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Association Between Intermittent Hypoxemia or Bradycardia
and Late Death or Disability in Extremely Preterm Infants
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for the Canadian Oxygen Trial Investigators

IMPORTANCE Extremely preterm infants may experience intermittent hypoxemia or
bradycardia for many weeks after birth. The prognosis of these events is uncertain.

OBJECTIVE To determine the association between intermittent hypoxemia or bradycardia
and late death or disability.

DESIGN, SETTING, AND PARTICIPANTS Post hoc analysis of data from the inception cohort
assembled for the Canadian Oxygen Trial in 25 hospitals in Canada, the United States,
Argentina, Finland, Germany, and Israel, including 1019 infants with gestational ages of 23
weeks 0 days through 27 weeks 6 days who were born between December 2006 and August
2010 and survived to a postmenstrual age of 36 weeks. Follow-up assessments occurred
between October 2008 and August 2012.

EXPOSURES Episodes of hypoxemia (pulse oximeter oxygen saturation <80%) or bradycardia
(pulse rate <80/min) for 10 seconds or longer. Values were sampled every 10 seconds within
24 hours after birth until at least 36 weeks’ postmenstrual age.

MAIN OUTCOMES AND MEASURES The primary outcome was a composite of death after 36
weeks’ postmenstrual age, motor impairment, cognitive or language delay, severe hearing
loss, or bilateral blindness at 18 months’ corrected age. Secondary outcomes were motor
impairment, cognitive or language delay, and severe retinopathy of prematurity.

RESULTS Downloaded saturation and pulse rate data were available for a median of 68.3 days
(interquartile range, 56.8-86.0 days). Mean percentages of recorded time with hypoxemia
for the least and most affected 10% of infants were 0.4% and 13.5%, respectively.
Corresponding values for bradycardia were 0.1% and 0.3%. The primary outcome was
ascertained for 972 infants and present in 414 (42.6%). Hypoxemic episodes were associated
with an estimated increased risk of late death or disability at 18 months of 56.5% in the
highest decile of hypoxemic exposure vs 36.9% in the lowest decile (modeled relative risk,
1.53; 95% CI, 1.21-1.94). This association was significant only for prolonged hypoxemic
episodes lasting at least 1 minute (relative risk, 1.66; 95% CI, 1.35-2.05 vs for shorter episodes,
relative risk, 1.01; 95% CI, 0.77-1.32). Relative risks for all secondary outcomes were similarly
increased after prolonged hypoxemia. Bradycardia did not alter the prognostic value of
hypoxemia.

CONCLUSIONS AND RELEVANCE Among extremely preterm infants who survived to 36 weeks’
postmenstrual age, prolonged hypoxemic episodes during the first 2 to 3 months after birth
were associated with adverse 18-month outcomes. If confirmed in future studies, further
research on the prevention of such episodes is needed.
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A lmost all extremely preterm infants (those born at
<28 weeks’ gestation) experience intermittent
hypoxemia and bradycardia during their stay in the

neonatal intensive care unit.1 Although many such episodes
are related to apnea of prematurity, a significant number of
episodes occur in mechanically ventilated infants because
of cardiorespiratory instability.2 The relationship between
neonatal hypoxemia or bradycardia and later neurodevelop-
ment in this population of high-risk preterm infants is
uncertain.3

In the multicenter Canadian Oxygen Trial (COT),4

extremely preterm infants were randomly assigned to lower
(85%-89%) or higher (91%-95%) pulse oximeter oxygen satu-
ration (SpO2) targets. As in routine neonatal intensive care,
SpO2 and pulse rate were continuously monitored. However,
in COT, the recorded oxygen saturation and pulse rate val-
ues were downloaded and submitted to the coordinating
center for analysis. This provided the opportunity to sepa-
rately examine the relationships between episodes of
hypoxemia (SpO2 <80%) or bradycardia (pulse rate <80/min)
and protocol-specified outcomes of COT participants. The
main study question in this post hoc analysis was as fol-
lows: among extremely preterm infants who survive to a
postmenstrual age of 36 weeks, what are the associations
between neonatal hypoxemia or bradycardia and the risks
of late death after 36 weeks’ postmenstrual age or disability
at 18 months’ corrected age?

Methods
COT enrolled 1201 infants of 23 to 27 weeks’ gestation within
24 hours of birth after excluding those not considered viable;
those who had congenital malformations, cyanotic heart dis-
ease, or pulmonary hypertension; and those unlikely to be
available for long-term follow-up.4 Race or ethnic group was
self-reported using predetermined options.4 This baseline
characteristic was provided to describe the study population.
Infants were randomized to target ranges of 85% to 89% or
91% to 95% on study pulse oximeters that displayed offset
saturation values between 84% and 96%.4 Follow-up was tar-
geted for a corrected age of 18 months, with a window of 18
to 21 months. Efforts to conduct assessments continued
beyond this window if necessary.4 The research ethics boards
of all clinical centers approved the protocol, and written
informed consent was obtained from a parent or guardian of
every study infant.

Since infants who die early cannot develop the longer-
term outcomes of interest, this analysis cohort was limited
to COT participants who survived to 36 weeks’ postmen-
strual age.

Study Oximetry and Analysis of Saturation
and Pulse Rate Data
The implementation of study oximetry has been described.4

The averaging time on all study oximeters was set to 16 sec-
onds and the displayed data sampled and stored every 10
seconds. eFigure 1 in the Supplement provides a schematic

of how oximeter data were averaged and sampled. Study
oximetry was continued until 36 weeks’ postmenstrual age
irrespective of the need for supplemental oxygen, and until
40 weeks in those still receiving supplemental oxygen or
any other respiratory support at 35 weeks’ postmenstrual
age. Study oximetry was stopped earlier if infants were dis-
charged home.

Designated research staff in the clinical centers down-
loaded and submitted the stored saturation and pulse rate
data to the coordinating center every 3 to 4 weeks until
study oximetry was discontinued. Streams of downloaded
data (SpO2 and pulse rate) were screened for validity; invalid
measurements were discarded (including those showing
values of 0 or any of the oximeters’ exception flags for dis-
placed sensor, ambient light, interference, or low perfu-
sion). Episodes of hypoxemia (defined as a single value or
consecutive values of SpO2 <80%) and equivalent episodes
of bradycardia (pulse rate <80/min) were identified. For
each episode, the number of consecutive 10-second data
values below the threshold was defined as the episode
length, with episode duration (in minutes) estimated as
(length × 10) ÷ 60. The area under the curve (AUC) for an
episode was calculated as the product of the episode dura-
tion in minutes times the average depth below the thresh-
old for the episode. An infant’s exposure to hypoxemia was
expressed first as the percentage of time with hypoxemia
(100 × total duration of hypoxemic episodes/total duration
of recording) and second as the average AUC per day.
Equivalent calculations were conducted separately for bra-
dycardic episodes. Percentage of time with hypoxemia or
bradycardia was calculated for short and long episodes (1-5
and ≥6, respectively, consecutive values below threshold).
Six consecutive values below threshold in 10-second
samples approximate a duration of 1 minute. These values
were also calculated by postnatal age in 2-weekly intervals.

Outcomes
All outcomes in this study had been prespecified in the
original COT study.4 However, the present analysis was of
survivors to 36 weeks’ postmenstrual age. Thus, the pri-
mary composite outcome was late death or disability,
defined as death between 36 weeks’ postmenstrual age and
18 months’ corrected age or survival with 1 or more of the
following: motor impairment, cognitive or language delay,
severe hearing loss (prescription of hearing aids or cochlear
implants), and bilateral blindness (corrected visual acuity
<20/200 in the better eye).4 Secondary outcomes were
motor impairment, cognitive or language delay, and severe
retinopathy of prematurity.

Motor impairment was defined as level 2 or higher in
the Gross Motor Function Classification System5; ie, inabil-
ity to pull to stand, cruise, or walk. Cognitive or language
delay was defined as a composite cognitive or language
score of less than 85 (1 SD below the mean of 100) on the
Bayley Scales of Infant and Toddler Development, Third
Edition.6 The cognitive score was assumed to be less than 85
if the child could not be tested because of severe develop-
mental delay or autism. Severe retinopathy of prematurity
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was defined as unilateral or bilateral disease of stage 4 or 5.7

Infants were also classified as having severe retinopathy if
they received cryotherapy or laser therapy in at least 1 eye
or intravitreal injection with an antivascular endothelial
growth factor agent. For infants who were discharged before
the complete progression and subsequent regression of reti-
nopathy, the worst disease stage and any retinal therapy
received were documented during the follow-up visit.

Cases of severe retinopathy were diagnosed at a median
postmenstrual age of 37.6 weeks, and diagnosis could pre-
date some of the oximetry data. Therefore, for this outcome
only, aggregate measures of hypoxemia and bradycardia
were truncated at the time when severe retinopathy was
diagnosed in infants who developed it and at a postmen-
strual age of 37.6 weeks in infants who did not develop
severe retinopathy.

Statistical Analysis
The strength of the relationship between percentage of time
with hypoxemia and the primary outcome as well as each of
the 3 secondary outcomes was assessed by logistic regres-
sion. Models were fitted with the dichotomous outcome as
the dependent variable and percentage of time with hypox-
emia as the continuous independent variable. The regres-
sion coefficient associated with the hypoxemia variable pro-
vided an estimate of the risk gradient (log odds scale), and
its standard error yielded a formal significance test and con-
fidence interval. Additional independent variables were
included in the model to adjust for a prespecified set of
baseline covariates (gestational age, sex, primary caregiver’s
educational attainment, use of antenatal corticosteroids,
multiple birth, and study center). To visualize the fit of
these models, the data were subdivided into deciles of per-
centage of time with hypoxemia and the observed outcome
rate plotted against the mean percentage of time with
hypoxemia for each decile. The fitted unadjusted and
adjusted models were superimposed on the graphical data
to show the fit. Equivalent analyses were performed for bra-
dycardia. Next, the relative prognostic importance of per-
centage of time with hypoxemia was compared with per-
centage of time with bradycardia. Both exposure variables
were entered in a stepwise logistic model such that the
stronger of the 2 would be selected at the first step and,
depending on the residual predictive information of the
remaining unselected variable, it would enter at the second
step. These analyses showed that bradycardia offered no
significant prognostic information in addition to hypox-
emia. Therefore, bradycardia was not included in subse-
quent analyses.

The risk gradients with the AUC measure of hypoxemic
exposure were examined using a logistic model adjusted for
the same baseline covariates. The relative prognostic
strength of percentage of time with hypoxemia and hypox-
emia AUC per day was investigated by offering both vari-
ables in a stepwise fashion to a model already containing
the baseline covariates.

To determine whether the risk gradients changed with
the duration of the hypoxemic episodes, the percentage of

time with hypoxemia was computed separately for episodes
of varying lengths (1-2, 3-5, 6-10, 11-15, 16-20, or >20 and ≤5 vs
≥6 consecutive 10-second SpO2 values <80%). Stepwise logis-
tic models were used to determine the relative prognostic
importance of these episode length variables. A similar analy-
sis (stratified by gestational age at birth) was conducted to
assess the influence of postnatal age by calculating percent-
age of time with hypoxemia by 2-week age intervals to a
maximum of 10 weeks.

Infants in this analysis cohort had been randomly
assigned to 2 oxygen saturation target ranges (85%-89% vs
91%-95%). Therefore, a test for a potential interaction
between the COT treatment allocation and exposure to
hypoxemia on the outcome of late death or disability was
performed. A binary indicator variable for the COT treatment
allocation and a product term of COT treatment times per-
centage of time with SpO2 of less than 80% were added to the
adjusted logistic model. The coefficient associated with the
product term (interaction) in the logistic model provided a
formal test indicating whether the risk gradient differed by
COT oxygen saturation target range.

Risk gradients were calculated from the logistic model
as odds ratios contrasting the highest decile of hypoxemic
exposure with the lowest decile based on the mean percent-
age of time with hypoxemia in each of the 2 respective
deciles. Poisson regression with robust variance estimation
was used to provide the corresponding risk gradients as
relative risks.

All statistical analyses were done using SAS version 9.3 (SAS
Institute Inc). All P values were 2-sided and considered sig-
nificant if P < .05.

Results
Of the 1201 COT participants, 1035 survived to a postmen-
strual age of 36 weeks and were eligible for this study. Six in-
fants had missing outcome data and 10 had no valid SpO2 data
available, leaving 1019 (98.5%) in the analysis cohort. Table 1
summarizes the clinical characteristics and rates of adverse out-
comes of the study population.8 The primary outcome of late
death after 36 weeks’ postmenstrual age or disability at 18
months was ascertained in 972 infants and present in 414
(42.6%).

Valid oximetry recordings were available for a median
duration of 68.3 days (interquartile range [IQR], 56.8-86.0
days). The amount of recorded data discarded because of an
exception code generated by the study oximeter was 0.2%.
Median episode length was 3.3 (IQR, 2.5-4.4) consecutive
10-second SpO2 values of less than 80% for hypoxemia, and
1.9 (IQR, 1.7-2.2) consecutive 10-second pulse rate values of
less than 80/min for bradycardia (Table 2). Hypoxemia was
more prevalent than bradycardia (median, 3.34% [IQR,
1.55%-6.13%] of total recording time vs 0.12% [IQR, 0.085%-
0.17%]). Hypoxemic episodes lasting for 6 or more consecu-
tive 10-second values (ie, lasting for approximately 1 minute
or longer) occurred at a median rate of 12.1 (IQR, 4.8-23.8)
episodes per day compared with 73.5 (IQR, 37.3-113.3) epi-
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sodes per day for shorter episodes. The majority of the
shorter episodes lasted for only 1 or 2 consecutive 10-second
values. Bradycardia lasting for approximately 1 minute or
longer was rare, occurring on average once every 5 days
(Table 2).

Figure 1 shows the relationship between each study out-
come and percentage of time with hypoxemia and bradycar-
dia. The mean percentage of time with hypoxemia among
infants contributing data to the primary outcome of late
death or disability ranged from 0.4% in the lowest decile to
13.5% in the highest. Corresponding results for bradycardia
were 0.1% and 0.3%. eTable 1 in the Supplement summa-
rizes the observed frequencies of hypoxemia and bradycar-
dia in each of the deciles of exposure. The probability of
each adverse outcome increased significantly with the per-
centage of time with hypoxemia. Estimated rates of late
death or disability at 18 months from the adjusted model at
the mean values of percentage of time with hypoxemia were
36.9% and 56.5%, respectively, for the lowest and highest
deciles of exposure. Risk gradients were much smaller for
percentage of time with bradycardia, with motor impair-
ment showing the only statistically significant relationship.
For all outcomes, stepwise modeling consistently selected
exposure to hypoxemia over bradycardia on the first step,
with bradycardia offering no additional significant prognos-
tic information. Therefore, bradycardia was not included in
subsequent analyses.

Table 3 summarizes the risk gradients of outcomes with
percentage of time with hypoxemia and the effects of the
duration of each episode. For infants in the highest decile of
exposure to intermittent hypoxemia, the odds ratios and rela-
tive risks were increased for all adverse outcomes compared
with infants in the lowest decile of exposure to intermittent
hypoxemia. For the primary outcome of late death or disabil-
ity, the modeled relative risk was 1.53 (95% CI, 1.21-1.94) for
infants in the highest vs lowest decile of exposure. For each
outcome, the odds ratios and relative risks were lower and
nonsignificant for short (<1-minute) episodes of hypoxemia,
but higher and significant for long (≥1-minute) episodes. For
the primary outcome, the relative risk was 1.01 (95% CI, 0.77-
1.32) for short hypoxemic episodes vs 1.66 (95% CI, 1.35-2.05)
for long hypoxemic episodes.

eTable 2 in the Supplement shows the equivalent analy-
sis for AUC as predictor of outcome with similar results.
Based on this observation and supportive modeling includ-
ing both exposure variables, it was determined that AUC
offered no meaningful advantage over percentage of time
with hypoxemia and was more difficult to compute. The
remainder of the analysis was thus confined to percentage
of time with hypoxemia.

The differences in exposure to hypoxemia between
infants who did and did not develop adverse outcomes
became greater with increasing postnatal age (P < .05) (eFig-
ure 2, left panels, and eTable 3 in the Supplement). The
greatest risk gradients were seen at 9 to 10 weeks after birth
(P<.001 for interaction) (eFigure 2, right panels, and eTable
4 in the Supplement), both in more and less mature infants
(≥26 vs ≤25 weeks’ gestational age). Logistic modeling sup-

Table 1. Clinical Characteristics and Outcomes of Study Participantsa

Characteristics
No. (%) of Study Cohort
(n = 1019)

Mothers at infants’ birth

Age, mean (SD), y 30.8 (6.3)

Race or ethnic group

White 677 (66.4)

Black 174 (17.1)

Asian 105 (10.3)

Other or unknown 63 (6.2)

Antenatal corticosteroids 922 (90.5)

Cesarean delivery 627 (61.5)

Infants at birth

Birth weight, mean (SD), g 855 (189)

Gestational age, mean (SD), wk 25.8 (1.1)

Female 479 (47.0)

Birth weight <10th percentile for
gestational ageb

79 (7.8)

Born at study hospital 941 (92.3)

Singleton birth 699 (68.6)

Apgar score at 5 min, median (IQR) 8 (6-8)

Chest compressions in the
delivery room

68 (6.7)

First temperature after admission,
mean (SD), °C

36.5 (0.8)

Status at enrollment

Age at enrollment, median (IQR), h 17.8 (11.8-22.1)

Supplemental oxygen 366 (35.9)

Any use of positive airway pressure 986 (96.8)

Endotracheal tube in situ 770 (75.6)

Receipt of surfactant 879 (86.3)

Status at follow-up

Corrected age of surviving infants
at follow up, median (IQR), mo

18.6 (18.2-19.6)

Primary caregiver level of education

Did not finish high school 116 (11.4)

High school graduate 371 (36.4)

College/university graduate 509 (49.9)

Unknown 23 (2.3)

Outcomes at follow-up

Late death or disabilityc 414 (42.6)

Cognitive or language delayd 380 (40.2)

Motor impairmente 61 (6.3)

Severe retinopathy of prematurityf 130 (13.1)

Abbreviation: IQR, interquartile range.
a Data are expressed as No. (%) of participants unless otherwise indicated.

These data are for the 1019 infants who survived to 36 weeks’ postmenstrual
age and had adequate data for the determination of 1 or more of the study
outcomes—late death or disability, cognitive or language delay, motor
impairment, and severe retinopathy of prematurity—at a corrected age of 18
to 21 months.

b The 10th percentile for gestational age in a healthy population was reported
by Kramer et al.8

c A total of 972 children had data for this outcome.
d A total of 945 children had data for this outcome.
e A total of 966 children had data for this outcome.
f A total of 993 children had data for this outcome.
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ported these observations, with percentage of time with
hypoxemia in postnatal weeks 9 to 10 consistently selected
first over earlier 2-week intervals.

The association between exposure to long hypoxemic
episodes and the primary outcome of death after a post-
menstrual age of 36 weeks or disability at 18 months was
stronger for infants randomly assigned to an oxygen satura-
tion target range of 91% to 95% than for those assigned to a
target range of 85% to 89% (adjusted P = .001 for interac-
tion) (Figure 2 and eTable 5 in the Supplement).

Discussion
This post hoc study examined associations between intermit-
tent hypoxemia or bradycardia and the primary composite
outcome of late death or disability at a corrected age of 18
months for extremely preterm infants who survived to a
postmenstrual age of 36 weeks. The risk of this outcome
increased with the percentage of time the infants experi-
enced intermittent hypoxemia. The risks of all secondary
outcomes, motor impairment, cognitive or language delay,
and severe retinopathy of prematurity, were also increased.
Intermittent bradycardia did not significantly add to the risk
of adverse outcome, suggesting that bradycardia in the
absence of concurrent hypoxemia may not be of prognostic
importance. The severity of intermittent hypoxemia,
expressed as the AUC, added little prognostic value to the
simpler measure of the percentage of time spent with hypox-
emia. However, the duration of the hypoxemic episodes mat-
tered: only those lasting for approximately 1 minute or more
were significantly associated with an increased risk of an
adverse outcome. Associations between hypoxemic exposure
and adverse outcomes were stronger at later postnatal ages
and for infants who had been randomly assigned to a target
oxygen saturation range of 91% to 95% compared with those
who had been assigned to a target range of 85% to 89%. In
the original COT cohort, infants who had been allocated to
the lower target range spent significantly more time with
oxygen saturations below 80% than infants who had been
assigned to the higher target range, but mortality rates from
birth to a corrected age of 18 months were similar in the 2
groups.4 In the present subgroup of COT participants who
survived to a postmenstrual age of 36 weeks, prolonged
hypoxemia—once it occurred—appeared to be of greater prog-
nostic importance in infants who were maintained at higher
as opposed to lower oxygen saturations. Episodes of pro-
longed hypoxemia with SpO2 below 80% represented a
greater drop of saturations from baseline values in infants
who were maintained at higher as opposed to lower satura-
tions and may suggest a more severe disturbance of oxygen
homeostasis. We speculate that this phenomenon may
explain the greater prognostic value of prolonged intermit-
tent hypoxemia in survivors to 36 weeks’ postmenstrual age
who were randomly assigned to the higher compared with
the lower oxygen saturation target range.

Only Di Fiore et al9 have so far used similar methods to
determine the relationship between hypoxemic episodes

and the development of severe retinopathy of prematurity.
Their findings are consistent with those shown here for this
neonatal morbidity. Other previous investigators have stud-
ied fewer than 100 patients,10-12 analyzed pulse oximetry
data only once before discharge home,13 or correlated nurs-
ing records of apnea with neurologic outcome.14

Intermittent hypoxemia of extremely immature infants is
attributable not only to apnea of prematurity but also to the
cardiopulmonary instability commonly seen in mechanically
ventilated infants.2,15 Therefore, the present data provide more
comprehensive information on the relationship between in-
termittent hypoxemia and adverse outcomes than studies that
focus solely on apnea.

Although study oximeters in COT were modified to dis-
play saturation values between 88% and 92% that were either
3% above or below the true values,4 saturation values below
80% were not affected by this masking feature. A cutoff of 80%
was chosen because this threshold is consistent with previ-
ous studies that defined hypoxemia in preterm infants.9,11,16

Associations between exposure to hypoxemia and adverse out-
comes may differ depending on the definition of hypoxemia.
However, episodes of hypoxemia with SpO2 below 80% that
last for at least 1 minute are severe and never desired goals of
neonatal intensive care.

Table 2. Characteristics of Episodes of Hypoxemia and Bradycardiaa

Characteristics

Median (IQR)

Episodes of
Hypoxemia
(SpO2 <80%)

Episodes of
Bradycardia
(Pulse Rate <80/min)

Episode lengthb 3.3 (2.5-4.4) 1.9 (1.7-2.2)

Rate of episodes/d,
by episode lengthb

Any length 88.4 (46.5-138.2) 5.3 (3.9-7.4)

≤5 73.5 (37.3-113.3) 5.0 (3.7-6.9)

≥6 12.1 (4.8-23.8) 0.23 (0.14-0.39)

1-2 56.1 (28.9-90.6) 4.4 (3.2-5.9)

3-5 14.2 (7.5-24.4) 0.64 (0.45-1.0)

6-10 6.5 (2.9-12.6) 0.17 (0.10-0.27)

11-15 2.5 (0.88-4.8) 0.037 (0.015-0.069)

16-20 1.1 (0.25-2.5) 0.011 (0-0.028)

≥21 1.4 (0.34-3.7) 0.0089 (0-0.024)

Time spent in episodes
of any length, %

3.34 (1.55-6.13) 0.12 (0.085-0.17)

Area under the curve
per dc

357 (159-752) 29 (22-40)

Abbreviations: IQR, interquartile range; SpO2, pulse oximeter oxygen saturation.
a Downloaded saturation and pulse rate data were available for a median

duration of 68.3 (IQR, 56.8-86.0) days.
b Episode length was defined as the number of consecutive readings, sampled

every 10 seconds, with SpO2 of less than 80% or pulse rate of less than
80/min.

c The area under the curve for each hypoxemic episode was calculated as the
episode duration in minutes × the average depth of the SpO2 curve below
80%, summed over all episodes and expressed as a mean per day. An
equivalent calculation was applied to bradycardic episodes. The units
associated with area under the curve are percentage saturation – minutes for
hypoxemic episodes and beats per minute – minutes for bradycardic episodes.
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The main limitation of this study is its post hoc design.
Thus, the results can only generate hypotheses for future
research. Future studies should be designed prospectively
to explore temporal relationships between the development
of neonatal brain or lung injury and intermittent hypox-
emia. Prolonged intermittent hypoxemia may contribute to
neurodevelopmental impairment. Alternatively, prolonged
hypoxemia may be a feature of infants who are destined to
develop impairments: persistent, profound, and prolonged
desaturations may be a consequence of acquired brain or
lung injury.

If prolonged intermittent hypoxemia is confirmed in
future studies as a cause and not just a marker of adverse
outcome, it may be preventable. Neonatal caffeine therapy
improves motor skills and appears to decrease the risk of
developmental coordination disorder to age 5 years.17-19

Because caffeine reduces apnea and assists in the weaning of
infants from respiratory support,20,21 caffeine may exert its
beneficial effects on motor disability, at least in part, by pre-
venting hypoxemic episodes. At present, data on the effects
of caffeine on hypoxemia are conflicting.22,23 Insufficiently
tested strategies to reduce intermittent hypoxemia in

Figure 1. Adverse Outcome Rates by Deciles of Percentage of Time With Hypoxemia or Bradycardia
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Adverse outcomes by time with hypoxemia 
(SpO2 <80%)

A Adverse outcomes by time with bradycardia 
(pulse rate <80/min)

B

The 4 panels on the left show the
relationships between the
percentage of time with pulse
oximeter oxygen saturation (SpO2) of
less than 80% and the primary
outcome of late death or disability as
well as the 3 secondary outcomes.
Regression models were fitted with
the respective dichotomous outcome
as the dependent variable and
percentage of time with hypoxemia
as the continuous independent
variable. To visualize the fit of these
models, the data were subdivided
into deciles of percentage of time
with hypoxemia and the observed
outcome rate plotted against the
mean percentage of time with
hypoxemia for each decile. The 4
panels on the right show the
equivalent relationships between the
4 outcomes and the independent
variable percentage of time with
pulse rate of less than 80/min. The
black curves show the fit of the
unadjusted logistic regression
models. The blue (A) or orange (B)
curves show the fit of the logistic
models after adjustment for
gestational age, sex, primary
caregiver level of educational
attainment, use of antenatal
corticosteroids, multiple birth, and
study center. Zero to 25% probability
of outcome is shown in blue on each
y-axis. Risk gradient refers to the
model parameter associated with the
exposure variable (percentage of
time with SpO2 <80% or pulse rate
<80/min). The significance of each
risk gradient was computed from the
estimated coefficient associated with
the respective exposure variable
(Wald χ2) for the adjusted logistic
model. The raw data for the decile
points are provided in eTable 1 in the
Supplement. Sample sizes varied by
outcome (eTable 1). For the primary
outcome of late death or disability,
972 infants were included in the
analyses for both hypoxemia and
bradycardia.
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extremely preterm infants such as high-dose caffeine,24 spe-
cific ventilator strategies,25 or doxapram administration26

may warrant further study.
Finally, should the observation be confirmed in future re-

search that episodes of hypoxemia lasting less than 1 minute
are not associated with adverse outcomes in extremely pre-
term infants, this would be important information for both cli-
nicians and parents.

Conclusions

Among extremely preterm infants who survived to 36 weeks’
postmenstrual age, prolonged hypoxemic episodes during the
first 2 to 3 months after birth were associated with adverse 18-
month outcomes. If these observations are confirmed in fu-
ture studies, further research on the prevention of such epi-
sodes will be needed.
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Table 3. Time With Hypoxemia as a Predictor of Outcome

Outcomes

All Hypoxemic Episodes Episode Length ≤5a Episode Length ≥6a

OR (95% CI)b RR (95% CI)c P Value OR (95% CI)b RR (95% CI)c P Value OR (95% CI)b RR (95% CI)c P Value
Late death or
disability

2.62
(1.50-4.58)

1.53
(1.21-1.94)

<.001 1.04
(0.61-1.77)

1.01
(0.77-1.32)

.88 3.40
(1.95-5.93)

1.66
(1.35-2.05)

<.001

Cognitive or
language delay

2.25
(1.28-3.95)

1.47
(1.13-1.90)

.005 0.96
(0.56-1.64)

0.96
(0.72-1.29)

.87 2.88
(1.65-5.02)

1.61
(1.29-2.03)

<.001
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(2.34-12.04)
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(2.02-6.40)

<.001 2.27
(0.90-5.74)

1.90
(0.90-4.04)
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(2.48-10.92)
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(2.16-5.72)

<.001

Severe retinopathy
of prematurity

2.96
(1.42-6.18)

1.95
(1.22-3.11)

.004 1.84
(0.86-3.95)

1.46
(0.86-2.47)

.12 2.95
(1.47-5.90)

1.93
(1.26-2.98)

.002

Abbreviations: OR, odds ratio; RR, relative risk; SpO2, pulse oximeter oxygen
saturation.
a Episode length was defined as the number of consecutive readings, sampled

every 10 seconds, with SpO2 of less than 80%. The subdivision at 6
consecutive readings equates to an episode length of approximately 1 minute.

b Highest decile relative to lowest decile, adjusted for antenatal corticosteroids,
gestational age, sex, multiple birth, primary caregiver level of educational

attainment, and study center. For the outcome of late death or disability, the
means for the highest and lowest deciles of exposure to SpO2 of less than 80%
were for episode length of 5 or lower, 4.4% and 0.2% of time and for episode
length of 6 or higher, 9.7% and 0.1% of time. Similar values apply to the other
outcomes. See eTable 1 in the Supplement for data on all hypoxemic episodes.

c Equivalent relative risks were estimated by Poisson regression.

Figure 2. Association Between Exposure to Short and Long Hypoxemic Episodes and Late Death or Disability by Oxygen Saturation Target Range
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Infants in this analysis cohort had been randomly assigned to 1 of 2 oxygen
saturation target ranges (85%-89% vs 91%-95%). The left panel shows the
relationships between the primary outcome and the percentage of time with
pulse oximeter oxygen saturation (SpO2) of less than 80% lasting for 5 or fewer
consecutive 10-second readings, separately for infants assigned to the lower
target range (blue) and those assigned to the higher target range (orange). The
right panel shows the equivalent relationships for hypoxemic episodes lasting
for 6 or more consecutive 10-second readings or approximately 1 minute or
longer. The continuous lines represent the predicted probabilities of
experiencing the primary outcome. These probabilities were derived from the
adjusted logistic model that included a binary indicator variable for the
Canadian Oxygen Trial (COT) treatment allocation and a product term of COT

treatment × percentage of time with SpO2 of less than 80%. The coefficient
associated with the product term (interaction) in the logistic model provided a
formal test indicating whether the risk gradient differed by COT oxygen
saturation target range. To visualize the fit of the observed data, the population
was subdivided into quintiles based on percentage of time with SpO2 of less
than 80% and then by COT saturation target range. Each subgroup (defined by
quintile and COT target range) provided a data point in the graph with the
observed outcome rate at 18 months’ corrected age plotted against the
subgroup mean percentage of time with SpO2 of less than 80%. The number of
infants included for both short and long hypoxemic episodes was 489 for the
lower saturation target range and 483 for the higher target range. Raw data are
provided in eTable 5 in the Supplement.
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