers expressed milk with a manual or elec-
tric breast pump using sterilized connectors into sterile bottles.
Longitudinal samples were obtained when possible. The DNA
extraction, library preparation, and sequencing of the V4 re-
gion of the 16S ribosomal RNA (rRNA) gene on a MiSeq se-
quencer (Illumina Inc) were performed using standard proce-
dures with quality control (eMethods and eFigure 1 in the
Supplement).

Statistical Analysis
We compared differences in α diversity using Faith phyloge-
netic diversity21; β diversity, using unweighted UniFrac and
Bray-Curtis; and community composition between groups
based on feeding characteristics. To evaluate sources of in-
fant stool microbiome variation, we modeled infant age, de-
mographics, delivery type, geographic collection site, and feed-
ing characteristics with the permutational multivariate analysis
of variance using distance matrices (adonis, R vegan pack-
age; R Foundation). Interaction terms were tested and not sta-
tistically significant. To predict the source of bacterial com-
munities in infant stool, we used SourceTracker, version 0.9.5,
software in Quantitative Insights Into Microbial Ecology22 to
compare sequences in breast milk and areolar skin as input
samples (source samples) with the sequences in infant stool
(sink sample). To compare paired breast milk and infant stool
samples, we performed a Wilcoxon rank sum test on UniFrac,
Jaccard index, and Bray-Curtis distances between true mother-
infant pairs and randomly paired mothers and infants matched
by infant age within each run. Operational taxonomic unit
(OTU) sharing was defined as the percentage of mother-
infant dyads in which a given OTU was found in both mem-
bers; permutation testing with randomly shuffled mother-
infant pairings was used to assess significance. Oligotyping
analysis was performed using sequences mapped to OTUs
shared within mother-infant dyads as previously described.23

Key Points
Question Do maternal breast milk and areolar skin bacterial
communities transfer to the infant gut?

Findings In this 12-month longitudinal study of 107 healthy
mother-infant pairs, breastfed infants received 27.7% of their gut
bacteria from breast milk and 10.4% from areolar skin during the
first month of life. Bacterial diversity and composition changes
were associated with the proportion of daily breast milk intake in a
dose-dependent manner even after introduction of solid foods.

Meaning Microbes in mother’s breast milk seed the infant gut,
including those associated with beneficial effects, underscoring
the importance of breastfeeding in maturation of the infant gut
microbiome.
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Statistical analyses were performed using R statistical soft-
ware, version 3.0.3 (R Foundation).

Random forest models were used to predict taxonomy that
classified the infant stool bacterial community into classes
based on feeding method. We used a random forest machine-
learning algorithm to determine a ranked list of all bacterial
taxa in the order of age-discriminatory importance.4 Stool from
a randomly chosen subset of vaginally born, exclusively breast-
fed infants (n = 42) at multiple time points throughout the first
year of life was used to train the model. A sparse model with
44 predictors (57.5% variance explained) was selected on the
basis of 10-fold cross validation. Relative microbiota matu-
rity was calculated by microbiota age of a child minus micro-
biota age of healthy children of a similar chronologic age from
the model.4

We used Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt)24 to predict
metagenome function using 16S rRNA marker gene se-
quences and referenced to published complete genome se-
quences. Both R, version 3.0.3 and STAMP, version 2.0.925 were
used for statistical analyses of the functional profiles. A false
discovery rate P value ≤.10 was considered significant for any
analyses with multiple comparisons. A standard P value ≤.05
was considered significant for all other analyses.

Results
Study Population
We enrolled 228 healthy individuals from 121 families, includ-
ing 107 mother-infant pairs, 2 mothers only, and 12 infants only.
Median infant age at the time of specimen collection was 40
days (range, 1-331 days). Family and feeding characteristics are
reported in the Table and eTable 1 in the Supplement, respec-
tively. Eighty (66.1%) of our families were Hispanic/Latino. Sev-
enty-eight (64.5%) infants were born by vaginal delivery. We
analyzed at least 2 longitudinal samples from 73 (60.3%) fami-
lies. At the time of sample collection (n = 569), 484 (85.1%)
samples showed that the infants were primarily breastfed (de-
fined as receiving breast milk for >75% of their daily milk in-
take), including 298 (52.4%) who were exclusively breastfed
(defined as never having received formula).

Breast Milk, Areolar, and Infant Stool Microbiomes
Distinct bacterial communities were present in milk, areolar
skin, and stool, which differed in both composition and diver-
sity (Figure 1). Proteobacteria (Moraxellaceae, Enterobacte-
riaceae, and Pseudomonadaceae) constituted the dominant
phylum in milk, Firmicutes (Staphylococcaceae and Strepto-
coccaceae) were dominant in areolar skin, and Proteobacte-
ria (Enterobacteriaceae) and Actinobacteria (Bifidobacteria-
ceae) accounted for more than 50% of the community in infant
stool. Milk and areolar samples collected from the right and
left breast were similar (eFigure 2 in the Supplement); there-
fore, samples from the right breast were used for analyses if
samples from both sides were collected.

The breast milk bacterial community as the infant aged is
shown in Figure 2. The breast milk bacterial communities re-

mained unchanged in α diversity (within-sample diversity)
throughout the first year of life. β Diversity (between-sample
diversity) increased between mothers in the first 6 months
after delivery and then decreased. There were no significant
differences in breast milk or areolar bacteria by race/
ethnicity, infant sex, mode of delivery, or geographic location
of enrollment site.

Taxonomic Changes in Infant Stool as a Function of Age,
Feeding Type, and Other Factors
Bacterial diversity in infant stool increased with age, with con-
vergence between individual infants near 12 months (Figure 2).
Actinobacteria, specifically Bifidobacteriaceae (r = 0.31,
P < .001), typically increased and Proteobacteria, specifically
Enterobacteriaceae (r = 0.27, P < .001), decreased as the in-
fant aged. Bacterial abundance changes occurred in direct or
inverse relationships with each other in a complex network
(eFigure 3 in the Supplement). Members of the Bifidobacte-
riaceae and Enterobacteriaceae families were dominant in the
3 observed clusters.

To evaluate factors contributing to the infant stool micro-
biome, we applied a permutational multivariate analysis of
variance using the unweighted UniFrac and Bray-Curtis dis-
tance matrices (eTable 2 in the Supplement). Age accounted
for 23% of the variation between infant stool samples

Table. Characteristics of 121 Families

Characteristic No. (%)
Race/ethnicity

African American 5 (4.1)

Asian/Pacific Islander 11 (9.1)

Hispanic/Latino 80 (66.1)

White 16 (13.2)

Mixed 3 (2.5)

Unknown 6 (5.0)

Infant sex

Male 52 (43.0)

Female 50 (41.3)

Unknown 19 (15.7)

Delivery method

Vaginal 78 (64.5)

Cesarean section 31 (25.6)

Planned 16 (51.6)

Unplanned 15 (48.4)

Unknown 12 (9.9)

Maternal antibiotics at delivery

Yes 37 (30.6)

No 66 (54.5)

Unknown 18 (14.9)

Infant age at specimen collection, d

0-7 90 (15.8)

8-30 163 (28.6)

31-90 127 (22.3)

91-180 147 (25.8)

181-365 42 (7.4)
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(unweighted UniFrac, P = .001). The timing of formula intro-
duction (R2 = 0.023, P = .001), solid food introduction
(R2 = 0.029, P = .001), percentage of daily breastfeeding
(R2 = 0.008, P = .002), and delivery method (R2 = 0.009,
P = .001) also represented smaller, but significant, indepen-
dent drivers of the microbiome trajectory in the developing in-
fant. Race was a significant factor using unweighted UniFrac,
but not Bray-Curtis, distances.

Infant Gut Microbiota Composition Association
With Amount of Daily Breastfeeding
We used SourceTracker22 to estimate the proportion of bacte-
ria in infant stool that originated from breast milk and areolar
skin (Figure 3). Overall, primarily breastfed infants received
more bacteria from breast milk and areolar skin compared with
those not primarily breastfed (breast milk, 18.5% vs 5.7%,
P < .001, Wilcoxon rank sum; areolar, 5.2% vs 0.001%, P = .01,
Wilcoxon rank sum). During the first 30 days of life, infants who
were primarily breastfed received mean (SD) 27.7% (15.2%) of
the bacteria from breast milk and 10.4% (6.0%) from areolar
skin. The remaining 61.9% (16.2%) came from other sources
that we did not characterize. The contribution of bacteria from

mother’s milk and areolar skin was highest during the first
month of life and decreased as the infant aged.

Because bacterial communities in milk and areolar skin re-
mained distinct for each mother, we hypothesized that an in-
fant’s stool microbiota would be more similar to the infant’s
mother’s microbiota compared with random mothers. Com-
parison using multiple distance metrics showed closer dis-
tances between infant stool and breast milk or areolar skin
among true mother-infant pairs compared with random pairs
(eTable 3 in the Supplement). In total, 26 of 478 OTUs were
more significantly shared within mother-infant pairs vs ran-
dom pairs (eTable 4 in the Supplement). Oligotyping analysis
showed significant sharing of Streptococcus, Veillonella, and
Rothia (eTable 5 in the Supplement).

Changes in the infant gut bacterial community were as-
sociated with the proportion of breastfeeding in a dose-
dependent manner. The percentage of daily milk intake was
associated with altered community composition, measured by
unweighted UniFrac distance (R2 = 0.008, P = .002). Differ-
ences in gut phylogenetic diversity did not reach statistical sig-
nificance (nonparametric t test, P = .06), but different com-
positions were observed between primarily and nonprimarily

Figure 1. Microbial Communities in Breast Milk, Areolar Skin, and Infant Stool
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Figure 2. Evaluation of Breast Milk and Infant Stool During the First Year of Life
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breastfed infants (eFigure 4 in the Supplement). We used ran-
dom forest modeling to determine the bacterial taxa that best
discriminate between the infant’s lifetime feeding pattern (ie,
exclusively vs nonexclusively breastfed). Erysipelotricha-
ceae, Bacteroidaceae, and Ruminococcaceae were the most
prominent families found in nonexclusively breastfed in-
fants that discriminated between the 2 groups (eFigure 5A in
the Supplement). Ruminococcaceae and Bacteroidaceae were
more abundant among formula feeders at the time of the
sample collection (eFigure 5B in the Supplement).

Age at Solid Food Introduction
Followingmilkintroduction,thenextmajorchangeintheinfant’s
diet is the introduction of solid foods. Solid food introduction in
infants aged 4 to 6 months was associated with a change in in-
fant gut microbiome composition (eFigure 6 in the Supplement),
but not phylogenetic diversity (nonparametric t test, P > .99). We
interrogated our data to determine whether early solid food in-
troductionchangedthepatternofthemicrobiotatrajectory,using
a random forest regression model.4 Early solid food introduction
(<4 months) in our infant cohort led to a rapid maturation of the
infant stool microbiota (Kruskal-Wallis, P = .02) (Figure 4). The
amount of daily breastfeeding as a proportion of total milk intake
continued to influence the infant stool microbiome diversity and
membership even after solid foods were introduced (eFigure 7
in the Supplement).

Predicted Metagenome Function of Breast Milk
and Infant Gut Bacterial Community
Given the effect of breast milk microbiota on the infant gut
community, we sought to gain insight into the genes present

in breast milk bacterial communities using PICRUSt.24 Breast
milk contains bacteria with predicted high abundance in gene
families associated with membrane transport and carbohy-
drate, amino acid, and energy metabolism (eFigure 8 in the
Supplement). We compared metagenome predictions of in-
fant stool microbiota based on the amount of breast milk in-
take. Infants who were primarily breastfed had a lower repre-
sentation of genes involved in energy metabolism, sphingolipid
metabolism, and glycan biosynthesis and metabolism (eFig-
ure 9 in the Supplement). Infants with earlier introduction of
solid food had microbiota with increased function related to
xenobiotics biodegradation and metabolism.

Discussion
We characterized bacterial communities in mother-infant pairs
and provide data suggesting that bacteria from mothers’ breast
milk and areolar skin are transferred to their infants’ guts. Key
support for this idea comes from comparisons of bacterial lin-
eages in the infants’ guts with their mothers vs random moth-
ers, which showed more shared lineages in the correct pairs.
Our data do not exclude the possibility that bacteria from in-
fants’ stool seed the mother’s microbiome. It is likely that bac-
teria cycle between the mother and infant in a constant ex-
change. However, we favor the idea that transfer of bacteria
primarily occurs from mother to infant. Breast milk is an early
source of bacteria and nutrition introduced to the infant gut
within a few hours of birth. Bacteria from mother’s milk and
skin are most prominent in their infants’ guts in the first month
of life, accounting for nearly 40% of the gut bacteria in pri-
marily breastfed infants. Mother to infant microbe transmis-
sion was compromised in infants who were not primarily

Figure 3. Source of Bacterial Community in Infant Stool by Percent Daily
Breastfeeding
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B, Amount of contribution from breast milk to the infant stool was highest during
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continued to breastfeed more than 75% of the time. Error bars indicate SD.

Figure 4. Microbiome Age Estimation
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breastfed. Other sources of the infant microbiome include the
mother’s gut and vaginal bacteria as well as the environment.
In mice, cross-fostering experiments initiated within 48 hours
of birth have shown that the nursing mother, rather than the
birth mother, dictates the infant microbiome composition,
which persists after weaning and for life.26 In the Human Mi-
crobiome Project, Ding and Schloss16 found breastfeeding dur-
ing infancy to be a major life-history characteristic that af-
fects bacterial composition in adults. Early life may represent
a critical window for bacterial imprinting of breast milk bac-
teria leading to nonrandom community assembly.3,27 Our
model showed that the complex ecologic network that forms
during the first 6 months of life is built on interdependent bac-
terial relationships in the infant gut. Breast milk bacteria that
seed the gut first influence and select for bacteria that follow,
leaving a footprint that can be detected even in adulthood.16

Our oligotype analysis indicated that breast milk provides
Veillonella and Rothia, bacteria genera that have been associ-
ated with a lower incidence of asthma.6 These early bacterial
seeding events may be a mechanism by which breastfeeding
protects children.

The breast milk microbiota become more divergent between
mothers during the first 6 months of her infant’s life. The diver-
gence lessens after 6 months when breast milk is typically no lon-
ger an infant’s sole food source. The infant gut microbiota dis-
play increasing α diversity and reduced β diversity as the infant
ages—atrajectoryalsoobservedbyothers.5,15 Mother-infantshar-
ing decreases as the infants age. Milk bacteria are detectable in
infant stool at least through 6 months of life, but differences in
the gut microbiota and their function are evident throughout the
entire first year. Some studies have suggested that even small
amounts of formula supplementation would shift the microbiota
from a breastfed pattern to a formula pattern.28 Our multivari-
ate and diversity analyses indicate that the shift occurs in a dose-
dependent manner. The proportion of breast milk intake also de-
creases with introduction of solid foods. A recent study suggests
that cessation of breastfeeding, rather than introduction of solid
foods, is the major driver in the development of an adult
microbiota.15 In our cohort, introduction of solid foods prior to
6monthsledtoearlymaturationofthemicrobiota.Furthermore,
continuedbreastfeedingaftersolidfoodintroductionsuppressed
the diversification and enrichment of bacteria typically associ-
ated with solid foods. These findings further support the current
World Health Organization and American Academy of Pediatrics
recommendation for exclusive breastfeeding during the first 6
months with continued breastfeeding until at least 12 months.17

Our predicted metagenome functional analysis shows that
breast milk harbors bacteria with prominent carbohydrate,
amino acid, and energy metabolism functions. Breastfeeding has
been shown to strongly protect against obesity.29 Microbiota har-
vest energy from the diet, and energy storage in the host is di-
vergent between obese and lean humans and mice.7,30 Infants
in our cohort who were not primarily breastfed had a higher

abundance of the Bacteroidaceae, which has been associated
with subsequent obesity in most pediatric studies of early gut
colonization,31-33 although not all studies agreed.34 Erysipelo-
trichaceae and Ruminococcaceae were also increased in infants
not exclusively breastfed. Both families are enriched in older chil-
dren and adults with higher body mass indexes.35,36 Further-
more, continued breastfeeding as the primary source of milk in-
take after introduction of solids appeared to suppress increases
in multiple families within the phylum Firmicutes that are bu-
tyrate producers. Butyrate can serve as an energy substrate
or signaling molecule to contribute to the de novo production
of lipids. Firmicutes and butyrate have also been associated
with an obese phenotype in mice and humans.37-39 These
pathways need to be explored further.

Limitations
This study has limitations. We did not sequence communities
from maternal mouth, skin other than areolar, vagina, or stool,
which may have contributed additional bacteria to infants. The
origin of breast milk bacteria is unclear. One hypothesis is that
milk bacteria come from the infant’s oral cavity. We did not col-
lect infant oral specimens. However, we did not see differences
in the microbiota of breast milk by delivery type in our cohort,
as has been similarly reported by other investigators.40 Our re-
cruitment focused on breastfeeding participants, and we did not
enroll large numbers of strictly formula-fed infants. Some par-
ticipants were unable to adhere to our longitudinal collection
schedule. Sequencing of the 16S rRNA gene is limited in analy-
sis at the strain level. SourceTracker is an estimation/prediction
tool; the results may differ if the model included all potential
sourcesofmicrobiotaoradditionallongitudinalsamples.Weused
PICRUSt to estimate bacterial gene content; because the input
is 16S rRNA gene data, we did not capture any eukaryotic or
viral contributions to the metagenome.24 PICRUSt also cannot
distinguish variation at the strain level and different strains of
1 bacteria can vary in gene counts. Metagenomic shotgun se-
quencing would permit strain and more accurate functional
analysis, but is costly. Finally, we focused on bacterial commu-
nities, yet milk is a complex substance with many bioactive com-
ponents, includinghumanmilkoligosaccharides,whichmaypro-
mote the persistence of specific bacterial lineages.

Conclusions
Our study confirms a bacterial community in breast milk and
tracks that community from mothers into the infant gut. Breast
milk bacteria influence the establishment and development of
the infant microbiome with continued impact after solid food
introduction. Furthermore, breast milk contributes bacteria as-
sociated with a decreased risk for developing allergic dis-
eases. Our results emphasize the importance of breastfeed-
ing in the assembly of the infant gut microbiome.
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