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RESEARCH Open Access

Association between In Utero arsenic exposure,
placental gene expression, and infant birth
weight: a US birth cohort study
Dennis Liang Fei1,2,7†, Devin C Koestler3†, Zhigang Li3, Camilla Giambelli1, Avencia Sanchez-Mejias1, Julie A Gosse4,
Carmen J Marsit3, Margaret R Karagas3* and David J Robbins1,5,6*

Abstract

Background: Epidemiologic studies and animal models suggest that in utero arsenic exposure affects fetal health,
with a negative association between maternal arsenic ingestion and infant birth weight often observed. However,
the molecular mechanisms for this association remain elusive. In the present study, we aimed to increase our
understanding of the impact of low-dose arsenic exposure on fetal health by identifying possible arsenic-associated
fetal tissue biomarkers in a cohort of pregnant women exposed to arsenic at low levels.

Methods: Arsenic concentrations were determined from the urine samples of a cohort of 133 pregnant women
from New Hampshire. Placental tissue samples collected from enrollees were homogenized and profiled for gene
expression across a panel of candidate genes, including known arsenic regulated targets and genes involved in
arsenic transport, metabolism, or disease susceptibility. Multivariable adjusted linear regression models were used to
examine the relationship of candidate gene expression with arsenic exposure or with birth weight of the baby.

Results: Placental expression of the arsenic transporter AQP9 was positively associated with maternal urinary arsenic
levels during pregnancy (coefficient estimate: 0.25; 95% confidence interval: 0.05 – 0.45). Placental expression of
AQP9 related to expression of the phospholipase ENPP2 which was positively associated with infant birth weight
(coefficient estimate: 0.28; 95% CI: 0.09 – 0.47). A structural equation model indicated that these genes may mediate
arsenic’s effect on infant birth weight (coefficient estimate: -0.009; 95% confidence interval: -0.032 – -0.001; 10,000
replications for bootstrapping).

Conclusions: We identified the expression of AQP9 as a potential fetal biomarker for arsenic exposure. Further, we
identified a positive association between the placental expression of phospholipase ENPP2 and infant birth weight.
These findings suggest a path by which arsenic may affect birth outcomes.

Keywords: Arsenic, AQP9, ENPP2, Birth weight, Placenta, Biomarker

Background
The environmental toxicant arsenic poses a significant
threat to adult human health [1,2]. Emerging evidence
now suggests that arsenic exposure in utero also poses
health risks to the developing fetus [1-3]. A number of

epidemiological studies have found significant associations
between prenatal arsenic exposure and adverse infant
outcomes, such as infant mortality, low birth weight,
and birth defects [4-8]. These health problems were
most evident in individuals exposed to high-level ar-
senic [2]. Conclusions from these epidemiological stud-
ies are further supported by results from animal models
[9,10]. Moreover, an inverse association between arsenic
exposure and birth weight was found in individuals with
lower exposure levels [11,12]. Despite the strong associ-
ation between arsenic exposure and a range of child
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health concerns, the mechanisms by which arsenic
elicits these effects remain elusive [3,13-16].
We recently reported that food sources, such as rice,

also can contribute in exposing pregnant women to ar-
senic [17]. This finding, coupled with elevated arsenic
levels detected in infant food [18-20], has raised serious
public health and scientific concerns regarding the poten-
tial for relatively common fetal/early childhood exposure
to arsenic. Validated human biomarkers will facilitate risk
assessment for low-level arsenic exposure during fetal
development [21,22]. In this study, we sought to develop
such biomarkers, identifying relevant genes associated
with low-dose arsenic exposure in an area of United States
(New Hampshire) where a cohort of pregnant women
used private wells with arsenic both above and below the
current drinking water maximum contaminant level
(MCL) of 10 μg/L [2]. We also subsequently associated
the expression of these biomarkers to infant birth weight
to provide insight into the mechanisms underlying the ad-
verse effect of in utero arsenic exposure on infant health.

Methods
Ethics statement
All research involving human participants has been
approved by The Committee for the Protection of
Human Subjects (CPHS) - the Institutional Review
Board at Dartmouth College (CPHS#20844). An infor-
mational brochure was provided to women around the
time of their first prenatal visit. They were invited to
participate in the study when their glucose challenge test
was being requested (at around 24 to 28 weeks gestation).
Written informed consent was given. All potential partici-
pants who declined to participate were not disadvantaged
in any way by not participating in the study.

Study cohort and arsenic measurement
The current study consisted of 133 pregnant women
from New Hampshire, and was part of the ongoing New
Hampshire Birth Cohort Study evaluating the impact of
environmental factors on pregnancy and child health
[17]. Demographic and lifestyle information was col-
lected during prenatal visits. Spot urine samples were
collected at approximately 24–28 weeks of gestation.
Details of sample collection and arsenic measurement
were described previously [17]. Briefly, urine samples
were analyzed for arsenic species (AsIII, AsV, DMAV,
MMAV, and arsenobetaine) using a high-performance
liquid chromatography (HPLC) ICP-MS system at the
University of Arizona. The detection limit ranged from
0.1 μg/L to 0.15 μg/L for each individual arsenic species.
Total urinary arsenic (U-As) was calculated by summing
the concentrations of AsIII, AsV, DMAV and MMAV.
Infant clinical characteristics, including birth weight,
were recorded from the newborn’s medical record.

Placenta biopsy preparation and processing
Placenta biopsies were obtained from study participants
at the time of delivery by obstetrical staff. The placenta
was placed on a sterile cutting surface with the umbilical
cord exposed. To minimize heterogeneity by collection
site, biopsies were taken at the base of the umbilical cord
insertion, measuring roughly 1 cm deep and 1 – 2 cm
across, and were placed immediately in RNAlater (Life
Technologies). Care was taken to avoid maternal decidua
as well as fibrous connective tissue and calcifications
during sampling of the placenta parenchyma. Samples
were refrigerated within 2 hours of collection and placed
in a −80 degree freezer for long-term storage.

RNA extraction and gene profiling using Nanostring
RNA extraction and subsequent gene profiling were
performed using three similarly sized batches (44 or 45
samples per batch). A representative piece of each pla-
centa sample (~ 200 mg wet weight) was homogenized in
Tri Reagent (Molecular Research Center) using an
electronic homogenizer. RNA extraction was performed
following the manufacturer’s directions and further puri-
fied using RNeasy columns (Qiagen). RNA quality was
assessed using an Agilent Bioanalyzer. 100 ng RNA from
each sample was subject to gene expression analysis using
the Nanostring system (Nanostring Technologies) at the
Oncogenomics Core Facility of the University of Miami
[23]. The Nanostring codeset was custom designed for 9
arsenic-related genes (AKR1C3, ENPP2, HMOX1, LEP,
NFE2L2, TYMS, AQP9, AS3MT, and SLC39A2. Details in
Table 1) and 5 house-keeping genes (ATCB, GAPDH,
HPRT1, RPL19, and RPLP0). Raw data for the expression
of each gene was compiled and normalized to the spike-in
positive and negative controls using the nSolver software
(Nanostring Technologies). The expression of arsenic-
related genes was further normalized to the geometric
mean of the expression of 5 house-keeping genes and
presented as normalized counts per gene per sample.

Statistical analysis
The gene expression data from all 3 batches were first in-
vestigated for batch-to-batch variations using a principle
components analysis. Batch effects were then adjusted by
the COMBAT method [30]. Briefly, location (mean) and
scale (variance) was adjusted using an empirical Bayes
framework. Using the batch-adjusted data, a series of mul-
tivariable linear regression models were used to examine
the association between U-As and gene expression for
each of the candidate genes. Multivariable linear regres-
sion models modeled natural log-transformed gene ex-
pression as a function of log10-transformed U-As, and
were adjusted for maternal age at delivery. Similar models
were fit to investigate the association between AQP9 ex-
pression and the expression of the other candidate genes
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as well as the association between gene expression and in-
fant birth weight (kg). The following covariates were eval-
uated for inclusion in our models: maternal age, maternal
smoking status (never, former, current), maternal educa-
tion level, infant birth weight, infant gender and gesta-
tional age. Covariates controlled in our models were those
that associated with the exposure and the outcome of
interest using a series of linear regression models. A power
analysis indicated adequate statistical power for detecting
low-moderate correlations (absolute correlation (r) = 0.24;
power = 80%) at a significance level of 0.05 and the study
sample size of 133 subjects (Additional file 1: Figure S2).
The aforementioned analyses were carried out using the R
statistical program, version 2.13 (http://cran.r-project.org/).
A structural equation model was applied to estimate the
direct and indirect paths for U-As, birth weight, and the
expression of AQP9 and ENPP2 [31]. This analysis is an
extension of multivariable regression analysis that permits
the simultaneous modeling of multiple dependent vari-
ables, allowing variables to be modeled both as dependent
and independent with respect to other variables. We use
this methodology to investigate the indirect relationship
between arsenic exposure and infant birth weight. M-plus
6.12 software was used to estimate the coefficient esti-
mates describing the associations along paths and their
corresponding bias-corrected 95% bootstrap (10,000 repli-
cates) confidence intervals.

Results
The study group consists of 133 pregnant women enrolled
in the New Hampshire pregnancy cohort (see Table 2 for
demographic information). The mean infant birth weight
was 3.4 kg (standard deviation (SD): 0.4 kg), similar to the
national average [32]. The median arsenic concentration
in household tap water was 0.36 μg/L (interquartile range
(IQR) 0.02 – 3.55) with 84% of the participants having
drinking water containing arsenic levels less than the
current drinking water MCL of 10 μg/L. Total urinary ar-
senic concentration (U-As), incorporating both inorganic
and organic metabolites (but not arsenobetaine), was also

Table 1 Candidate genes that were examined for their associations with in utero arsenic exposure

Gene Symbol RefSeq Gene Name Regulation by arsenic (biological system) [Reference]

AKR1C3 NM_003739 aldo-keto reductase family 1, member C3 Up-regulation (cell line) [24]

ENPP2 NM_001040092 autotaxin Up-regulation (cell line) [25]

HMOX1 NM_002133 heme oxygenase 1 Up-regulation (cell line) [26]

LEP NM_000230 leptin Up-regulation (placenta) [14]

NFE2L2 NM_001145413 nuclear factor (erythroid-derived 2)-like 2 Up-regulation (cell line) [27]

TYMS NM_001071 thymidylate synthetase Down-regulation (cell line, primary white blood cells) [28]

AQP9 NM_020980 aquaporin 9 Up-regulation (liver) [29]

AS3MT NM_020682 arsenic (+3 oxidation state) methyltransferase not available

SLC39A2 NM_014579 solute carrier family 39, member 2 not available

Table 2 Demographic information of the study group

Characteristic Valuea

Number of mother-child pairs 133

Mean gestational age (wks) 39.5 (1.6)

Mean maternal age at delivery (yrs) 31.1 (4.6)

Mean parity 1.1 (1.1)

Mean pre-pregnancy BMI (kg/m2) 24.9 (4.7)

Median tap water arsenic (/g/L) 0.36 {0.02 - 3.55}

Median U-As (/g/L) 4.4 {1.8 - 11.9}

School Level

Less than 11th grade 3 [2.6]

High school graduate or equivalent 10 [7.5]

Junior college graduate or some college 28 [21.1]

or technical school

College graduate 55 [41.4]

Post-graduate schooling 18 [13.5]

Unknown 19 [14.3]

Smoking status

Never 97 [72.9]

Former 13 [9.8]

Current 5 [3.8]

Unknown 18 [13.5]

Mean infant birth weight (kg) 3.4 (0.4)

Infant gender

Male 65 [48.9]

Female 68 [51.1]

Infant race

White 128 [96.2]

Unknown 5 [3.8]
aValues are presented as mean (SD), number [%], or median {interquartile
range}.
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measured among the participants. The median concentra-
tion of U-As was 4.4 μg/L (IQR 1.8 – 11.9), which was
consistent with an exposure range previously observed for
a nationally representative US sample [33].
We used fetal portions of the placenta as a source of

tissue for examining gene expression because of its fetal
origin, its critical role in fetal development and control
of the intrauterine environment, and easy accessibility
after parturition. Maternal U-As was used as the param-
eter for fetal arsenic exposure, as arsenic has been shown
to easily cross the placental barrier [34,35]. Thus, maternal
U-As levels likely reflect the burden experienced by the
fetus. To identify arsenic-associated biomarkers, we exam-
ined the expression of a set of previously reported arsenic-
regulated genes (Table 1). Besides these putative arsenic
target genes, the arsenic methyltransferase (AS3MT) and
the zinc transporter (SLC39A2) were included because
these genes were linked to arsenic-related health outcomes
in previous studies [36-38].
After consolidating the candidate gene list, we first ex-

amined the relationship between the placental expression
of these genes and in utero arsenic exposure. Multivariable
linear regression models were used to investigate the asso-
ciation between the normalized expression value of each

gene, quantitated using the Nanostring system [23], with
maternal U-As. Among all the genes examined, the ex-
pression of AQP9 was positively associated with arsenic
exposure (coefficient estimate: 0.25; 95% CI: 0.05 – 0.45)
(Figure 1A, Additional file 1: Figure S1 and Additional
file 1: Table S1). Similar results were obtained when U-As
was further adjusted for creatinine levels in samples where
such data were available (Additional file 1: Table S2). We
also evaluated whether other metal co-contaminants were
related to both arsenic and AQP9 and could be potential
confounders in our analysis. While toenail Manganese
(Mn) concentration showed the most significant associ-
ation with arsenic levels from 88 participants in whom
such data were available (Additional file 1: Table S3), the
association between arsenic exposure and AQP9 expres-
sion was not affected by adjustment of Mn concentrations
(Additional file 1: Table S4).
As AQP9 expression has been shown to enhance arse-

nic’s effect on cultured cells [39,40], presumably through
increased arsenic uptake, we further determined the as-
sociation between the expression of AQP9 and the other
members of our panel of putative arsenic biomarkers.
Such analysis revealed significant associations between
AQP9 expression and five of the six arsenic-regulated

Figure 1 Associations between gene expression, maternal U-As, and birth weight. Multiple linear regression analyses for the association
between (A) maternal U-As and placental gene expression, (B) AQP9 expression and the expression of other genes, and (C) infant birth weight
and gene expression. All analyses were adjusted for maternal age. The analysis for birth weight and gene expression was further adjusted for
gestational age. Dots depict coefficient estimates and error bars represent 95% CIs. Positive coefficient estimates are marked in red and negative
coefficient estimates are marked in blue. Significant associations are those with 95% CIs not crossing zero (dotted line) and are marked by
asterisks.

Fei et al. Environmental Health 2013, 12:58 Page 4 of 8
http://www.ehjournal.net/content/12/1/58



genes in our panel (AKR1C3, ENPP2, LEP, NFE2L2, and
TYMS), but not with the two genes not regulated by ar-
senic (AS3MT and SLC39A2) (Figure 1B and Additional
file 1: Table S5). Further, as mentioned, in utero arsenic
exposure has been linked to several adverse birth condi-
tions such as low birth weight. To explore the mechan-
ism by which arsenic exposure might influence birth
weight, we examined the association between expression
of our panel of candidate placental genes and infant
birth weight. Multivariable linear regression analysis
indicated that the expression of the phospholipase ENPP2
was positively associated with increased infant birth
weight (coefficient estimate: 0.28; 95% CI: 0.09 – 0.47)
(Figure 1C and Additional file 1: Table S6). According to
our analysis, a 10% increase in ENPP2 expression was
associated with 27 g increase in infant birth weight. Al-
though not a primary aim of this study, we also observed
an inverse association between U-As and infant birth
weight in our cohort (coefficient estimate: -1.30, adjusted
for infant gender, maternal age, and gestational age). The
scale of arsenic effect on birth weight in our study
group, -1.30 g per 1 μg/L increase in maternal U-As,
was similar to those of previous studies [11,12].
We further built a structural equation model to esti-

mate how AQP9 and ENPP2 expression might con-
tribute to arsenic-related affects on birth weight.
Structural equation models have been successfully
used for testing and estimating causal pathways and
have been successfully employed for understanding the
path from exposures to health outcomes [31,41-43].
For our study, this model incorporated the significant
associations identified in this study to build a path
from arsenic exposure to lower birth weight (Figure 2).
According to this model, in utero arsenic exposure
resulted in increased expression of AQP9, followed by
decreased expression of ENPP2. Reduction in ENPP2
levels ultimately associated with decreased infant birth
weight. The indirect path from arsenic exposure to
lower birth weight, through expression of AQP9 and
ENPP2 expression, was statistically significant (coeffi-
cient estimate: -0.009; 95% CI: -0.032 – -0.001; 10,000
replications for bootstrapping), suggesting that exposure

to arsenic in utero may be related to lower birth weight
through this path.

Discussion
From animal model experiments and epidemiologic stud-
ies from highly exposed populations, arsenic exposure has
been associated with numerous adverse birth outcomes,
such as low birth weight. However, the mechanisms by
which arsenic induces these effects remain uncertain.
Using placenta as the source of fetal tissue from a US
cohort exposed to arsenic around the MCL, we identified
the arsenic transporter AQP9 as a possible biomarker of
arsenic exposure in fetal tissues. We subsequently identi-
fied a positive association between ENPP2 expression and
infant birth weight. We further developed a statistical path
model whereby arsenic exposure related to lower infant
birth weight through the modulation of AQP9 and ENPP2
expression. Thus, our model offers some insight into a
possible mechanism underlying the inverse association be-
tween maternal arsenic exposure and infant birth weight.
AQP9 is an arsenic transporter [44,45]. Therefore, its in-

creased expression has the potential to modulate the effect
of arsenic on target cells. Consistent with this hypothesis,
AQP9 expression levels have been shown to modulate the
effect of arsenic on cultured cells including those derived
from human placenta [39,40]. Arsenic exposure, and re-
sultant increased AQP9 induced cytotoxicity of placental
cells in theory could impact the function of the placenta,
and thereby influence fetal growth and development. We
speculated that increased placental AQP9 expression also
might enhance arsenic’s effect on fetal tissues. Indeed,
AQP9 expression was significantly associated with five of
the six arsenic-regulated genes in our panel (Figure 1B
and Additional file 1: Table S5). Interestingly, AQP9 ex-
pression was negatively associated with the expression of
ENPP2, AKR1C3 and NFE2L2, in contrast to the increased
expression previously reported in response to arsenic ex-
posure in cultured mammalian cells (Table 1). U-As itself
was inversely related to the expression of these same genes
in our study cohort (Figure 1A, Additional file 1: Table S1
and Table S2). Thus, the inverse association between
AQP9 expression and ENPP2, AKR1C3, and NFE2L2

In utero 
arsenic 

exposure 

Placental 
AQP9 

expression 

Placental 
ENPP2 

expression 

Infant birth 
weight 

Figure 2 Structural equation model for the effect of arsenic on birth weight. The diagram illustrates the estimated path from arsenic
exposure to birth weight. Variables are represented by rectangles. Each path is represented by a line with an arrow or vertical bar at one end.
Arrow denotes positive association and vertical bar denotes negative association. The calculated coefficient estimate and 95% CI for each path
are: in utero arsenic exposure (U-As) and placental AQP9 expression (coefficient estimate: 0.25; 95% CI: 0.05 – 0.45); placental AQP9 expression and
ENPP2 expression (coefficient estimate: -0.13; 95% CI: -0.22 – -0.02); placental ENPP2 expression and infant birth weight (coefficient estimate: 0.28;
95% CI: 0.09 – 0.47). The indirect path from U-As to infant birth weight has a coefficient estimate of −0.009 and a 95% CI of −0.032 to −0.001 (n =
133 and 10000 replications for bootstrapping).
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expression could reflect a unique regulation by arsenic
on these genes in human placenta. Besides arsenic,
AQP9 transports solutes such as urea, glycerol, and
monocarboxylates [46]. Thus, it remains possible that
the observed associations between the expression of
AQP9 and some of the arsenic-related gene expression
biomarkers may be indirect.
We hypothesize that arsenic exposure leads to lower

birth weight by regulating the expression of AQP9 and
ENPP2 based on the results of our structure equation
model. Although direct evidence supporting this model
is lacking, AQP9 and ENPP2 are expressed during hu-
man pregnancy under both physiologic and pathological
conditions. For example, AQP9 expression was elevated in
placentas obtained from preeclamptic mothers [47]. ENPP2
encodes a secreted phospholipase that catalyzes the conver-
sion of lysophosphatidylcholine to lysophosphatidic acid
(LPA) [48]. During pregnancy, the expression level of
ENPP2 in trophoblasts rises, contributing to the high
circulating levels of ENPP2 and LPA in the serum of
pregnant women [49,50]. LPA activates its cell surface
receptors to regulate various processes relevant to
reproduction, from angiogenesis and early embryonic de-
velopment to embryo implantation and parturition, hence
conceivably impacting birth weight [51]. Indeed, mice
overexpressing lipid phosphate phosphatase 1 (LPP1), an
enzyme that dephosphophorylates LPA, are born with
lower birth weight [52]. Additionally, decreased levels of
serum ENPP2 is associated with pregnancy-induced
hypertension [53], which itself is associated with decreased
infant birth weight [54]. While our findings suggest that
placental expression of AQP9 and ENPP2 is related to in
utero arsenic exposure and infant birth weight respect-
ively, future research is necessary to validate these bio-
markers in independent cohorts and to determine the
precise molecular mechanisms of how arsenic exposure
impacts birth weight through AQP9 and ENPP2.

Conclusions
We have identified the expression of AQP9 and ENPP2
as novel potential fetal biomarkers, relating arsenic ex-
posure to infant birth weight. As our results were based
on a cohort of pregnant women exposed to arsenic levels
above and below its MCL, these findings are relevant to
pregnant women exposed to such levels of arsenic
throughout the world.
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Additional file 1: Table S1. Associations between maternal urinary
arsenic concentrations during pregnancy (U-As) and the expression of
placental genes. Table S2. Associations between maternal urinary arsenic
concentrations during pregnancy (U-As) and the expression of placental
genes after further adjustment of urinary creatinine levels in a subset of

participants (n = 91). Table S3. The association between maternal toenail
arsenic and other metals in a subset of participants (n = 88). Table S4.
The association between maternal urinary arsenic concentrations during
pregnancy (U-As) and AQP9 expression with or without adjustment of
toenail Mn levels in a subset of participants (n = 88). Table S5.
Associations between the placental expression of AQP9 and that of other
genes. Table S6. Associations between placental gene expression and
infant birth weight. Figure S1. Scattered plot view of the association
between U-As and the placental expression of AQP9. Figure S2. Sample
size power analysis.
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