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Abstract 

Background: Several recent observational studies have reported that gut microbiota composition is associated with 
preeclampsia. However, the causal effect of gut microbiota on preeclampsia-eclampsia is unknown.

Methods: A two-sample Mendelian randomization study was performed using the summary statistics of gut micro-
biota from the largest available genome-wide association study meta-analysis (n=13,266) conducted by the MiBio-
Gen consortium. The summary statistics of preeclampsia-eclampsia were obtained from the FinnGen consortium R7 
release data (5731 cases and 160,670 controls). Inverse variance weighted, maximum likelihood, MR-Egger, weighted 
median, weighted model, MR-PRESSO, and cML-MA were used to examine the causal association between gut 
microbiota and preeclampsia-eclampsia. Reverse Mendelian randomization analysis was performed on the bacteria 
that were found to be causally associated with preeclampsia-eclampsia in forward Mendelian randomization analysis. 
Cochran’s Q statistics were used to quantify the heterogeneity of instrumental variables.

Results: Inverse variance weighted estimates suggested that Bifidobacterium had a protective effect on preeclamp-
sia-eclampsia (odds ratio = 0.76, 95% confidence interval: 0.64–0.89, P = 8.03 ×  10−4). In addition, Collinsella (odds 
ratio = 0.77, 95% confidence interval: 0.60–0.98, P = 0.03), Enterorhabdus (odds ratio = 0.76, 95% confidence interval: 
0.62–0.93, P = 8.76 ×  10−3), Eubacterium (ventriosum group) (odds ratio = 0.76, 95% confidence interval: 0.63–0.91, 
P = 2.43 ×  10−3), Lachnospiraceae (NK4A136 group) (odds ratio = 0.77, 95% confidence interval: 0.65–0.92, P = 3.77 
×  10−3), and Tyzzerella 3 (odds ratio = 0.85, 95% confidence interval: 0.74–0.97, P = 0.01) presented a suggestive 
association with preeclampsia-eclampsia. According to the results of reverse MR analysis, no significant causal effect 
of preeclampsia-eclampsia was found on gut microbiota. No significant heterogeneity of instrumental variables or 
horizontal pleiotropy was found.

Conclusions: This two-sample Mendelian randomization study found that Bifidobacterium was causally associated 
with preeclampsia-eclampsia. Further randomized controlled trials are needed to clarify the protective effect of probi-
otics on preeclampsia-eclampsia and their specific protective mechanisms.
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Background
Preeclampsia and eclampsia (PE) are serious compli-
cations of pregnancy that affect 3–8% of pregnancies 
worldwide [1, 2] and are the leading causes of maternal 
and neonatal death [3, 4]. PE increases the risk of adverse 
pregnancy outcomes, including preterm birth and low 
birth weight [5]. It is also associated with serious mater-
nal and child health problems, such as chronic hyperten-
sion, myocardial ischemia, and end-stage kidney disease 
in mothers [6, 7], as well as bronchopulmonary dysplasia 
and cognitive impairment in offspring [7, 8]. The patho-
genesis of PE is still not fully understood. A variety of 
mechanisms including failure of spiral artery remod-
eling [9], imbalance of vascular endothelial growth fac-
tor (VEGF) and soluble fms-like tyrosine kinase 1 (sFlt1) 
[10], placental oxidative stress [11], and immune dysreg-
ulation [12] are believed to be involved. Moreover, PE is 
considered a progressive disease in which symptoms and 
organ function deteriorate over time and are cured only 
by delivery [1].

The gut microbiome has been observed to change sig-
nificantly during pregnancy [13] and plays an impor-
tant role in both maternal and fetal health [14]. Multiple 
studies have found that Bifidobacterium has a protec-
tive effect on PE [15–17]. Further research on probiot-
ics and prebiotics may contribute to the prevention and 
treatment of PE. However, the results of published stud-
ies are not consistent. For example, unlike other studies, 
Altemani et  al. found that Bifidobacterium increased in 
PE patients [16]. Miao and Lv et al. found that Blautia is 
a risk factor for PE [18, 19], while Chang and Yu reported 
the opposite result [20, 21]. Most previous studies were 
designed as case-control studies, and the timing of expo-
sure and outcome is difficult to confirm. In addition, in 
observational studies, the association between gut micro-
biota and PE is susceptible to confounding factors such 
as age, environment, dietary patterns, and lifestyle [22], 
and it is difficult to effectively control these factors in an 
observational study. These conditions limit the causal 
inference between the gut microbiota and PE.

In this context, Mendelian randomization (MR) is a 
novel approach to explore the causal association between 
gut microbiota and PE. MR uses genetic variants to con-
struct instrumental variables of exposure to estimate 
the causal association between exposure and disease 
outcome [23]. Because the allocation of genotypes from 
parent to offspring is random, the association between 
genetic variants and outcome is not affected by common 
confounding factors, and a causal sequence is reasonable 

[24]. MR has been widely applied to explore the causal 
association between gut microbiota and diseases, includ-
ing metabolic diseases [25], autoimmune diseases [26], 
and rheumatoid arthritis [27]. In this study, using the 
genome-wide association study (GWAS) summary sta-
tistics from the MiBioGen and FinnGen consortiums, a 
two-sample MR analysis was conducted to evaluate the 
causal association between gut microbiota and PE.

Methods
Data sources
Genetic variants for gut microbiota were obtained from 
the largest genome-wide meta-analysis published to date 
for gut microbiota composition conducted by the MiBi-
oGen consortium [28, 29]. The study included 18,340 
individuals from 24 cohorts, most of whom had Euro-
pean ancestry (n = 13,266), targeting variable regions V4, 
V3–V4, and V1–V2 of the 16S rRNA gene to profile the 
microbial composition and to conduct taxonomic clas-
sification using direct taxonomic binning. Microbiota 
quantitative trait loci (mbQTL) mapping analysis was 
conducted to identify host genetic variants that were 
mapped to genetic loci associated with the abundance 
levels of bacterial taxa in the gut microbiota. In the study, 
genus was the lowest taxonomic level, and 131 genera 
with a mean abundance greater than 1% were identified, 
which included 12 unknown genera [28]. Therefore, 119 
genus-level taxa were included in the current study for 
analysis. GWAS summary statistics for PE were obtained 
from FinnGen consortium R7 release data [30, 31]. The 
phenotype “pre-eclampsia or eclampsia” was adopted in 
the current study. This GWAS included 166,401 Finnish 
adult female subjects and consisted of 5731 cases and 
160,670 controls. Sex, age, first 10 principal components, 
and genotyping batch were corrected during the analysis 
[30].

Instrumental variable (IV)
The following selection criteria were used to choose the 
IVs: (1) single nucleotide polymorphisms (SNPs) asso-
ciated with each genus at the locus-wide significance 
threshold (P < 1.0×10–5) were selected as potential IVs 
[25]; (2) 1000 Genomes project European samples data 
were used as the reference panel to calculate the link-
age disequilibrium (LD) between the SNPs, and among 
those SNPs that had R2 < 0.001 (clumping window 
size=10,000 kb), only the SNPs with the lowest P-val-
ues were retained; (3) SNPs with minor allele frequency 
(MAF) ≤ 0.01 were removed; and (4) when palindromic 
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SNPs existed, the forward strand alleles were inferred 
using allele frequency information.

Statistical analysis
In this study, multiple methods including inverse variance 
weighted (IVW), maximum likelihood (ML), MR-Egger 
regression, weighted median, weighted model, MR-
PRESSO, and cML-MA were used to examine whether 
there was a causal association between gut microbiota 
and PE. The IVW method used a meta-analysis approach 
combined with the Wald estimates for each SNP to 
obtain an overall estimate of the effect for gut microbiota 
on PE. If horizontal pleiotropy was not present, the IVW 
results would be unbiased [32]. The ML method is simi-
lar to IVW, assuming that heterogeneity and horizontal 
pleiotropy do not exist. If the hypotheses are satisfied, the 
results will be unbiased, and the standard errors will be 
smaller than IVW [33]. MR-Egger regression is based on 
the assumption of instrument strength independent of 
direct effect (InSIDE), which makes it possible to evalu-
ate the existence of pleiotropy with the intercept term. 
If the intercept term is equal to zero, this indicates that 
horizontal pleiotropy does not exist and the result of the 
MR-Egger regression is consistent with IVW [34]. The 
weighted median method allows for the correct estima-
tion of causal association when up to 50% of instrumen-
tal variables are invalid [35]. If the InSIDE hypothesis is 
violated, the weighted model estimate has been found 
to have greater power to detect a causal effect, less bias, 
and lower type I error rates than MR-Egger regression 
[35]. The MR-PRESSO analysis detects and attempts to 
reduce horizontal pleiotropy by removing significant out-
liers. But the MR-PRESSO outlier test requires that at 
least 50% of the genetic variants be valid instruments and 
relies on InSIDE assumptions [36]. A constrained maxi-
mum likelihood and model averaging-based MR method, 
cML-MA, which without relying on the InSIDE assump-
tion, was used in this study to control correlated and 
uncorrelated pleiotropic effects [37].

Cochran’s IVW Q statistics were used to quantify the 
heterogeneity of IVs. In addition, to identify potential 
heterogeneous SNPs, the “leave-one-out” analysis was 
performed by omitting each instrumental SNP in turn. 
To assess the causal association between gut microbiota 
and PE, we also performed reverse MR analysis on the 
bacteria that were found to be causally associated with 
PE in forward MR analysis. The methods and settings 
adopted were consistent with those of forward MR.

The strength of IVs was assessed by calculating the 
F-statistic using the formula F =

R
2
×(N−1−K )

(1−R2)×K
 , where R2 

represents the proportion of variance in the exposure 
explained by the genetic variants, N represents sample 
size, and K represents the number of instruments [38]. If 

the corresponding F-statistic was >10, it was considered 
that there was no significant weak instrumental bias [38]. 
The power of the MR estimates was calculated using the 
online calculator tool [39] provided by Stephen Burgess 
[40].

False discovery rate (FDR) correction was conducted 
by applied q-value procedure, with a false discovery rate 
of q-value < 0.1 [41]. Genera of gut microbiota and PE 
were considered to have a suggestive association when P 
< 0.05 but q ≥ 0.1.

All statistical analyses were performed using R version 
4.2.1 (R Foundation for Statistical Computing, Vienna, 
Austria). MR analyses were performed using the Twosa-
mpleMR (version 0.5.6) [42], MR-PRESSO (version 1.0) 
[36], MRcML [37], and qvalue [41] R packages.

Results
According to the selection criteria of IVs, a total of 1232 
SNPs were used as IVs for 119 bacterial genera. Details 
about the selected instrumental variables are shown in 
Additional file 1: Table S1.

As shown in Table  1, Additional file  1: Table  S2, and 
Fig.  1, eight bacterial genera, specifically, Adlercreutzia, 
Bifidobacterium, Collinsella, Enterorhabdus, Eubacte-
rium (ventriosum group), Lachnospiraceae (NK4A136 
group), Methanobrevibacter, and Tyzzerella 3, were found 
to be associated with PE in at least one MR method. 
IVW estimate suggests that Bifidobacterium had a pro-
tective effect on PE (OR = 0.76, 95% CI: 0.64–0.89, P = 
8.03 ×  10−4, q = 0.08), and the protective effect was still 
significant after considering the associated pleiotropy 
(cML-MA-BIC OR = 0.75, 95% CI: 0.64–0.89, P = 9.24 
×  10−4, q = 0.04). The IVW estimate of Lachnospiraceae 
(NK4A136 group) also showed its suggestive protective 
effect against PE (OR = 0.77, 95% CI: 0.65–0.92, P = 3.77 
×  10−3, q = 0.13), while ML (OR = 0.77, 95% CI: 0.66–
0.91, P = 2.05 ×  10−3, q = 0.07) and cML-MA estimate 
(OR = 0.77, 95% CI: 0.65–0.90, P = 1.37 ×  10−3, q = 
0.04) were still significant after FDR correction. Although 
IVW estimates did not support the causal associations of 
Eubacterium (ventriosum group) and Tyzzerella 3 on PE 
after FDR correction (q > 0.1), both ML and cML-MA 
estimates suggested that Eubacterium (ventriosum group) 
(ML OR = 0.76, 95% CI: 0.63–0.91, P = 3.05 ×  10−3, q = 
0.07; cML-MA OR = 0.75, 95% CI: 0.63–0.90, P = 2.48 
×10−3, q = 0.05) and Tyzzerella 3 (ML OR = 0.85, 95% 
CI: 0.76–0.94, P = 1.68×10−3, q = 0.07; cML-MA OR = 
0.84, 95% CI: 0.76–0.93, P = 1.08×10−3, q =0.04) were 
causally associated with PE. The IVW estimates of Col-
linsella and Enterorhabdus showed a suggestive associa-
tion with PE; however, these associations were no longer 
significant after FDR correction (q > 0.1). Similarly, the 
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Table 1 MR estimates for the association between gut microbiota and PE

MR Mendelian randomization, PE preeclampsia or eclampsia, SNP single nucleotide polymorphism, OR odds ratio, CI confidence interval, IVW inverse variance 
weighted, ML maximum likelihood

Bacterial taxa (exposure) MR method No. of SNP F-statistic OR 95% CI P-value q-value

Adlercreutzia IVW 8 103.69 0.83 0.68–1.01 0.06 0.61

MR-Egger 8 0.95 0.37–2.45 0.92 1.00

Weighted median 8 0.77 0.59–1.01 0.06 0.97

Weighted mode 8 0.74 0.48–1.14 0.21 0.98

ML 8 0.82 0.67–1.00 0.04 0.50

cML-MA-BIC 8 0.82 0.68–1.00 0.05 0.39

Bifidobacterium IVW 13 115.25 0.76 0.64–0.89 8.03E−04 0.08

MR-Egger 13 0.71 0.47–1.08 0.14 1.00

Weighted median 13 0.78 0.61–0.98 0.04 0.97

Weighted mode 13 0.75 0.54–1.03 0.10 0.98

ML 13 0.76 0.65–0.90 1.29E−03 0.07

cML-MA-BIC 13 0.75 0.64–0.89 9.24E−04 0.04

Collinsella IVW 9 104.60 0.77 0.60–0.98 0.03 0.61

MR-Egger 9 1.50 0.60–3.75 0.42 1.00

Weighted median 9 0.71 0.51–1.01 0.05 0.97

Weighted mode 9 0.65 0.38–1.12 0.16 0.98

ML 9 0.77 0.60–0.99 0.04 0.50

cML-MA-BIC 9 0.76 0.59–0.98 0.03 0.39

Enterorhabdus IVW 6 194.91 0.76 0.62–0.93 8.76E−03 0.23

MR-Egger 6 0.62 0.36–1.07 0.16 1.00

Weighted median 6 0.76 0.57–1.01 0.06 0.97

Weighted mode 6 0.77 0.51–1.16 0.27 0.98

ML 6 0.75 0.61–0.93 8.78E−03 0.17

cML-MA-BIC 6 0.76 0.61–0.93 9.40E−03 0.15

Eubacterium (ventriosum group) IVW 15 90.27 0.76 0.63–0.91 2.43E−03 0.13

MR-Egger 15 0.47 0.21–1.03 0.08 1.00

Weighted median 15 0.81 0.63–1.04 0.10 1.00

Weighted mode 15 0.82 0.53–1.26 0.38 0.98

ML 15 0.76 0.63–0.91 3.05E−03 0.07

cML-MA-BIC 15 0.75 0.63–0.90 2.48E−03 0.05

Lachnospiraceae (NK4A136 group) IVW 15 86.22 0.77 0.65–0.92 3.77E−03 0.13

MR-Egger 15 0.67 0.47–0.94 0.04 1.00

Weighted median 15 0.73 0.57–0.92 9.20E−03 0.55

Weighted mode 15 0.71 0.52–0.95 0.04 0.98

ML 15 0.77 0.66–0.91 2.05E−03 0.07

cML-MA-BIC 15 0.77 0.65–0.90 1.37E−03 0.04

Methanobrevibacter IVW 6 137.60 0.86 0.73–1.01 0.06 0.61

MR-Egger 6 1.00 0.51–1.96 1.00 1.00

Weighted median 6 0.86 0.71–1.05 0.13 1.00

Weighted mode 6 0.88 0.69–1.12 0.35 0.98

ML 6 0.85 0.73–0.99 0.04 0.50

cML-MA-BIC 6 0.85 0.73–0.99 0.04 0.39

Tyzzerella 3 IVW 13 85.50 0.85 0.74–0.97 0.01 0.27

MR-Egger 13 0.66 0.36–1.21 0.21 1.00

Weighted median 13 0.77 0.66–0.89 6.00E−04 0.07

Weighted mode 13 0.75 0.62–0.92 0.02 0.98

ML 13 0.85 0.76–0.94 1.68E−03 0.07

cML-MA-BIC 13 0.84 0.76–0.93 1.08E−03 0.04
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ML estimates of Adlercreutzia and Methanobrevibacter 
presented a suggestive association with PE.

Among these eight causal associations, the F-statistics 
of the IVs ranged from 85.50 to 194.91, eliminating the 
bias of weak IVs. The results of Cochran’s IVW Q test 
showed no significant heterogeneity of these IVs (Addi-
tional file 1: Tables S3). In addition, there was no signifi-
cant directional horizontal pleiotropy according to the 
results of the MR-Egger regression intercept analysis 
(Additional file 1: Table S4).

There were potential outliers of the IVs of Adlercreut-
zia, Methanobrevibacter, and Collinsella that were 
present on visual inspection in scatter plots (Fig.  1) 
and leave-one-out plots (Fig.  2). However, further 

MR-PRESSO analysis did not find any significant outliers 
(global test P>0.05, Additional file  1: Tables S5). There-
fore, there was insufficient evidence for horizontal plei-
otropy in the association between these bacteria and PE.

According to the results of reverse MR analysis, there 
was a suggestive association between PE and Collinsella 
(IVW OR = 0.94, 95% CI: 0.88–1.00, P = 0.04); however, 
such association became insignificant after correction 
for FDR (q = 0.33). No significant causal association was 
found between PE and the other gut microbiota (Addi-
tional file  1: Tables S6 and S7). Cochran’s IVW Q test 
showed that there was no significant heterogeneity in 
PE IVs (Additional file  1: Table  S8). The results of MR-
Egger regression intercepted item analysis (Additional 

Fig. 1 Scatter plots for the causal association between gut microbiota and PE
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file  1: Table  S9) and MR-PRESSO analysis (Additional 
file 1: Table S10) also did not find significant horizontal 
pleiotropy.

Discussion
In this study, using the summary statistics of gut micro-
biota from the largest GWAS meta-analysis conducted 
by the MiBioGen consortium and the summary statis-
tics of PE from the FinnGen consortium R7 release data, 

we performed a two-sample MR analysis to evaluate the 
causal association between gut microbiota and PE. We 
found that Bifidobacterium had protective effects on 
PE, and several genera of gut microbiota had sugges-
tive protective effects against PE, including Collinsella, 
Enterorhabdus, Eubacterium (ventriosum group), Lachno-
spiraceae (NK4A136 group), and Tyzzerella 3.

A number of observational studies have reported the 
association between gut microbiota and PE [16–19, 

Fig. 2 Leave-one-out plots for the causal association between gut microbiota and PE
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43–46]. Bifidobacterium was found to be associated with 
a lower risk of PE, which is consistent with the results of 
our study [18, 20]. Bifidobacterium, as a probiotic, has 
been widely reported to have a protective effect on car-
diovascular [47] and metabolic diseases [48]. Consist-
ent with previous studies [20, 21, 45], we also found that 
Lachnospiraceae (NK4A136 group), butyrate-producing 
bacteria [49], reduced the risk of PE. Elevated levels of 
trimethylamine n-oxide (TMAO) and its precursor tri-
methylamine (TMA) were found in PE patients [44, 50], 
which could induce spiral arterial remodeling defects 
by increasing sFlt-1 and reactive oxygen species (ROS) 
levels in the placenta [51]. As methanogenic archaea, 
Methanobrevibacter can convert TMA to methane [52] 
and thereby reduce the risk of PE [19]. In addition, we 
also found that Eubacterium (ventriosum group), Enter-
orhabdus, and Tyzzerella 3 were associated with PE. 
Eubacterium (ventriosum group) can increase the level of 
SCFA and thus decrease visceral fat accumulation [53]; 
furthermore, some other species of Eubacterium, such 
as E. rectale and E. hallii, were found to have a protec-
tive effect on PE [20]. There have been relatively few pre-
vious studies on Tyzzerella 3, but a reduced abundance 
of Tyzzerella 3 has been reported to be associated with 
acute myocardial infarction [54], which may be related to 
its ability to produce formic and butyric acid [55].

SCFAs—mostly acetic acid, propionic acid, and 
butyric acid—are the main end products of gut micro-
biota metabolism in the human body. In this study, part 
of the gut microbiota identified to be associated with 
PE were SCFA-producing bacteria, including Bifidobac-
terium [56], Collinsella [20], Eubacterium (ventriosum 
group) [57], Lachnospiraceae (NK4A136 group) [49], and 
Tyzzerella 3 [55]. Several clinical and animal studies have 
reported that SCFA metabolized by gut microbiota can 
effectively reduce blood pressure [58–60]. SCFA can be 
involved in blood pressure regulation through a variety of 
mechanisms, but mainly through the activation of trans-
membrane G protein-coupled receptors (GPCR), includ-
ing CPR41, CPR43, and olfactory receptor 78 (Olfr78) 
[60]. Acetic acid and butyric acid can improve endothelial 
function by restoring Th17/Treg imbalance and alleviat-
ing arterial inflammation [61]. Furthermore, butyric acid 
can directly activate colonic vagus signal transduction 
via the GPR41/43 receptor [62]. Altemani et  al. found 
reduced levels of serum butyric acid in patients with late-
onset preeclampsia and also found the gene abundance of 
butyryl-CoA: acetate CoA transferase (but) and butyrate 
kinase (buk) to be decreased in the gut microbiome, sug-
gesting that a reduction in the level of butyric acid pro-
duced by gut microbiota is related to preeclampsia [16]. 
Yong et al. report that sodium butyrate improves hyper-
tension and proteinuria in PE rats and found that sodium 

butyrate alleviates PE symptoms by decreasing placental 
antiangiogenic factors (sFlt1 and soluble endoglin [sEng]) 
and increasing angiogenic factors (placental growth fac-
tor [PLGF]), while reducing placental and intestinal 
inflammation [63]. In addition, Gomez-Arango et  al. 
found that plasminogen activator inhibitor 1 (PAI-1) lev-
els are positively correlated with blood pressure but neg-
atively correlated with buk expression in obese pregnant 
women, suggesting that SCFAs produced by gut microbi-
ota may also regulate blood pressure through PAI-1 [64].

The maintenance of intestinal barrier function 
depends on the balance of pathogenic bacteria and pro-
biotics [65]. Chen et  al. found that the opportunistic 
pathogens Fusobacterium and Veillonella are increased 
in preeclampsia patients. They further gavaged mice 
with fecal supernatants from preeclampsia patients, 
which gave the mice clinical and placental pathologi-
cal features similar to PE [17]. Impaired intestinal bar-
rier function can increase the entry of LPS produced by 
gut microbiota into the blood [65], triggering placental 
inflammation, leading to deficient trophoblast invasion 
and spiral artery remodeling [66]. Although the present 
study did not find a causal effect of bacteria, which were 
previously reported to impair the intestinal barrier in 
PE, some probiotics such as Bifidobacterium have been 
reported to stimulate the expression of Mucins 3 in 
intestinal epithelial cells [67] and restore mucus growth 
[68], thereby maintaining intestinal barrier function. 
In addition, some SCFAs produced by probiotics, for 
example butyric acid, are chief energy sources of intes-
tinal epithelial cells, and they participate in cell prolif-
eration and differentiation, thereby maintaining cell 
homeostasis through anti-inflammatory and antioxi-
dant effects [69, 70]. Therefore, probiotics and SCFAs 
may help pregnant women maintain intestinal barrier 
function and prevent placental inflammation caused by 
the migration of pathogenic bacteria to reduce the risk 
of PE. Nevertheless, further randomized controlled tri-
als are needed to confirm these findings.

This study has several strengths. MR analysis was per-
formed to determine the causal association between gut 
microbiota and PE, thus excluding the interference of 
confounding factors and reversing causation on causal 
inference. Genetic variants of gut microbiota were 
obtained from the largest available GWAS meta-analysis, 
ensuring the strength of instruments in the MR analy-
sis. Horizontal pleiotropy was detected and excluded by 
using the MR-PRESSO and MR-Egger regression inter-
cept term tests. Furthermore, cML-MA was used to rule 
out the bias caused by correlated and uncorrelated plei-
otropy. A two-sample MR design was adopted and non-
overlapping exposure and outcome summary-level data 
were used to avoid bias [71].
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However, there are also several limitations in this 
study, which should be noted while interpreting the 
results. Because summary statistics rather than raw data 
were used in the analysis, it was not possible to perform 
subgroup analyses, such as distinguishing early-onset 
preeclampsia and late-onset preeclampsia, or explor-
ing non-linear relationships. Since the lowest taxonomic 
level in the exposure dataset was genus, this restriction 
prevented us from further exploring the causal associa-
tion between gut microbiota and PE at the species level. 
To conduct sensitivity analysis and horizontal pleiotropy 
detection, more genetic variations need to be included 
as instrumental variables; therefore, SNP used in the 
analysis did not reach the traditional GWAS significance 
threshold (P < 5×10–8). For this, we used FDR correction 
to restrict the possibility of false positives. The sample 
size of gut microbiota was relatively small, so the results 
of reverse MR analysis may have been affected by weak 
instrumental bias, and a reverse causal association could 
not be completely excluded. The GWAS meta-analysis 
for gut microbiota was not restricted to female par-
ticipants [28]. Although the genetic variants located on 
the sex chromosomes were excluded, as well as sex was 
adjusted in the analysis [28], the potential bias due to sex 
could not be excluded. Although most participants in 
the GWAS meta-analysis for gut microbiota data were 
of European descent, there may still be interference from 
population stratification, and the results of this study may 
not be entirely applicable to subjects of non-European 
descent [72]. Future MR studies on the causal association 
between gut microbiota and PE could be considered in 
diverse European and non-European populations for bet-
ter generalizability.

Conclusions
In summary, this two-sample MR study found that Bifi-
dobacterium was causally associated with PE. Further 
RCT studies are needed to clarify the protective effect 
of probiotics on PE and its specific protective mecha-
nism. In addition, although reverse MR estimates did 
not support the causal association between PE and gut 
microbiota, it cannot be ruled out that PE may affect the 
intestinal microecology; this again needs to be confirmed 
by further studies.
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