

Review Article

Association between *MnSOD* Val16Ala Polymorphism and Cancer Risk: Evidence from 33,098 Cases and 37,831 Controls

Ping Wang^(b),¹ Yanfeng Zhu,² Shoumin Xi^(b),¹ Sanqiang Li^(b),¹ and Yanle Zhang¹

¹Department of Biochemistry and Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang, Henan 471023, China

²School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, China

Correspondence should be addressed to Ping Wang; glorywangping@163.com and Sanqiang Li; sanqiangli2001@163.com

Received 14 March 2018; Accepted 25 July 2018; Published 2 September 2018

Academic Editor: Roberta Rizzo

Copyright © 2018 Ping Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manganese superoxide dismutase (MnSOD) plays a critical role in the defense against reactive oxygen species. The association between *MnSOD* Val16Ala polymorphism and cancer risk has been widely studied, but the results are contradictory. To obtain more precision on the association, we performed the current meta-analysis with 33,098 cases and 37,831 controls from 88 studies retrieved from PubMed, Embase, Chinese National Knowledge Infrastructure (CNKI), and Wanfang databases. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of association. We found that the polymorphism was associated with an increased overall cancer risk (homozygous: OR = 1.09, 95% CI = 1.00–1.19; heterozygous: OR = 1.07, 95% CI = 1.02–1.12; dominant: OR = 1.08, 95% CI = 1.02–1.14; and allele comparison: OR = 1.06, 95% CI = 1.02–1.11). Stratification analysis further showed an increased risk for prostate cancer, Asians, Caucasians, population-based studies, hospital-based studies, low quality and high quality studies. However, the increased risk for *MnSOD* Val16Ala polymorphism among Asians needs further validation based on the false-positive report probability (FPRP) test. To summarize, this meta-analysis suggests that the *MnSOD* Val16Ala polymorphism is associated with significantly increased cancer risk, which needs further validation in single large studies.

1. Introduction

Cancer is one of the leading causes of death across the world, with an estimate of over 20 million new cancer cases that will occur per year as early as 2025 [1]. Although great efforts have been devoted to cancer treatment, cancer still poses a huge threat to human health. Carcinogenesis is rather complex, and mounting evidence suggests that reactive oxygen species- (ROS-) related oxidative damage is involved in this process [2–4].

Among the endogenous antioxidants, manganese superoxide dismutase (MnSOD) is one of the critical enzymes which defends against ROS in the mitochondria. The MnSOD gene, located on chromosome 6q25.3, is composed of four introns and five extrons. Currently, several singlenucleotide polymorphisms (SNPs) in the MnSOD gene have been reported, of which the most extensively studied one is Val16Ala. Since this residue is 9 amino acids upstream of the cleavage site, it has also been called Val9Ala (rs4880) polymorphism [5]. A previous study has shown that Ala-MnSOD allowed more efficient MnSOD localized to the mitochondria than the Val-variant form [6]. In view of this, it is speculated that the Val form of MnSOD may be associated with higher levels of ROS and increased susceptibility to cancer.

Several studies have found the associations between the Val form of the *MnSOD* gene and increased cancer risk [7–9], but a majority of studies showed the Ala form to be associated with higher cancer risk, such as breast cancer [10, 11], esophageal cancer [12], colorectal cancer [13], and cervical cancer [14], and some other studies find no significant association between this polymorphism and cancer risk

[15–18]. To draw a more comprehensive estimation of this possible association, we conducted the present metaanalysis to evaluate the relevance of this variant with susceptibility of cancer.

2. Materials and Methods

2.1. Search Strategy. We systematically searched the PubMed, Embase, Chinese National Knowledge Infrastructure (CNKI), and Wanfang databases for all related publications using the following keywords: "*MnSOD* or manganese superoxide dismutase," "polymorphism or variant or variation," and "cancer or carcinoma or tumor or neoplasm" (the last search was updated on February 22, 2018). Additional relevant studies were searched manually from the references or review articles about this topic. If studies had overlapped data, only the one with the most participants was included in this analysis.

2.2. Inclusion and Exclusion Criteria. The inclusion criteria were as follows: (1) case-control studies, (2) studies assessing the association between *MnSOD* Val16Ala polymorphism and cancer risk, (3) and provision of detailed data about genotype and allele distribution of the studied polymorphism. Studies were excluded if any of the following aspects existed: (1) duplicate publications, (2) review articles or meta-analyses, (3) not a case-control study, and (4) genotype frequencies in the control departure from Hardy-Weinberg equilibrium (HWE).

2.3. Data Extraction. Two authors (Ping Wang and Yanfeng Zhu) independently extracted the data from included studies according to the criteria mentioned above. Disagreement was resolved by discussion until a consensus was reached. The following information was collected from each study: first author's surname, year of publication, country of origin, ethnicity, cancer type, control source (hospital-based or population-based), genotyping methods, and numbers of cases and controls with the Val/Val, Val/Ala, and Ala/ Ala genotypes.

2.4. Quality Assessment. The quality of each included study was assessed independently by two authors using the criteria from a previous study [19]. Quality scores were rated from 0 to 15, and the studies were classified as high-quality studies (scores > 9) and low-quality studies (scores \leq 9).

2.5. Statistical Analysis. The strength of association between the *MnSOD* Val16Ala polymorphism and cancer risk was assessed by calculating the odd ratios (ORs) with the corresponding 95% confidence intervals (CIs). The pooled ORs of five comparison models were calculated: homozygous model (Ala/Ala versus Val/Val), heterozygous model (Val/Ala versus Val/Val), recessive model [Ala/Ala versus (Val/Val + Val/Ala)], dominant model [(Ala/Ala + Val/Ala) versus Val/Val], and an allele comparison (Ala versus Val). We used the chi-square-based Q test to check the betweenstudy heterogeneity, and the fixed-effects model (the Mantel-Haenszel method) [20] was used when no significant heterogeneity was found (P > 0.1). Otherwise, the randomeffects model (the Dersimonian and Laird method) [21] was applied. The stratification analysis was performed by cancer type (cancer types with less than three studies would be merged into the "others" group), ethnicity (Asians, Caucasians, Africans, or mixed which contained more than one ethnic group), control source (hospital-based studies and population-based studies), and quality scores (\leq 9 and >9). Publication bias was examined using Begg's funnel plot [22] and Egger's linear regression test [23]. Sensitivity analysis was carried out to assess the results stability by excluding one study each time and revaluating the pooled ORs and 95% CIs.

The false-positive report probability (FPRP) was calculated for all the significant findings in the present study. We set 0.2 as a FPRP threshold and assign a prior probability of 0.1 to detect an OR of 0.67/1.50 (protective/risk effects) for an association with the genotypes under investigation [24, 25]. FPRP values less than 0.2 were considered as noteworthy associations. All the statistical tests were performed with STATA software (version 12.0; Stata Corporation, College Station, TX). Two-sided *P* values <0.05 were considered statistically significant.

3. Results

3.1. Study Characteristics. As shown in Figure 1, a total of 348 articles were identified from PubMed, Embase, CNKI, and Wanfang databases, and 34 more articles were identified by reading the references of retrieved publications. After reading the titles and abstracts, 266 articles were excluded, leaving 116 articles for further assessment. Among them, six were excluded as case-only studies [26-31], five [32-36] were covered by other included publications [7, 37, 38], three were without detailed data for further analysis [39-41], and 18 deviated from HWE [42-59]. Finally, a total of 84 case-control publications [7-18, 37, 38, 60-129] were included in this meta-analysis. Of the 84 publications, three publications [37, 69, 82] with two ethnic groups were considered as two independent studies and one publication [119] with two cancer types were also considered as two independent studies.

For the two studies in the publication [119] with the same control group, the number of control was only calculated once in the total number. Overall, 88 studies with 33,098 cases and 37,831 controls were included in this metaanalysis. Of the 88 studies, 24 studies focused on breast cancer [9-11, 16, 38, 60, 61, 68, 69, 71, 72, 77, 88, 93, 96, 97, 100, 105, 109, 114, 119, 122, 127]; 17 on prostate cancer [37, 66, 74, 79, 82, 85, 86, 89, 95, 106, 111, 113, 120, 125, 128]; six for each of the following cancer types, such as lung cancer [7, 17, 18, 65, 92, 118], bladder cancer [8, 15, 67, 75, 112, 117], and pancreatic cancer [64, 91, 102, 107, 108, 121]; five on colorectal cancer [13, 63, 73, 94, 101]; three for each of the following cancer types, such as ovarian cancer [70, 81, 87], hepatocellular carcinoma [98, 99, 129], and non-Hodgkin's lymphoma [76, 78, 110]; and the other with fewer than three studies for each cancer type. Of all the studies, 56 studies were performed on Caucasians, 18 studies on Asians, and seven studies on Africans and mixed ethnicity,

FIGURE 1: Flowchart of included studies for the association between MnSOD Val16Ala polymorphism and cancer susceptibility.

respectively. When classified by source of control, 48 were population-based and 40 were hospital-based. In addition, according to the quality score, 49 studies were considered as high-quality and 39 studies were considered as lowquality. The characteristics of the included studies are shown in Table 1.

3.2. Meta-Analysis Results. The overall results suggested there was a significant association between MnSOD Val16Ala polymorphism and cancer risk (homozygous: OR = 1.09, 95% CI = 1.00-1.19, P < 0.001; heterozygous: OR = 1.07, 95% CI = 1.02–1.12, P = 0.001; dominant: OR = 1.08, 95% CI = 1.02 - 1.14, P < 0.001; and allele comparison: OR =1.06, 95% CI = 1.02–1.11, P < 0.001) (Table 2, Figure 2). In the subgroup analysis, a statistically significant association was found for prostate cancer (heterozygous: OR = 1.14, 95% CI = 1.05–1.24, P = 0.765; dominant: OR = 1.14, 95% CI = 1.05–1.23, *P* = 0.552; and allele comparison: OR = 1.07, 95% CI = 1.00–1.15, P = 0.106), Asians (homozygous: OR = 1.82, 95% CI = 1.15-2.88, P = 0.020, and recessive: OR = 1.76, 95% CI = 1.16 - 2.68, P = 0.065), Caucasians (heterozygous: OR = 1.08, 95% CI = 1.03-1.13, P = 0.208; dominant: OR = 1.08, 95% CI = 1.02-1.14, P = 0.011; and allele comparison: OR = 1.04, 95% CI = 1.00-1.09, P < 0.001), population-based studies (homozygous: OR = 1.10, 95% CI = 1.01-1.19, P < 0.001; heterozygous: OR = 1.07, 95% CI=1.02-1.12, P=0.263; dominant: OR=1.07, 95% CI = 1.02 - 1.13, P = 0.071; and allele comparison: OR =1.04, 95% CI = 1.00-1.08, P = 0.006), hospital-based studies (recessive: OR = 1.16, 95% CI = 1.01-1.34, P < 0.001, and allele comparison: OR = 1.13, 95% CI = 1.03-1.24, P < 0.001), low-quality studies (allele comparison: OR = 1.12, 95% CI = 1.02-1.23, P < 0.001) and high-quality studies (homozygous: OR = 1.08, 95% CI = 1.00-1.17, P = 0.001; heterozygous: OR = 1.07, 95% CI = 1.02 - 1.13, P = 0.067; dominant: OR = 1.07, 95% CI = 1.02–1.14, *P* = 0.002; and allele comparison: OR = 1.04, 95% CI = 1.00-1.09, P < 0.001).

3.3. Heterogeneity and Sensitivity Analysis. As shown in Table 2, substantial heterogeneities were found among all studies for the *MnSOD* Val16Ala polymorphism and overall cancer risk (homozygous: P < 0.001; heterozygous: P = 0.001; recessive: P < 0.001; dominant: P < 0.001; and allele comparison: P < 0.001). Therefore, the random-effects model was used to generate wider CIs. The leave-one-out sensitivity analysis indicated that no single study could change the pooled ORs obviously (data not shown).

3.4. Publication Bias. Begg's funnel plot and Egger's test were performed to evaluate the publication bias of 88 studies, and we found significant publication bias for the homozygous model (P = 0.049), recessive model (P = 0.007), dominant model (P = 0.042), and allele comparison (P = 0.007), but not for the heterozygous model (P = 0.056). Therefore, the Duval and Tweedie nonparametric "trim and fill" method was used to adjust for publication bias. The "trim and fill" method did not draw different conclusions (data not shown), indicating that our findings were statistically robust.

3.5. False-Positive Report Probability (FPRP) Analysis. The FPRP values were calculated for all the significant findings (Table 3). With the assumption of a prior probability of 0.1, the FPRP results revealed that three genetic models [Val/ Ala versus Val/Val, (Ala/Ala + Val/Ala) versus Val/Val, and Ala versus Val] of the MnSOD Val16Ala polymorphism were truly associated with increased cancer risk (FPRP = 0.032, 0.045, and 0.106, resp.). In addition, according to the FPRP results, we confirmed that the MnSOD Val16Ala polymorphism was associated with cancer risk for prostate cancer (heterozygous: FPRP = 0.020 and dominant: FPRP = 0.006), Caucasians (heterozygous: FPRP = 0.008) and dominant: FPRP = 0.045), population-based studies (homozygous: FPRP = 0.136, heterozygous: FPRP = 0.032 and dominant: FPRP = 0.119), hospital-based studies (allele comparison: FPRP = 0.082), low-quality studies (allele comparison: FPRP = 0.138), and high-quality studies (heterozygous: FPRP = 0.119).

e meta-analysis.
th
led in
inclue
studies
of
haracteristics
0
÷
Table

E Score	1 12	5 13	66	5 5	8 9	7 12) 6	5 5	5 10	10	17	71	0 15	0 15 2 9) 15 2 9 2 11	0 15 2 9 11 14 11	2 9 15 2 9 11 1 10	2 15 15 15 15 15 15 15 15 15 15 15 15 15	9 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	9 13 9 13	4 1 1 1 1 4 9 13 13 13 13	9 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1	8 5 1	9 3 1	8 4 9 33 30 5 5 5 8 4 5 6 33 30 12 5 5 8 4 5 13 30 13 30 5 5 5 5	4 5	3 4 5
AF HWJ	49 0.18	44 0.520	49 0.609	47 0.17	48 0.248	48 0.237	43 0.58(43 0.450	50 0.44(A NA		48 0.33(48 0.33(14 0.89(48 0.33(14 0.89(48 0.26	 48 0.33(14 0.89(48 0.26(13 0.88(48 0.33(14 0.89(48 0.26(13 0.88(50 0.35(48 0.33(14 0.89(48 0.26(13 0.88(50 0.35(14 0.32	48 0.33(14 0.89(48 0.26(13 0.88(50 0.35(14 0.35(14 0.32(14 0.32(15 0.08(48 0.33(14 0.89(13 0.88(13 0.88(13 0.88(14 0.35(14 0.35(14 0.35(14 0.32(45 0.08(49 0.26(48 0.33(14 0.89(48 0.26(13 0.88(13 0.88(13 0.88(14 0.35(550 0.35(14 0.32(45 0.06(47 0.26(48 0.33(14 0.89(48 0.26(13 0.88(13 0.88(13 0.88(13 0.88(13 0.35(14 0.35(14 0.35(45 0.08(47 0.26(47 0.26(50 0.26(48 0.33(14 0.89(48 0.26(50 0.35(50 0.35(49 0.26(47 0.86(50 0.325(60 0.325(48 0.33(14 0.89(48 0.26(13 0.88(13 0.88(13 0.88(14 0.35(14 0.35(14 0.32(45 0.06(47 0.26(50 0.56(47 0.26(14 0.32(14 0.32(14 0.32(14 0.36(14 0.36(48 0.33(14 0.89(48 0.26(13 0.88(13 0.88(13 0.88(13 0.35(14 0.32(45 0.08(47 0.26(47 0.26(49 0.26(14 0.32(14 0.32(14 0.32(14 0.32(14 0.32(14 0.32(14 0.32(14 0.32(14 0.32(14 0.32(14 0.32(48 0.33(14 0.89(48 0.26(49 0.35(47 0.33(49 0.26(49 0.26(49 0.26(49 0.26(49 0.26(49 0.26(49 0.26(49 0.26(49 0.26(49 0.26(49 0.322(49 0.327(48 0.33(14 0.89(48 0.26(50 0.35(49 0.35(47 0.36(50 0.36(49 0.26(49 0.26(49 0.26(49 0.26(49 0.26(40 0.26(50 0.58(60 0.58(60 0.58(60 0.58(60 0.58(60 0.58(60 0.58(60 0.58(60 0.58(60 0.56(48 0.33(14 0.89(48 0.265 50 0.35(49 0.26(47 0.86' 50 0.32' 51 0.26(49 0.26(49 0.26(49 0.32' 50 0.58' 60 0.58' 60 0.58' 60 0.58' 70 0.86' 70 0.86' 70 0.86' 70 0.58' 70 0.58' 70 0.58' 70 0.86' 70 0.86' 70 0.86' 70 0.82' 70 0.82'	48 0.33(14 0.89(48 0.265 50 0.35(50 0.35(47 0.86(50 0.265 50 0.265 14 0.321 14 0.325 50 0.265 49 0.265 14 0.322 14 0.322 14 0.322 14 0.322 14 0.322 14 0.322 14 0.322 14 0.322 14 0.322 14 0.322 14 0.322 14 0.322 14 0.58(14 0.58(14 0.18(48 0.33(14 0.89(48 0.265 50 0.35(51 0.35(47 0.865 50 0.355 50 0.365 50 0.355 50 0.355 49 0.265 49 0.327 14 0.327 14 0.327 14 0.327 14 0.327 14 0.327 14 0.327 14 0.327 14 0.327 14 0.327 14 0.327 14 0.327 14 0.327 14 0.327 14 0.327 14 0.327 14 0.186 14 0.187 50 0.67 50 0.67
All M.	10 0.	82 0.	239 0.	36 0.	53 0.	95 0.	23 0.	22 0.	97 0.	32 N		91 0.	91 0. 197 0.	91 0. 197 0. 14 0.	91 0. 197 0. 14 0. 09 0.	91 0. 197 0. 14 0. 72 0. 27	91 0. 197 0. 114 0. 72 0. 12 0. 12 0.	91 0. 197 0. 114 0. 72 0. 77 0. 77	91 0. 197 0. 14 0. 77 0. 135 0. 135 0.	91 0. 197 0. 14 0. 12 0. 12 0. 135 0. 77 0. 77 0.	91 0. 197 0. 114 0. 77 0. 112 0. 1135 0. 205 0. 205 0.	91 0. 91 0. 197 0. 114 0. 03 0. 112 0. 135 0. 135 0. 777 0. 777 0. 777 0. 777 0. 777 0. 777 0. 774 0.	91 0. 197 0. 114 0. 112 0. 135 0. 205 0. 39 0. 30 0.	91 0. 197 0. 114 0. 112 0. 1135 0. 1135 0. 1135 0. 1135 0. 1135 0. 1135 0. 1135 0. 1135 0. 1135 0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91 0. 91 0. 197 0. 114 0. 135 0. 135 0. 135 0. 135 0. 135 0. 135 0. 136 0. 137 0. 138 0. 14 0. 15 0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91 0. 91 0. 197 0. 114 0. 112 0. 1135 0. 114 0. 115 0. 114 0. 114 0. 114 0. 114 0. 114 0. 114 0. 114 0. 114 0. 114 0.
Ala/	23 1	98 4	23 11	9	12 (21 4	5	37 1	27 4	Ala 3. .a) 3	-	40 1	40 I 23 I	40 ¹ 23 1. 54 2	40 ¹ 23 1. 4 4 2 4 4 2 2	40 1 440 1 440 1 440 1 440 1 440 1 450 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 1 440 1 440 1 440 1 440 1 44 55 45 4 5 5 4 5 3 3 5 5 4 5 3 3 5 5 4 5 5 5 5	40 40 54 23 11 1 1 1 24 2 24 3 24 6	40 14 14 14 14 14 14 14 14 14 14 14 14 14	40 1 23 11 24 2 87 3 87 3 87 3 87 3 87 3 1 1 1 1 1 1 1 24 6 83 1 : 83 1 : 83 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 1. 554 2. 87 3. 11 1. 11 1. 11 1. 124 6. 83 1. 139 1. 139 1. 143 1. 143 1. 141 1. 1	40 1 41 1 223 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 4. 41 4. 54 2. 57 2. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 1 41 1 55 5 55 5 64 2 78 3 1 1 </td <td>40 4.0 41 4.0 55 5.2 1 1</td> <td>40 40 1 12 23 11 1 1 <td< td=""><td>40 40 1 12 23 11 1 1 <td< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></td<></td></td<></td>	40 4.0 41 4.0 55 5.2 1 1	40 40 1 12 23 11 1 1 <td< td=""><td>40 40 1 12 23 11 1 1 <td< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></td<></td></td<>	40 40 1 12 23 11 1 1 <td< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></td<>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Control al/ A Ja /	52	31	28 3	52	96	34 1	0	54	40 1	9 (Val// - Ala/Al	02		06	90	90 15 8	90 115 95	90 115 95	90 115 89 57 1	90 115 90 86 27 1 86 2	90 115 95 86 20 86 22 20	90 115 95 11 15 12 12 2 2 2 2 2 2 2 2 2 2 2 2 2	90 95 86 86 21 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	90 95 88 88 88 88 88 88 88 88 88 88 88 88 88	90 995 88 88 88 88 88 88 88 88 88 88 88 88 90 90 90 90 90 90 90 90 90 90 90 90 90	90 995 88 88 88 88 88 83 95 71 12 88 88 83 95 95 95 95 95 95 95 95 95 90 90 95 95 95 95 95 95 95 95 95 95 95 95 95	79 11 11 11 11 11 11 12<	90 95 95 112 23 88 88 88 83 93 92 23 92 112 23 95 95 95 95 95 95 90 90 90 90 90 90 95 95 95 95 95 95 95 90 90 95 95 95 95 95 95 95 95 95 95 95 95 95	2011 2011 2011 2011 2011 2011 2011 2011	99 90 90 90 91 90 92 92 93 92 93 92 93 92 93 92 93 92 93 92 93 92 93 92 93 92 93 92 93 93 93 92 93 92 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 <
al/ V	5 6	53 2	88 6	~	5	40 2	8	1	30 2	33 + 96	9		84 2	5 1 2	84 55 57 4 2 7	0 1 4 1 5 0 1 7 1 5	2 2 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	35 5 5 5 9 96 1 4 1 2 36 1 4 1 2	5 33 34 5 7 1 2 96 5 3 3 1 4 4 2 56 5 3 3 1 4 4 1 2	38 37 4 2 57 1 3 3 1 96 3 3 1 2 1 8 3 3 1	34 2: 5: 5: 5: 5: 6 5: 7 6 6: 5: 7 6	33 34 2 35 5 5 1 36 5 3 3 2 37 6 5 3 3	35 5 5 2 36 5 3 3 4 2 37 1 8 3 3 4 2 45 1 8 3 3 5 6 5 1 1 45 1 8 6 5 3 3 7 4 1 45 1 8 6 5 3 3 1 1 2 4 1 </td <td>34 2: 37 4 37 4 36 5: 37 6 33 8 54 1 33 8 54 1 55 1: 56 5: 57 1:</td> <td>8 4 1 1 2 2 8 5 1 1 5 5 3 2 1 1 1 1 5 5 3 3 1 5 5 3 3 3 1 1</td> <td>35 36 37 37 37 36 37 36 37 31 37 38 34 57 11 8 33 30 31 37 16 37 31</td> <td>34 2 37 5 37 5 38 4 39 6 37 5 38 1 39 8 30 3 31 5 36 5 37 5 38 1 39 8 30 3 31 5 32 5 33 5 34 5 37 5 38 5 39 5 30 3 31 5 32 5 33 5 34 5 37 5 38 5 39 5 30 3 37 5 38 5 39 5 39 5 39 5 30 5 31 5 32 5 33 5 34 5 35 5 36 5 37 5 37<td>34 25 35 57 <</td><td>34 25 35 57 57 57 58 7 90 88 11 56 55 31 44 27 58 7 51 55 55 55 55 57 31 31</td></td>	34 2: 37 4 37 4 36 5: 37 6 33 8 54 1 33 8 54 1 55 1: 56 5: 57 1:	8 4 1 1 2 2 8 5 1 1 5 5 3 2 1 1 1 1 5 5 3 3 1 5 5 3 3 3 1 1	35 36 37 37 37 36 37 36 37 31 37 38 34 57 11 8 33 30 31 37 16 37 31	34 2 37 5 37 5 38 4 39 6 37 5 38 1 39 8 30 3 31 5 36 5 37 5 38 1 39 8 30 3 31 5 32 5 33 5 34 5 37 5 38 5 39 5 30 3 31 5 32 5 33 5 34 5 37 5 38 5 39 5 30 3 37 5 38 5 39 5 39 5 39 5 30 5 31 5 32 5 33 5 34 5 35 5 36 5 37 5 37 <td>34 25 35 57 <</td> <td>34 25 35 57 57 57 58 7 90 88 11 56 55 31 44 27 58 7 51 55 55 55 55 57 31 31</td>	34 25 35 57 <	34 25 35 57 57 57 58 7 90 88 11 56 55 31 44 27 58 7 51 55 55 55 55 57 31 31
	14 2	79 15	01 28	69	0 1	56 14	34 8	25 2	70 13	98 23	99 4		25 88	25 88 01 4	25 88 01 4 13 15	25 88 01 4 13 15 99 9	25 88 01 4 13 15 99 9 19 8	25 88 01 4 13 15 99 9 99 9 19 8 60 19	25 88 25 88 13 15 99 9 99 9 60 19 85 26	25 88 01 4 13 12 99 9 99 9 19 8 19 8 19 8 19 8 19 8 19 8 19 8 19 8 118 5	25 88 25 88 99 99 99 99 96 19 88 19 86 19 87 26 88 27 88 29	25 88 01 4 99 9 999 9 90 113 119 8 60 119 85 26 18 5 26 26 27 26 18 5 26 28 18 5 18 5 18 5 18 5 18 5 18 5 18 5	25 88 25 88 101 4 13 19 999 99 999 99 901 19 86 19 66 19 88 20 68 29 68 29 69 5 60 5	25 88 13 19 13 19 19 8 19 8 19 8 19 8 19 8 13 19 14 2 15 2 16 2 18 5 18 5 19 4 18 5 20 5 18 2 19 5 20 5 5 5 5 5 5 5	25 88 25 88 13 19 99 9 999 9 999 9 900 19 88 26 60 19 88 29 93 25 33 33	25 88 25 88 99 9 999 9 999 9 990 19 88 26 113 19 88 26 93 26 33 26 335 8 867 19	25 88 25 88 99 9 99 9 99 9 90 19 8 119 8 26 18 5 56 26 53 5 35 8 35 8	25 88 25 88 13 19 99 9 999 9 919 8 13 19 86 19 86 25 86 25 33 34 26 25 35 5 35 19 26 19 37 10	25 88 25 81 13 19 99 9 99 9 99 9 90 19 88 25 69 5 69 5 33 34 23 35 34 19 23 34 23 33 34 19
la/ A	45 I	00 4	45 11	9 3	3	08 4	3	35 1.	18 4	a) 1	58 1		28 11	28 11 14 2	28 11 44 2 3 2 2	28 11 3 2 2 05 3 2 2	28 11 28 11 3 3 2 2 05 3 2 2 3 1 3	28 11 14 20 05 32 2 29 7 7 29	28 11 28 11 3 3 2 2 05 3 2 29 7 11 12 12	28 11 28 21 23 2 33 2 33 1 33 1 11 12 11 12 11 12 11 12	28 11 28 33 205 33 11 12 29 71 11 11 12 29 74 11 12 29 74 20 21 11 12 14 25 74 29 20 20 21 22 23 24 29	28 11 22 3 2 33 2 3 33 1 1 33 1 1 33 1 1 33 1 1 33 1 1 33 1 1 11 1 1 11 1 1 12 1 1 12 1 1	28 11 22 33 23 33 25 33 34 35 36 37 37 38 37 37 38 38 39 <td>28 11 22 3 2 33 2 3 11 12 1 11 12 1 12 9 9 70 10 10</td> <td>28 11 22 3 23 3 23 3 24 1 11 12 11 12 11 12 11 12 12 1 13 1 14 4 11 12 12 1 13 1 14 4 15 1 16 4 17 10 17 3</td> <td>28 11 22 3 2 33 2 3 33 2 3 33 2 3 33 2 3 33 2 3 33 2 3 33 1 1 11 12 1 12 1 1 13 4 5 47 5 3</td> <td>28 11 28 33 29 77 29 20 21 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 13 14 14 15 16 17 17 18 11 17 18 11 17 18 19 11 11 12 13 14 14 15 16 17 18 17 18 19 10 <td>28 11 22 3 2 2 11 20 25 9 1 12 2 3 2 11 12 11 12 1 12 1</td><td>28 11 22 3 22 21 22 23 23 23 23 23 21 11 12 27 11 12 27 11 12 29 27 11 12 27 11 12 27 12 11 12 27 3 3 27 27 29 20 27 20 10 17 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 12 1 12 1</td></td>	28 11 22 3 2 33 2 3 11 12 1 11 12 1 12 9 9 70 10 10	28 11 22 3 23 3 23 3 24 1 11 12 11 12 11 12 11 12 12 1 13 1 14 4 11 12 12 1 13 1 14 4 15 1 16 4 17 10 17 3	28 11 22 3 2 33 2 3 33 2 3 33 2 3 33 2 3 33 2 3 33 2 3 33 1 1 11 12 1 12 1 1 13 4 5 47 5 3	28 11 28 33 29 77 29 20 21 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 13 14 14 15 16 17 17 18 11 17 18 11 17 18 19 11 11 12 13 14 14 15 16 17 18 17 18 19 10 <td>28 11 22 3 2 2 11 20 25 9 1 12 2 3 2 11 12 11 12 1 12 1</td> <td>28 11 22 3 22 21 22 23 23 23 23 23 21 11 12 27 11 12 27 11 12 29 27 11 12 27 11 12 27 12 11 12 27 3 3 27 27 29 20 27 20 10 17 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 12 1 12 1</td>	28 11 22 3 2 2 11 20 25 9 1 12 2 3 2 11 12 11 12 1 12 1	28 11 22 3 22 21 22 23 23 23 23 23 21 11 12 27 11 12 27 11 12 29 27 11 12 27 11 12 27 12 11 12 27 3 3 27 27 29 20 27 20 10 17 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 12 1 12 1
Case al/ A Ja ∕	3	55 1	51 2	2	1	1 00	1	5	50 1) (Val/A - Ala/Al	8		96	99 99	56 1 95 1 1	87 1 66	56 56 11 12 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	556 29 99 99 1 72 1 72 1	86 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	56 25 11 11 11 11	566 56 11 11 13 11 13 11 13 12 14 14 13 13 14 14 13 13 14 14 13 14 14 13 14 14 13 14 14 13 14 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14	566 11 11 11 12 12 12 12 12 12 12 12 12 12	66 2 1 1 1 1 1 1 2 3 3 3 4 2 4 2 4 2 4 2 4 2 5 8 3 3 1 1	66 2 1 1 1 1 87 1 1 2 1 2 1 2 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 2 1	56 11 11 12 11 12 11 12 11 12 12 11 12 12 13 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 13 14 15 11 12 11 12 13 14 15 15 16 17 17 18 17 18 17 17 18 17 17 18 17 18 17 18 18 18 19 111 <td>56 11 11 11 12 12 11 12 12 13 14 15 15 11 12 15 11 12 15 15 11 25 26 27 28 29 21 11 21 11 22 23 24 25 26 27 28 29 29 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 22 23 24 25 26 27 <td>56 1 <</td><td>56 1 <</td><td>56 1 1 1 1 1 1 1 1 87 1 1 7 2 1 1 1 2 7 1 1 7 2 1 1 1 2 2 3 3 1 1 2 1 1 2 2 3 3 1 1 1 2 3 3 1 1 1 2 5 1 1 1 2 2 3 3 3 3 1 1 2 3 5 5 1 1 2 2 5 3 3 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 5<</td></td>	56 11 11 11 12 12 11 12 12 13 14 15 15 11 12 15 11 12 15 15 11 25 26 27 28 29 21 11 21 11 22 23 24 25 26 27 28 29 29 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 22 23 24 25 26 27 <td>56 1 <</td> <td>56 1 <</td> <td>56 1 1 1 1 1 1 1 1 87 1 1 7 2 1 1 1 2 7 1 1 7 2 1 1 1 2 2 3 3 1 1 2 1 1 2 2 3 3 1 1 1 2 3 3 1 1 1 2 5 1 1 1 2 2 3 3 3 3 1 1 2 3 5 5 1 1 2 2 5 3 3 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 5<</td>	56 1 <	56 1 <	56 1 1 1 1 1 1 1 1 87 1 1 7 2 1 1 1 2 7 1 1 7 2 1 1 1 2 2 3 3 1 1 2 1 1 2 2 3 3 1 1 1 2 3 3 1 1 1 2 5 1 1 1 2 2 3 3 3 3 1 1 2 3 5 5 1 1 2 2 5 3 3 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 5<
al V al A	6	.4 2.	5 5	3	1	9 2	0	5	12 2	69 +	<i>с</i> 2		1 20	8 2	12 8 6 9 8 2	8 8 7 9 8 8 7 11 4 8 2	8888 9944 112 112 112 123	3 2 1 4 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 11 22 88 88 88 88 88 88 88 88 88 88 88 88	11 22 11 28 12 21 13 33 14 15 15 16 16 33 17 16 18 16 19 17 10 18 11 17 12 13 13 33 14 16 15 17 16 18 17 19 18 19 19 19 10 19 11 19 12 19 13 19 14 10 15 10 16 10 17 10 18 10 19 10 10 10 11 10 12 10 14 10 15 <	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 11 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 1 2 2 3 3 3 4 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	4 5 7 3 3 7 2 4 5 5 3 3 3 3 3	2 11 2 2 3 3 3 4 4 6 6 7 3 3 3 4 7 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	2 1 2 3 3 7 2 2 3 3 3 3 3 3 3 4 4 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 5 5 5 5 5 5 7 7 5 5 5 5 5 5 7 7 5 5 5 5 5 5 7 7 5 5 5 5 5 5	2 1 2 2 2 2 2 3 2 3 2 3 2 3 3 3 3 3 3 3	1 2 3
Va Vi	1	12	ng 30	Ξ	9	13	Ξ	5	10	13	н 4		83	65 67	83 16 66 83	83 66 16	83 166 83 166 83 83 83 83	83 16 66 10 12 25 25	83 16 66 25 9: 10 27 2	83 16 83 83 83 83 83 83 83 83 83 83 83 83 83	83 66 67 10 10 10 25 27 27 25 25 25 25	83 166 10 10 25 25 25 25 25 33 33	83 16 16 16 16 16 27 25 25 25 25 25 25 33 33 33 33 33	83 16 16 16 16 16 16 16 16 16 16 16 16 16	83 166 166 166 166 166 166 166 166 166 16	83 166,65 1166,65 116,65 116,0	83 16 60 16 60 17 13 9 13 9 13 9 13 9 12 12 12 12 12 12 12 12 12 12 12 12 12	83 16 16 16 16 16 13 13 13 13 13 13 13 13 13 13 13 13 13	83 16 16 16 16 16 16 16 16 16 16
Genotype method	PCR-RFLP	PCR-RFLP	Pyrosequencin	PCR-RFLP	PCR-RFLP	PCR-RFLP	PCR-RFLP	TaqMan	PCR-RFLP	PCR-RFLP	MALDI-TOI MS		PCR-RFLP	PCR-RFLP PCR-RFLP	PCR-RFLP PCR-RFLP PCR-RFLP	PCR-RFLP PCR-RFLP PCR-RFLP PCR-SSCP	PCR-RFLP PCR-RFLP PCR-RFLP PCR-SSCP Real-time PC	PCR-RFLP PCR-RFLP PCR-RFLP PCR-RFLP PCR-SSCP Real-time PC TaqMan	PCR-RFLP PCR-RFLP PCR-RFLP PCR-RFLP PCR-SCP Real-time PC TaqMan TaqMan	PCR-RFLP PCR-RFLP PCR-RFLP PCR-SCP PCR-SSCP Real-time PC TaqMan TaqMan TaqMan MALDI-TOI MS	PCR-RFLP PCR-RFLP PCR-RFLP PCR-SSCP PCR-SSCP Real-time PC TaqMan TaqMan MALDI-TOI MS Mixed ^d	PCR-RFLP PCR-RFLP PCR-RFLP PCR-SSCP PCR-SSCP Real-time PC TaqMan TaqMan TaqMan MALDI-TOI MS Mixed ^d Sequencing	PCR-RFLP PCR-RFLP PCR-RFLP PCR-SSCP Real-time PC TaqMan TaqMan TaqMan MS Mixed ^d Sequencing MassARAM	PCR-RFLP PCR-RFLP PCR-RFLP PCR-SSCP Real-time PC TaqMan TaqMan TaqMan MALDI-TOI MS Mixed ^d Sequencing MassARRAY MALDI-TOI	PCR-RFLP PCR-RFLP PCR-SSCP PCR-SSCP Real-time PC TaqMan TaqMan MALDI-TOI MS Mixed ^d Sequencing MassARRAY MS MS APEX	PCR-RFLP PCR-RFLP PCR-RFLP PCR-SSCP Real-time PC TaqMan TaqMan MALDI-TOI MS Mixed ^d Sequencing MassARRAY MALDI-TOI MS MALDI-TOI MS PCR-RFLP	PCR-RFLP PCR-RFLP PCR-SRCP PCR-SSCP Real-time PC TaqMan TaqMan MS MS Mixed ^d Sequencing MassARRAY MALDI-TOI MS MS APEX PCR-RFLP MALDI-TOI MS MS	PCR-RFLP PCR-RFLP PCR-SCP PCR-SSCP Real-time PC TaqMan TaqMan MALDI-TOI MS Mixed ^d Sequencing MassARRAY MALDI-TOI MS APEX PCR-RFLP MALDI-TOI MS PCR-RFLP MALDI-TOI MS	PCR-RFLP PCR-RFLP PCR-SCP PCR-SSCP Real-time PC TaqMan TaqMan MALDI-TOI MS Mixed ^d Sequencing MassARRAY MALDI-TOI MS APEX PCR-RFLP MALDI-TOI MS PCR-RFLP MS PCR-RFLP MS
Control source	PB	PB	HB	HB	PB	PB	PB	PB	PB	HB	PB		PB	PB HB	PB HB HB	PB HB PB	PB HB PB PB	PB HB HB PB PB	PB HB PB PB PB PB	PB HB PB PB PB PB PB HB	PB HB PB PB PB PB PB HB PB	PB HB PB PB PB PB PB PB PB PB	PB HB PB PB PB PB PB PB PB PB PB PB	PB HB PB PB PB PB PB PB PB PB PB	PB HB PB PB PB PB PB PB PB PB PB PB PB PB PB	PB HB PB PB PB PB PB PB PB PB PB PB PB PB PB	HB HB PB PB PB PB PB PB PB PB PB PB PB PB PB	HB PB PB PB PB PB PB PB PB PB PB PB PB PB	PB PB PB PB PB PB PB PB PB PB PB PB PB P
Cancer type	Breast	Breast	Lung	Breast	MPM	CRC	Pancreatic	CRC	Breast	Lung	Prostate		Breast	Breast Bladder	Breast Bladder Bladder	Breast Bladder Bladder Breast	Breast Bladder Bladder Breast Lung	Breast Bladder Bladder Breast Lung Breast	Breast Bladder Bladder Breast Lung Breast Breast	Breast Bladder Bladder Breast Lung Breast Breast Ovarian	Breast Bladder Breast Lung Breast Breast Ovarian Breast	Breast Bladder Bladder Breast Lung Breast Breast Breast Breast	Breast Bladder Bladder Breast Lung Breast Breast Breast Breast	Breast Bladder Breast Lung Breast Breast Breast Breast Breast	Breast Bladder Breast Lung Breast Breast Breast Breast Breast CRC	Breast Bladder Breast Lung Breast Breast Breast Breast Breast CRC Prostate	Breast Bladder Bladder Breast Lung Breast Breast Breast Breast Breast CRC Prostate Bladder	Breast Bladder Breast Lung Breast Breast Breast Breast Breast CRC Prostate Bladder Lung	Breast Bladder Breast Lung Breast Breast Breast Breast Breast CRC Prostate Bladder Lung NHL
Ethnicity	Caucasian	Caucasian	Caucasian	Caucasian	Caucasian	Mixed	Caucasian	Caucasian	Caucasian	Asian	Cancasian	(monon)	Asian	Asian Caucasian	Asian Caucasian Asian	Asian Caucasian Asian Caucasian	Asian Caucasian Asian Caucasian Asian	Asian Asian Asian Asian Asian African	Asian Asian Asian Asian Asian African Caucasian	Asian Caucasian Asian Caucasian African Caucasian Caucasian	Asian Asian Caucasian Asian African Caucasian Caucasian Caucasian	Asian Caucasian Asian Caucasian African Caucasian Caucasian Caucasian	Asian Asian Caucasian Asian African Caucasian Caucasian Caucasian Asian Asian	Asian Caucasian Asian Caucasian African Caucasian Caucasian Asian Asian Caucasian Caucasian Caucasian	Asian Asian Caucasian Asian African Caucasian Caucasian Asian Asian Caucasian	Asian Caucasian Asian Caucasian African Caucasian Caucasian Asian Caucasian Caucasian Caucasian	Asian Caucasian Asian Caucasian African Caucasian Caucasian Asian Asian Caucasian Caucasian Caucasian Caucasian	Asian Asian Caucasian Asian African Caucasian Caucasian Asian Asian Caucasian Caucasian Asian Caucasian Asian	Asian Asian Caucasian Asian African Caucasian Caucasian Asian Asian Caucasian Caucasian Asian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian
Country	USA	Finland	USA	UK	Finland	USA	USA	USA	USA	China	TISA	100	China	China Italy	China Italy Japan	China China Japan Canada	China Italy Japan Canada China	China Italy Japan Canada USA	China Italy Japan Canada USA USA	USA	China Italy Japan Canada USA USA USA	USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA USA USA USA	USA Italy Japan USA USA USA USA USA USA Sweden USA Spain	China Italy Japan Canada USA USA USA USA USA Sweden USA Spain USA	China Italy Japan USA USA USA USA USA Sweden USA USA USA USA	China Italy Japan Japan Canada USA USA USA USA USA USA USA USA USA	USA Italy Japan Japan Canada USA USA USA USA USA USA USA USA USA and UKA
Year	1999	2001	2001	2002	2002	2002	2002	2002	2003	2003	2003	i	2004	2004 2004	2004 2004 2004	2004 2004 2004 2004	2004 2004 2004 2004 2004	2004 2004 2004 2004 2004 2004	2004 2004 2004 2004 2004 2004	2004 2004 2004 2004 2004 2004 2004	2004 2004 2004 2004 2004 2004 2004 2004	2004 2004 2004 2004 2004 2004 2004 2004	2004 2004 2004 2004 2004 2004 2004 2005 2005	2004 2004 2004 2004 2004 2004 2005 2005	2004 2004 2004 2004 2004 2004 2005 2005	2004 2004 2004 2004 2004 2005 2005 2005	2004 2004 2004 2004 2004 2005 2005 2005	2004 2004 2004 2004 2004 2005 2005 2005	2004 2004 2004 2004 2004 2005 2005 2005
Surname (ref)	Ambrosone et al. [60]	Mitrunen et al. [10]	Wang et al. [7]	Green et al. [61]	Hirvonen et al. [62]	Levine et al. [63]	Li et al. [64]	Stoehlmacher et al. [13]	Egan et al. [16]	Lin et al. [65] ^a	Woodson et al. [66]		Cai et al. [11]	Cai et al. [11] Hung et al. [8]	Cai et al. [11] Hung et al. [8] Ichimura et al. [67]	Cai et al. [11] Hung et al. [8] Ichimura et al. [67] Knight et al. [68]	Cai et al. [11] Hung et al. [8] Ichimura et al. [67] Knight et al. [68] Lan et al. [17]	Cai et al. [11] Hung et al. [8] Ichimura et al. [67] Knight et al. [68] Lan et al. [17] Millikan et al. [69]	Cai et al. [11] Hung et al. [8] Ichimura et al. [67] Knight et al. [68] Lan et al. [17] Millikan et al. [69]	Cai et al. [11] Hung et al. [8] Ichimura et al. [67] Knight et al. [68] Lan et al. [17] Millikan et al. [69] Millikan et al. [70]	Cai et al. [11] Hung et al. [8] Ichimura et al. [67] Knight et al. [68] Lan et al. [68] Millikan et al. [69] Millikan et al. [69] Olson et al. [70]	Cai et al. [11] Hung et al. [8] Ichimura et al. [67] Knight et al. [68] Lan et al. [68] Millikan et al. [69] Millikan et al. [69] Olson et al. [70] Tamimi et al. [71] Bergman et al. [9]	Cai et al. [11] Hung et al. [8] Ichimura et al. [67] Knight et al. [67] Lan et al. [17] Millikan et al. [69] Millikan et al. [69] Olson et al. [70] Bergman et al. [9] Cheng et al. [72]	Cai et al. [11] Hung et al. [8] Ichimura et al. [67] Knight et al. [68] Lan et al. [17] Millikan et al. [69] Millikan et al. [69] Olson et al. [70] Tamimi et al. [71] Bergman et al. [9] Cheng et al. [72]	Cai et al. [11] Hung et al. [8] Ichimura et al. [67] Knight et al. [68] Lan et al. [69] Millikan et al. [69] Olson et al. [70] Tamimi et al. [71] Bergman et al. [9] Cheng et al. [72] Gaudet et al. [73]	Cai et al. [11] Hung et al. [8] Ichimura et al. [67] Knight et al. [68] Lan et al. [68] Millikan et al. [69] Millikan et al. [69] Olson et al. [70] Bergman et al. [71] Bergman et al. [9] Cheng et al. [72] Gaudet et al. [73] Li et al. [74]	Cai et al. [11] Hung et al. [8] Ichimura et al. [67] Knight et al. [68] Lan et al. [68] Millikan et al. [69] Millikan et al. [69] Olson et al. [70] Bergman et al. [71] Bergman et al. [9] Cheng et al. [72] Gaudet et al. [73] Landi et al. [73] Li et al. [74] Terry et al. [75]	Cai et al. [11] Hung et al. [8] Ichimura et al. [67] Knight et al. [68] Lan et al. [69] Millikan et al. [69] Millikan et al. [69] Olson et al. [70] Tamimi et al. [71] Bergman et al. [72] Cheng et al. [72] Gaudet et al. [73] Li et al. [74] Terry et al. [75] Ho et al. [18] ^c	Cai et al. [11] Hung et al. [8] Ichimura et al. [67] Knight et al. [68] Lan et al. [69] Millikan et al. [69] Millikan et al. [69] Olson et al. [70] Bergman et al. [71] Bergman et al. [72] Cheng et al. [72] Gaudet et al. [73] Li et al. [74] Terry et al. [75] Ho et al. [18] ^c Lightfoot et al. [76]

Continued.	
÷	
TABLE	

Surname (ref)	Year	Country	Ethnicity	Cancer type	Control source	Genotype method	Val/	Cas Val/	e Ala/	All	Val/	Contr Val/	ol Ala/	All	MAF	HWE 5	Score
Wang et al. [78]	2006	USA	Mixed	NHL	PB	TaqMan	V al 285	Ala 545	Ala 290	1120	Val 240	Ala 486	Ala 211	937	0.48	0.240	13
Cengiz et al. [15] ^b	2007	Turkey	Caucasian	Bladder	HB	PCR-RFLP	34 (Va + Val/	l/Val Ala)	17	51	34 (Val + Val/	/Val Ala)	19	53	NA	NA	~
Choi et al. [37]	2007	NSA	Caucasian	Prostate	PB	MALDI-TOF MS	112	239	104	455	293	610	311	1214	0.49	0.857	13
Choi et al. [37]	2007	NSA	African	Prostate	PB	MALDI-TOF MS	~	15	9	28	39	52	31	122	0.47	0.112	10
Ergen et al. [79] ^c	2007	Turkey	Caucasian	Prostate	HB	PCR-RFLP	19	25	9	50	32	18	0	50	0.18	0.121	4
Han et al. [80]	2007	USA	Caucasian	Skin	PB	TaqMan	184	402	187	773	196	425	212	833	0.49	0.549	15
Johnatty et al. [81]	2007	Australia	Caucasian	Ovarian	PB	Real-time PCR	123	273	147	543	276	546	308	1130	0.49	0.269	11
Kang et al. [82]	2007	USA	Caucasian	Prostate	PB	TaqMan	275	578	297	1150	376	686	320	1382	0.48	0.835	13
Kang et al. [82]	2007	USA	African	Prostate	PB	TaqMan	31	57	15	103	122	194	79	395	0.45	0.906	11
Landi et al. [83]	2007	Italy	Caucasian	MPM	HB	APEX	16	27	37	80	98	170	81	349	0.48	0.661	6
di Martino et al. [84]	2007	USA	Caucasian	Esophageal	HB	PCR-RFLP	32	73	35	140	20	39	34	93	0.42	0.171	8
Murphy et al. [12]	2007	Ireland	Caucasian	Esophageal	PB	SNaPshot	44	103	60	207	60	113	48	221	0.47	0.703	11
Arsova-Sarafinovska et al. [85]	2008	Turkey	Caucasian	Prostate	HB	Real-time PCR	19	46	20	85	41	73	37	151	0.49	0.690	6
Cooper et al. [86]	2008	USA	Caucasian	Prostate	PB	TaqMan	602	1352	680	2634	423	789	424	1636	0.50	0.152	15
Dalan et al. [87]	2008	Turkey	Caucasian	Ovarian	PB	PCR-RFLP	30	19	9	55	28	17	9	51	0.28	0.196	~
Justenhoven et al. [88]	2008	Germany	Caucasian	Breast	PB	MALDI-TOF MS	159	312	133	604	163	313	145	621	0.49	0.824	14
Mikhak et al. [89]	2008	USA	Caucasian	Prostate	PB	TaqMan	156	320	166	642	162	331	159	652	0.50	0.695	14
Rajaraman et al. [90]	2008	USA	Caucasian	Brain	HB	TaqMan	129	262	123	514	122	220	109	451	0.49	0.617	10
Wheatley-Price et al. [91]	2008	USA	Caucasian	Pancreatic	HB	TaqMan	33	58	31	122	61	165	105	331	0.43	0.786	11
Zienolddiny et al. [92]	2008	Norway	Caucasian	Lung	PB	APEX	74	175	70	319	119	178	78	375	0.45	0.448	12
Eras-Erdogan et al. [93]	2009	Turkey	Caucasian	Breast	PB	PCR-RFLP	107	113	30	250	150	141	39	330	0.33	0.508	8
Funke et al. [94]	2009	Germany	Caucasian	CRC	PB	Pyrosequencing	136	321	166	623	146	294	163	603	0.49	0.554	12
Iguchi et al. [95]	2009	USA	Mixed	Prostate	HB	PCR-RFLP	41	86	60	187	40	96	39	175	0.50	0.199	9
Kostrykina et al. [96]	2009	Russia	Caucasian	Breast	PB	TaqMan	123	233	119	475	103	183	90	376	0.48	0.622	12
Tong et al. [14] ^a	2009	Korea	Asian	Cervical	HB	SNaPshot	72	27 (Va + Ala/	l/Ala Ala)	66	194	69 (Val + Ala/.	l/Ala Ala)	263	NA	NA	~
Ermolenko et al. [97]	2010	Russia	Caucasian	Breast	HB	Real-time PCR	228	454	239	921	121	235	104	460	0.48	0.620	6
Ezzikouri et al. [98]	2010	Morocco	Caucasian	HCC	PB	PCR-RFLP	21	45	30	96	81	101	40	222	0.41	0.388	11
Ibrahim et al. [99]	2010	Egypt	African	HCC	HB	PCR-RFLP	16	32	27	75	19	28	11	58	0.43	0.904	8
Kim et al. [100]	2010	Korea	Asian	Breast	HB	TaqMan	234	99	4	304	279	90	~	376	0.14	0.934	=

Continued.	
÷	
TABLE	

					IAE	sle 1: Continued.											
					Control	Conotino		Cas	0			Contr	ol				
Surname (ref)	Year	Country	Ethnicity	Cancer type	source	method	Val/ Val	Val/ Ala	Ala/ Ala	All	Val/ Val	Val/ Ala	Ala/ Ala	All	MAF]	HWE S	core
Méplan et al. [101]	2010	Czech	Caucasian	CRC	HB	AS-PCR	172	358	189	719	165	318	174	657	0.49	0.415	6
Tang et al. [102]	2010	USA	Mixed	Pancreatic	HB	TaqMan	143	278	137	558	167	309	162	638	0.50	0.429	11
Wu et al. [103]	2010	China	Asian	Oral	HB	Real-time PCR	91	28	2	121	88	32	7	122	0.15	0.637	6
Yi et al. [104]	2010	China	Asian	Gastric	HB	SNaPshot	85	48	7	140	119	27	П	147	0.10	0.690	6
Cerne et al. [105]	2011	Slovenia	Caucasian	Breast	HB	TaqMan	118	269	143	530	65	134	71	270	0.51	0.910	8
Cheng et al. [106] ^b	2011	USA	Mixed	Prostate	PB	MALDI-TOF MS	152 (Va + Val/	al/Val 'Ala)	50	202	1054 (Val + ` Ala	Val/ Val/)	374	1428	NA	NA	13
Mohelnikova- Duchonova et al. [107]	2011	Czech	Caucasian	Pancreatic	PB	Real-time PCR	66	121	48	235	73	134	58	265	0.47	0.812	10
Zhang et al. [108] ^b	2011	NSA	Mixed	Pancreatic	PB	TaqMan	129 (Va + Val/	al/Val 'Ala)	60	189	365 (Va + Val/	ll/Val Ala)	121	486	NA	NA	13
Atoum et al. [109] ^c	2012	Jordan	Caucasian	Breast	HB	PCR-RFLP	22	43	0	65	11	9	0	17	0.18	0.377	9
Farawela et al. [110]	2012	Egypt	African	NHL	PB	PCR-RFLP	10	50	40	100	12	49	39	100	0.37	0.568	6
Hemelrijck et al. [111]	2012	Germany	Caucasian	Prostate	PB	MassARRAY	50	100	53	203	80	190	90	360	0.49	0.285	13
Kucukgergin et al. [112]	2012	Turkey	Caucasian	Bladder	HB	PCR-RFLP	52	68	37	157	89	66	36	224	0.38	0.341	8
Kucukgergin et al. [113]	2012	Turkey	Caucasian	Prostate	HB	PCR-RFLP	43	65	26	134	99	69	24	159	0.37	0.398	8
Tsai et al. [114] ^a	2012	China	Asian	Breast	HB	Real-time PCR	192	68 (Va + Ala/	l/Ala Ala)	260	138	86 (Val + Ala/.	/Ala Ala)	224	NA	NA	8
Ye et al. [115]	2012	China	Asian	NPC	HB	PCR	88	15	2	105	110	23	3	136	0.11	0.191	8
Zhao et al. [116]	2012	China	Asian	Brain	HB	OpenArray	241	107	31	379	293	81	9	380	0.12	0.882	11
Amr et al. [117]	2013	Egypt	African	Bladder	PB	TaqMan	127	188	66	414	109	160	87	356	0.47	0.065	13
Ashour et al. [118]	2013	Egypt	African	Lung	PB	TaqMan	17	27	9	50	21	25	4	50	0.33	0.355	6
Attatippaholkun and Wikainapakul [119]	2013	Thailand	Asian	Cervical	HB	SNaPshot	64	39	4	107	84	48	3	135	0.20	0.184	~
Attatippaholkun et al. [119]	2013	Thailand	Asian	Breast	HB	SNaPshot	82	54	5	141	84	48	3	135	0.20	0.184	
Eken et al. [120]	2013	Turkey	Caucasian	Prostate	HB	Real-time PCR	7	17	6	33	31	37	13	81	0.39 (0.726	8
Han et al. [121]	2013	Korea	Asian	Pancreatic	PB	PCR-SSCP	190	85	19	294	236	59	5	300	0.12	0.558	12
Méplan et al. [122]	2013	Denmark	Caucasian	Breast	PB	TaqMan	228	485	226	939	237	494	227	958	0.49	0.331	14
Atilgan et al. [123]	2014	Turkey	Caucasian	RCC	HB	Probe	10	17	14	41	23	19	8	50	0.35 (0.244	5
Liu et al [124]	2014	China	Asian	OSCC	HB	PCR-RFLP	272	83	4	362	296	61	1	358	0.09	0.243	10
Oskina et al. [125]	2014	Russia	Caucasian	Prostate	PB	TaqMan	92	194	94	380	86	152	66	337	0.48	0.076	12
Brown et al. [126]	2015	USA	Mixed	Medulloblastoma	PB	Illumina SNP chip	б	15	8	26	18	18	6	45	0.40	0.264	5

						40 000		Case				Contr	0				
Surname (ref)	Year	Country	Ethnicity	Cancer type	source	method	Val/ Val	Val/ Ala	Ala/ Ala	All	Val/ Val	Val/ Ala	Ala/ Ala	All	MAF	HWE S	Score
Jablonska et al. [127]	2015	Polish	Caucasian	Breast	PB	Real-time PCR	32	75	29	136	41	92	50	183	0.48	0.915	10
Parlaktas et al. [128]	2015	Turkey	Caucasian	Prostate	HB	Probe	23	23	3	49	24	20	5	49	0.31	0.784	~
Su et al. [129]	2015	China	Asian	HCC	HB	PCR-RFLP	334	78	10	422	359	107	13	479	0.14	0.150	~
MAF: minor allele frequer polymorphism; MALDI-TC	icy; HWE)F MS: m	: Hardy-We atrix-assisted	inberg equilibriu l laser desorptio	um; HB: hospital-l	əased; PB: p əf-flight ma	oopulation based; N. ss spectrometry; PCI	A, not al R-SSCP:]	pplicable; polymorp	PCR-RI hism ch	RLP: pol	.ymorphi tion-sing	sm chair le strand	n reactic confori	on-restr nation	iction fr polymo:	agment] rphism; /	length APEX:

TABLE 1: Continued.

arrayed primer extension; AS-PCR: allele specific-polymorphism chain reaction; MPM: malignant pleural mesothelioms; CRC: colorectal cancer; NHL: non-Hodgkin's lymphoma; HCC: hepatocellular carcinoma; RCC: renal cell carcinoma; OSCC: oral squamous cell carcinoma. ^aLin et al. [65], Tong et al. [14], and Tsai et al. [14] were only calculated for the dominant model. ^bCengiz et al. [15], Cheng et al. [106], and Zhang et al. [108] were only calculated for the heterozygous model, dominant model, and allele comparison, and the number of Ala/Ala genotype was zero. ^aMixed: which included more than one genotyping methods.

			Homozygou	IS	Heterozygou	IS	Recessive		Dominant		Allele compai	ison
Variables	Number of studies	Sample size (case/controls)	Ala/Ala versus V	al/Val	Val/Ala versus V:	al/Val	Ala/Ala vers (Val/Val + Val/	us Ala)	(Ala/Ala + Val/ versus Val/V	'Ala) 'al	Ala versus ¹	⁄al
			OR (95% CI)	$P^{\rm het}$	OR (95% CI)	$P^{\rm het}$	OR (95% CI)	$P^{\rm het}$	OR (95% CI)	P^{het}	OR (95% CI)	$P^{\rm het}$
All	88	33,098/37,831	1.09(1.00-1.19)	<0.001	1.07 (1.02-1.12)	0.001	1.05 (0.99–1.11)	<0.001	1.08 (1.02-1.14)	<0.001	1.06 (1.02-1.11)	<0.001
Cancer type												
Breast	24	12,479/12,603	1.03(0.95 - 1.13)	0.276	1.02(0.96 - 1.09)	0.302	1.02(0.94 - 1.10)	0.157	1.01(0.94-1.09)	0.066	1.02 (0.97-1.06)	0.226
Prostate	17	7101/9146	1.04 (0.87-1.24)	0.002	1.14(1.05 - 1.24)	0.765	1.03(0.94 - 1.14)	0.225	1.14 (1.05-1.23)	0.552	1.07 (1.00-1.15)	0.106
Lung	9	2021/2347	1.13(0.63 - 2.04)	0.019	1.05(0.76 - 1.46)	0.016	0.91 (0.72-1.14)	0.313	1.02 (0.78-1.32)	0.021	0.98 (0.80-1.21)	0.039
Bladder	9	1271/1270	0.66 (0.39-1.13)	0.002	0.91 (0.68–1.23)	0.049	1.01 (0.83-1.24)	0.520	0.93 (0.68-1.26)	0.021	0.97 (0.80-1.19)	0.033
Pancreatic	9	1422/2043	1.01 (0.59–1.73)	0.007	1.07 (0.77–1.49)	0.032	1.08 (0.77–1.50)	0.020	1.04 (0.70-1.55)	0.002	1.04(0.76 - 1.43)	<0.001
CRC	5	2258/2180	1.02(0.86 - 1.20)	0.856	1.04(0.90 - 1.20)	0.733	0.99 (0.86–1.13)	0.967	1.03 (0.90-1.18)	0.733	1.01 (0.93-1.09)	0.863
Ovarian	3	716,1358	1.10(0.85 - 1.42)	0.839	1.15 (0.92–1.45)	0.773	1.00(0.81 - 1.23)	0.973	1.13(0.92 - 1.40)	0.748	1.05 (0.92-1.19)	0.836
HCC	3	593/759	1.92(0.85 - 4.36)	0.050	1.15(0.66-2.00)	0.055	1.70 (0.97–2.97)	0.162	1.36 (0.67–2.76)	0.005	1.34 (0.76-2.35)	0.001
NHL	3	2123/2479	1.96(0.96 - 4.00)	<0.001	1.03(0.89 - 1.19)	0.551	1.08 (0.94–1.24)	0.357	1.05 (0.92-1.20)	0.831	1.05(0.96 - 1.14)	0.849
Other cancers	15	3114/3646	1.79(1.18-2.70)	<0.001	1.25(1.05 - 1.49)	0.058	1.54(1.07 - 2.20)	<0.001	1.32(1.08-1.61)	0.001	1.32 (1.08-1.61)	<0.001
Ethnicity												
Asian	18	5092/5748	1.82(1.15-2.88)	0.020	1.10(0.94 - 1.30)	0.001	1.76 (1.16–2.68)	0.065	1.08(0.91 - 1.29)	<0.001	1.16(0.96 - 1.40)	<0.001
Caucasian	56	23,738/26,121	1.03 (0.94–1.12)	<0.001	1.08 (1.03-1.13)	0.208	1.02 (0.96-1.08)	0.005	1.08(1.02 - 1.14)	0.011	$1.04 \ (1.00 - 1.09)$	<0.001
African	7	1530/1758	1.58(0.85 - 2.93)	<0.001	0.95 (0.80-1.12)	0.442	0.98 (0.79–1.21)	0.314	0.99 (0.81-1.20)	0.289	1.01 (0.87-1.17)	0.168
Mixed	7	2738/4204	1.11 (0.88 - 1.42)	0.141	0.98(0.81 - 1.19)	0.196	1.12 (0.97–1.31)	0.187	1.02 (0.85-1.23)	0.177	1.06 (0.94–1.21)	0.107
Source of contr	ol											
PB	48	23,004/27,193	1.10(1.01-1.19)	<0.001	1.07 (1.02-1.12)	0.263	1.02(0.97 - 1.08)	0.071	1.07 (1.02-1.13)	0.071	$1.04 \ (1.00 - 1.08)$	0.006
HB	40	10,094/10,638	$1.09\ (0.88-1.35)$	<0.001	1.08(0.98 - 1.20)	0.003	1.16(1.01 - 1.34)	<0.001	1.10 (0.98-1.23)	<0.001	1.13 (1.03-1.24)	<0.001
Quality score												
Low	39	7625/7608	1.15(0.90-1.46)	<0.001	1.09(0.98 - 1.22)	0.025	1.13(0.99 - 1.29)	0.015	1.11 (0.98–1.26)	<0.001	1.12 (1.02-1.23)	<0.001
High	49	25,473/30,223	1.08 (1.00-1.17)	0.001	1.07 (1.02-1.13)	0.067	1.03 (0.97–1.09)	0.002	1.07 (1.02-1.14)	0.002	$1.04 \ (1.00 - 1.09)$	<0.001
Het: heterogeneit,	7; CRC: colore	ectal cancer; HCC: l	hepatocellular carcinoi	na; NHL:	non-Hodgkin's lymph	toma; PB:	: population-based; H	B: hospital	-based.			

risk.	
ancer	
and c	
hism	
ymorl	
a pol	
al 16AJ	
JD V	
MnSt	
ween	
on bet	
ociatio	
ie asso	
s of th	
nalysi	
leta-a	
е 2: М	,
TABL	

Disease Markers

Disease Markers

Study			%
ID		OR (95% CI)	weight
		1.00 (0.00, 2.60)	0.50
Ambrosone (1999)		1.80(0.90, 5.00) 1.33(1.01, 1.76)	0.50
Wang (2001)		0.79(0.66, 0.95)	2 20
Green (2002)		0.57(0.20, 1.60)	0.25
Hirvonen (2002)		0.73 (0.24, 2.23)	0.21
Levine (2002)		0.90 (0.68, 1.19)	1.65
Li (2002)		0.75 (0.23, 2.43)	0.19
Stoehlmacher (2002)		0.83 (0.44, 1.58)	0.56
Egan (2003)		1.28 (0.95, 1.72)	1.56
Lin (2003)		1.00(0.68, 1.47)	1.17
Woodson (2003)		1.25 (0.78, 2.00)	0.91
Cai (2004)		1.00 (0.83, 1.20)	2.21
Hung (2004)		0.52(0.34, 0.81) 0.70(0.50, 1.24)	0.99
Ichimura (2004)		0.79(0.50, 1.24) 0.87(0.62, 1.20)	0.94
		0.37(0.05, 1.20) 0.73(0.40, 1.33)	0.63
Millikan (2004)		0.79(0.63, 0.99)	1.97
Millikan (2004)		1.11 (0.92, 1.35)	2.17
Olson (2004)		1.36 (0.80, 2.34)	0.74
Tamimi (2004)		0.91 (0.75, 1.11)	2.15
Bergman (2005)		0.85(0.50, 1.44)	0.76
Cheng (2005)		1.03 (0.79, 1.34)	1.74
Gaudet (2005)		0.99 (0.82, 1.21)	2.12
		1.05 (0.74, 1.48)	1.34
		1.09(0.85, 1.41) 1.22(0.70, 1.97)	1.79
		1.22(0.79, 1.87) 1.01(0.66, 1.53)	1.02
no (2006)		1.01(0.00, 1.33) 1.08(0.89, 1.32)	2.15
Elander (2006)		1.00(0.00, 1.02) 1.05(0.83, 1.33)	1 91
Wang (2006)		1.01 (0.83, 1.23)	2.12
Choi (2007)		0.97 (0.76, 1.25)	1.81
Choi (2007)		1.41 (0.55, 3.59)	0.29
Ergen (2007)		2.90 (1.29, 6.53)	0.38
Han (2007)		0.98(0.78, 1.24)	1.93
Johnatty (2007)		1.10(0.87, 1.41)	1.86
Landi (2007)		1.56 (0.86, 2.83)	0.63
Martino (2007)		0.92(0.49, 1.74)	0.58
Murphy (2007)		1.38(0.88, 2.16) 1.10(0.00, 1.42)	0.97
Kang (2007)		1.19(0.99, 1.42) 1.04(0.65, 1.66)	2.24
Arous Sarofinovska (2008)		1.04(0.05, 1.00) 1.29(0.69, 2.42)	0.50
Cooper (2008)		1.18(1.02, 1.36)	2.47
Dalan (2008)		1.01 (0.47, 2.18)	0.42
Lustenboven (2008)		1.00 (0.77, 1.28)	1.79
Mikhak (2008)		1.03 (0.80, 1.33)	1.79
Rajaraman (2008)		1.11 (0.83, 1.48)	1.60
Wheatley-Price (2008)		0.61 (0.37, 0.99)	0.86
Zienolddiny (2008)		1.54 (1.10, 2.16)	1.36
Eras-Erdogan (2009)		1.11 (0.80, 1.55)	1.39
Funke (2009)		1.14 (0.88, 1.49)	1.72
Iguchi (2009)		1.06(0.64, 1.73)	0.84
Kostrykina (2009)		1.08(0.80, 1.47) 1.05(0.62, 1.77)	1.51
Tong (2001)		1.03(0.03, 1.77) 1.03(0.70, 1.33)	1.76
		1.03(0.79, 1.33) 1.08(0.84, 1.40)	1.70
Erniolenko (2010)		2.05(1.18, 3.58)	0.71
Ibrahim (2010)		1.80 (0.82, 3.91)	0.41
Kim (2010)		0.86 (0.60, 1.22)	1.30
Meplan (2010)		1.07 (0.83, 1.36)	1.84
Wu (2010)		0.85(0.48, 1.51)	0.68
Yi (2010)		2.75 (1.61, 4.69)	0.75
Cerne (2011)		1.11 (0.78, 1.56)	1.33
Mohelnikova-Duchonova (2011)		0.97(0.66, 1.44)	1.15
Atoum (2012)		5.56(1.17, 10.98) 1 23 (0 50 2 99)	0.21
Farawela (2012)		0.87(0.58, 1.31)	1 10
Ruchkerrin (2012)		1.50(0.93, 2.43)	0.87
Kucukaerain (2012)		1.33 (0.87, 2.04)	1.03
		0.57 (0.39, 0.84)	1.17
Ye (2012)		0.82 (0.42, 1.60)	0.52
Zhao (2012)		1.93 (1.40, 2.65)	1.46
Amr (2013)		1.00 (0.73, 1.36)	1.51
Ashour (2013)		1.41 (0.62, 3.16)	0.38
Attatippaholkun (2013)		1.11(0.00, 1.80) 1.10(0.72, 1.02)	0.78
Attatippaholkun (2013)		1.19(0.75, 1.92) 2 30(0.89, 5.94)	0.87
Eken (2013)		2.30(0.39, 3.94) 2.02(1.40, 2.01)	1.25
Han (2013)		1.03(0.83, 1.26)	2.06
		2.64 (1.07, 6.52)	0.31
		1.58 (1.10, 2.27)	1.26
Oskina (2014)		1.07 (0.76, 1.51)	1.36
Brown (2015)	>	5.11 (1.33, 19.57)	0.15
Jablonska (2015)		0.94 (0.55, 1.59)	0.77
Parlaktas (2015)		1.09 (0.49, 2.40)	0.39
Su (2015)		0.79(0.58, 1.08)	1.48
Overall (<i>I</i> -squared = 47.4%, <i>P</i> = 0.000)		1.08 (1.02, 1.14)	100.00
Note. Weights are from random-effects analysis			
.0511 1	19.6		

FIGURE 2: Forest plot of overall cancer risk associated with MnSOD Val16Ala polymorphism by dominant model. For each study, the estimated of OR and its 95% CI are plotted with a box and a horizontal line. \diamond , pooled ORs and its 95% CIs.

Conotypo	Cruda OP (95% CI)	D valuo ^a	Statistical power ^b		Р	rior probabi	lity	
Genotype	Clude OK (95% Cl)	P value		0.25	0.1	0.01	0.001	0.0001
All								
Homozygous	1.09 (1.00-1.19)	0.054	1.000	0.140	0.328	0.843	0.982	0.998
Heterozygous	1.07 (1.02–1.12)	0.004	1.000	0.011	0.032	0.267	0.787	0.974
Dominant	1.08 (1.02–1.14)	0.005	1.000	0.016	0.045	0.343	0.840	0.981
Allele comparison	1.06 (1.02–1.11)	0.013	1.000	0.038	0.106	0.567	0.930	0.992
Cancer type-prostat	e cancer							
Heterozygous	1.14 (1.05–1.24)	0.002	1.000	0.007	0.020	0.183	0.693	0.958
Dominant	1.14 (1.05–1.23)	0.001	1.000	0.002	0.006	0.067	0.420	0.879
Allele comparison	1.07 (1.00-1.15)	0.066	1.000	0.165	0.372	0.867	0.985	0.998
Ethnicity—Asian								
Homozygous	1.82 (1.15-2.88)	0.011	0.204	0.134	0.317	0.836	0.981	0.998
Recessive	1.76 (1.16-2.68)	0.008	0.228	0.100	0.249	0.785	0.974	0.997
Ethnicity-Caucasian								
Heterozygous	1.08 (1.03-1.13)	0.001	1.000	0.003	0.008	0.078	0.462	0.896
Dominant	1.08 (1.02–1.14)	0.005	1.000	0.016	0.045	0.343	0.840	0.981
Allele comparison	1.04 (1.00-1.09)	0.102	1.000	0.234	0.478	0.910	0.990	0.999
Control source-PB								
Homozygous	1.10 (1.01-1.19)	0.018	1.000	0.050	0.136	0.634	0.946	0.994
Heterozygous	1.07 (1.02–1.12)	0.004	1.000	0.011	0.032	0.267	0.787	0.974
Dominant	1.07 (1.02–1.13)	0.015	1.000	0.043	0.119	0.599	0.938	0.993
Allele comparison	1.04 (1.00-1.08)	0.042	1.000	0.111	0.273	0.805	0.977	0.998
Control source-HB								
Recessive	1.16 (1.01–1.34)	0.044	1.000	0.116	0.282	0.812	0.978	0.998
Allele comparison	1.13 (1.03-1.24)	0.010	1.000	0.029	0.082	0.495	0.908	0.990
Quality score—low								
Allele comparison	1.12 (1.02-1.23)	0.018	1.000	0.051	0.138	0.637	0.947	0.994
Quality score—high								
Homozygous	1.08 (1.00-1.17)	0.059	1.000	0.151	0.349	0.855	0.983	0.998
Heterozygous	1.07 (1.02–1.13)	0.015	1.000	0.043	0.119	0.599	0.938	0.993
Dominant	1.07 (1.02–1.14)	0.036	1.000	0.098	0.247	0.783	0.973	0.997
Allele comparison	1.04 (1.00-1.09)	0.102	1.000	0.234	0.478	0.910	0.990	0.999
		1	. h			1 6 1		,

TABLE 3: False-positive report probability values for associations between cancer risk and MnSOD Val16Ala polymorphism.

^aChi-square test was used to calculate the genotype frequency distributions; ^bstatistical power was calculated using the number of observations in the subgroup and the OR and P values in this table.

4. Discussion

In this meta-analysis, we comprehensively assessed the association between MnSOD Val16Ala polymorphism and cancer risk through 88 studies, and we found that this gene polymorphism was significantly associated with overall cancer risk. Further, stratification analysis revealed that the association was more obvious for risk of prostate cancer, Asians, Caucasians, population-based studies, hospital-based studies, low-quality studies, and high-quality studies. To avoid the false-positive results of the meta-analysis, we performed the FPRP analysis for the significant findings by setting as the prior probability of 0.1, and the results suggested that the association between MnSOD Val16Ala polymorphism and cancer risk for Asians was false positive, which may due to limited sample size.

MnSOD is a mitochondrial enzyme that converts superoxide radical O_2^- into H_2O_2 , and it plays a critical role in human cells. Studies have revealed that the aberrant expression of MnSOD is involved in many types of cancers. Our current study indicated that the MnSOD Val16Ala polymorphism was significantly associated with an increased overall cancer risk. Previous meta-analyses have also assessed the association of MnSOD Val16Ala polymorphism with cancer susceptibility. The study carried out by Kang [130] analyzed MnSOD Val16Ala polymorphism and cancer risk, consisting 52 studies with 26,865 cases and 32,464 controls, in which no significant association was found between this polymorphism and overall cancer risk. In the subgroup analysis, statistically significant associations were found between this polymorphism and non-Hodgkin lymphoma, lung cancer, and

colorectal cancer. Another meta-analysis [131] including 7366 cases and 9102 controls found no overall association of MnSOD Val16Ala polymorphism for cancer risk. Some of the significant associations detected in the previous meta-analyses were not found in the present study; for example, MnSOD Val16Ala polymorphism was associated with the risk of hepatocellular carcinoma [132, 133], esophageal cancer [134], and lung cancer [134]. The discrepancy that occurred may be because our current study was based on a much larger sample size, allowing the more precise detection of the association. In the subgroup analysis by cancer type, we found a significant association between MnSOD Val16Ala polymorphism and elevated prostate cancer risk, and no significant association between this polymorphism and breast cancer, which were consistent with previous meta-analyses [131, 134-137].

In spite of genetic importance, environment factors such as dietary pattern and exercise play important roles in the development of cancer. Recently, several studies have investigated the association between dietary intake of antioxidantrich foods and *MnSOD* Val16Ala polymorphism in breast cancer [60], prostate cancer [89], and cervical cancer [14]. Despite the lack of consistent data, the results suggested that the *MnSOD* Val16Ala polymorphism and cancer risk could be modulated by dietary factors. Besides, a previous study had shown that moderate exercise training is beneficial for prostate cancer [138], and evidence showed that exercise training may result in positive MnSOD modulation through redox sensitive pathways [139].

The current meta-analysis has several advantages. First, we included the latest publications in the present study and also the publications written in Chinese. Second, the quality of included studies was assessed by the quality score criteria. Third, the FPRP test was performed to make the results more trustworthy and robust. Although the study is the largest and most comprehensive one regarding the association between MnSOD Val16Ala polymorphism and all cancer types, there were still some limitations that should be addressed. First, the number of cases in each study was small (<1000) in all but seven studies [11, 38, 69, 78, 82, 86, 119], which may have an effect on the investigation of the real association. Second, the results were based on unadjusted estimates, which might make the results imprecise. Third, only publications in English and Chinese were included, which could lead to selection bias. Fourth, in the subgroup analysis by cancer type, less than three studies were included for some types of cancer, which may affect the detection of the real association. Finally, the potential genegene, and gene-environment interactions were not investigated due to the lack of original information.

Despite of these limitations, this meta-analysis indicated there was a significant association between *MnSOD* Val16Ala polymorphism and cancer risk, which should be further validated by single large studies.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Key Research Programs for Institutions of Higher Education in Henan Province (Grant no. 18A180012).

References

- J. Ferlay, I. Soerjomataram, R. Dikshit et al., "Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012," *International Journal of Cancer*, vol. 136, no. 5, pp. E359–E386, 2015.
- [2] D. Ziech, R. Franco, A. Pappa, and M. I. Panayiotidis, "Reactive oxygen species (ROS)---induced genetic and epigenetic alterations in human carcinogenesis," *Mutation Research/ Fundamental and Molecular Mechanisms of Mutagenesis*, vol. 711, no. 1-2, pp. 167–173, 2011.
- [3] G. Waris and H. Ahsan, "Reactive oxygen species: role in the development of cancer and various chronic conditions," *Journal of Carcinogenesis*, vol. 5, no. 1, p. 14, 2006.
- [4] J. M. Matés and F. M. Sánchez-Jiménez, "Role of reactive oxygen species in apoptosis: implications for cancer therapy," *The International Journal of Biochemistry & Cell Biology*, vol. 32, no. 2, pp. 157–170, 2000.
- [5] J. S. Rosenblum, N. B. Gilula, and R. A. Lerner, "On signal sequence polymorphisms and diseases of distribution," *Proceedings of the National Academy of Sciences*, vol. 93, no. 9, pp. 4471–4473, 1996.
- [6] A. Sutton, H. Khoury, C. Prip-Buus, C. Cepanec, D. Pessayre, and F. Degoul, "The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria," *Pharmacogenetics*, vol. 13, no. 3, pp. 145–157, 2003.
- [7] L. I. Wang, D. P. Miller, Y. Sai et al., "Manganese superoxide dismutase alanine-to-valine polymorphism at codon 16 and lung cancer risk," *Journal of the National Cancer Institute*, vol. 93, no. 23, pp. 1818–1821, 2001.
- [8] R. J. Hung, P. Boffetta, P. Brennan et al., "Genetic polymorphisms of MPO, COMT, MnSOD, NQO1, interactions with environmental exposures and bladder cancer risk," *Carcino*genesis, vol. 25, no. 6, pp. 973–978, 2004.
- [9] M. Bergman, M. Ahnstrom, P. Palmeback Wegman, and S. Wingren, "Polymorphism in the manganese superoxide dismutase (MnSOD) gene and risk of breast cancer in young women," *Journal of Cancer Research and Clinical Oncology*, vol. 131, no. 7, pp. 439–444, 2005.
- [10] K. Mitrunen, P. Sillanpää, V. Kataja et al., "Association between manganese superoxide dismutase (MnSOD) gene polymorphism and breast cancer risk," *Carcinogenesis*, vol. 22, no. 5, pp. 827–829, 2001.
- [11] Q. Cai, X. O. Shu, W. Wen et al., "Genetic polymorphism in the manganese superoxide dismutase gene, antioxidant intake, and breast cancer risk: results from the Shanghai Breast Cancer Study," *Breast Cancer Research*, vol. 6, no. 6, pp. R647–R655, 2004.
- [12] S. J. Murphy, A. E. Hughes, C. C. Patterson et al., "A population-based association study of SNPs of GSTP1, MnSOD, GPX2 and Barrett's esophagus and esophageal adenocarcinoma," Carcinogenesis, vol. 28, no. 6, pp. 1323–1328, 2007.
- [13] J. Stoehlmacher, S. A. Ingles, D. J. Park, W. Zhang, and H. J. Lenz, "The -9Ala/-9Val polymorphism in the mitochondrial

targeting sequence of the manganese superoxide dismutase gene (MnSOD) is associated with age among Hispanics with colorectal carcinoma," *Oncology Reports*, vol. 9, no. 2, pp. 235–238, 2002.

- [14] S. Y. Tong, J. M. Lee, E. S. Song et al., "Functional polymorphism in manganese superoxide dismutase and antioxidant status: their interactions on the risk of cervical intraepithelial neoplasia and cervical cancer," *Gynecologic Oncology*, vol. 115, no. 2, pp. 272–276, 2009.
- [15] M. Cengiz, A. Ozaydin, A. C. Ozkilic, and G. Dedekarginoglu, "The investigation of GSTT1, GSTM1 and SOD polymorphism in bladder cancer patients," *International Urology and Nephrology*, vol. 39, no. 4, pp. 1043–1048, 2007.
- [16] K. M. Egan, P. A. Thompson, L. Titus-Ernstoff, J. H. Moore, and C. B. Ambrosone, "*MnSOD* polymorphism and breast cancer in a population-based case-control study," *Cancer Letters*, vol. 199, no. 1, pp. 27–33, 2003.
- [17] Q. Lan, J. L. Mumford, M. Shen et al., "Oxidative damage-related genes AKR1C3 and OGG1 modulate risks for lung cancer due to exposure to PAH-rich coal combustion emissions," *Carcinogenesis*, vol. 25, no. 11, pp. 2177–2181, 2004.
- [18] J. C. Ho, J. C. Mak, S. P. Ho et al., "Manganese superoxide dismutase and catalase genetic polymorphisms, activity levels, and lung cancer risk in Chinese in Hong Kong," *Journal of Thoracic Oncology*, vol. 1, no. 7, pp. 648–653, 2006.
- [19] J. He, X. Y. Liao, J. H. Zhu et al., "Association of *MTHFR* C677T and A1298C polymorphisms with non-Hodgkin lymphoma susceptibility: evidence from a meta-analysis," *Scientific Reports*, vol. 4, no. 1, p. 6159, 2014.
- [20] N. Mantel and W. Haenszel, "Statistical aspects of the analysis of data from retrospective studies of disease," *Journal of the National Cancer Institute*, vol. 22, no. 4, pp. 719–748, 1959.
- [21] R. Dersimonian and N. Laird, "Meta-analysis in clinical trials," *Controlled Clinical Trials*, vol. 7, no. 3, pp. 177–188, 1986.
- [22] C. B. Begg and M. Mazumdar, "Operating characteristics of a rank correlation test for publication bias," *Biometrics*, vol. 50, no. 4, pp. 1088–1101, 1994.
- [23] M. Egger, G. D. Smith, M. Schneider, and C. Minder, "Bias in meta-analysis detected by a simple, graphical test," *British Medical Journal*, vol. 315, no. 7109, pp. 629–634, 1997.
- [24] S. Wacholder, S. Chanock, M. Garcia-Closas, L. el ghormli, and N. Rothman, "Assessing the probability that a positive report is false: an approach for molecular epidemiology studies," *Journal of the National Cancer Institute*, vol. 96, no. 6, pp. 434–442, 2004.
- [25] J. He, M. Y. Wang, L. X. Qiu et al., "Genetic variations of mTORC1 genes and risk of gastric cancer in an eastern chinese population," *Molecular Carcinogenesis*, vol. 52, no. S1, pp. 70–79, 2013.
- [26] J. Ahn, C. B. Ambrosone, P. A. Kanetsky et al., "Polymorphisms in genes related to oxidative stress (CAT, MnSOD, MPO, and eNOS) and acute toxicities from radiation therapy following lumpectomy for breast cancer," Clinical Cancer Research, vol. 12, no. 23, pp. 7063–7070, 2006.
- [27] T. Iguchi, C. Y. Wang, N. B. Delongchamps et al., "Association of prostate cancer and manganese superoxide dismutase AA genotype influenced by presence of occult cancer in control group," *Urology*, vol. 72, no. 2, pp. 238–241, 2008.

- [28] Y. J. Cheng, Y. D. Wang, Q. Liu, J. Zhang, and X. Wan, "Influence of MnSOD gene polymorphism on the curative effect of radiotherapy in esophageal squamous cell carcinoma," *Carcinogenesis, Teratogenesis & Mutagenesis*, vol. 23, pp. 9–12, 2011.
- [29] P. J. Dluzniewski, M. H. Wang, S. L. Zheng et al., "Variation in *IL10* and other genes involved in the immune response and in oxidation and prostate cancer recurrence," *Cancer Epidemiology Biomarkers & Prevention*, vol. 21, no. 10, pp. 1774–1782, 2012.
- [30] J. E. Megías, P. Montesinos, M. J. Herrero et al., "Prognostic impact of anthracycline metabolism gene polymorphisms in newly diagnosed acute myeloid leukemia adults," *Blood*, vol. 124, no. 21, p. 2237, 2014.
- [31] T. Iguchi, C. Y. Wang, N. B. Delongchamps et al., "Association of *MnSOD* AA genotype with the progression of prostate cancer," *PLoS One*, vol. 10, no. 7, article e0131325, 2015.
- [32] L. I. Wang, D. Neuberg, and D. C. Christiani, "Asbestos exposure, manganese superoxide dismutase (MnSOD) genotype, and lung cancer risk," *Journal of Occupational and Environmental Medicine*, vol. 46, no. 6, pp. 556–564, 2004.
- [33] G. Liu, W. Zhou, S. Park et al., "The SOD2 Val/Val genotype enhances the risk of nonsmall cell lung carcinoma by p53 and XRCC1 polymorphisms," Cancer, vol. 101, no. 12, pp. 2802– 2808, 2004.
- [34] G. Liu, W. Zhou, L. I. Wang et al., "MPO and SOD2 polymorphisms, gender, and the risk of non-small cell lung carcinoma," *Cancer Letters*, vol. 214, no. 1, pp. 69–79, 2004.
- [35] J. Y. Choi, M. L. Neuhouser, M. J. Barnett et al., "Iron intake, oxidative stress-related genes (*MnSOD* and *MPO*) and prostate cancer risk in CARET cohort," *Carcinogenesis*, vol. 29, no. 5, pp. 964–970, 2008.
- [36] L. E. McCullough, M. D. Gammon, R. J. Cleveland et al., "Abstract 2601: polymorphisms in oxidative stress genes, physical activity and breast cancer risk," *Cancer Research*, vol. 72, no. 8, Supplement, p. 2601, 2012.
- [37] J. Y. Choi, M. L. Neuhouser, M. Barnett et al., "Polymorphisms in oxidative stress-related genes are not associated with prostate cancer risk in heavy smokers," *Cancer Epidemiology Biomarkers & Prevention*, vol. 16, no. 6, pp. 1115–1120, 2007.
- [38] M. M. Gaudet, M. D. Gammon, R. M. Santella et al., "MnSOD Val-9Ala genotype, pro- and anti-oxidant environmental modifiers, and breast cancer among women on Long Island, New York," *Cancer Causes & Control*, vol. 16, no. 10, pp. 1225–1234, 2005.
- [39] D. G. Cox, R. M. Tamimi, and D. J. Hunter, "Gene × gene interaction between *MnSOD* and *GPX-1* and breast cancer risk: a nested case-control study," *BMC Cancer*, vol. 6, no. 1, p. 217, 2006.
- [40] M. Manuguerra, G. Matullo, F. Veglia et al., "Multi-factor dimensionality reduction applied to a large prospective investigation on gene-gene and gene-environment interactions," *Carcinogenesis*, vol. 28, no. 2, pp. 414–422, 2007.
- [41] P. Vineis, F. Veglia, S. Garte et al., "Genetic susceptibility according to three metabolic pathways in cancers of the lung and bladder and in myeloid leukemias in nonsmokers," *Annals of Oncology*, vol. 18, no. 7, pp. 1230–1242, 2007.
- [42] B. Yu, C. L. Yan, and K. H. Liao, "Study on the relationship between skin cancer and the genetic polymorphism in the signal sequence of the manganese superoxide dismutase

(MnSOD)," Journal of Clinical Dermatology, vol. 30, pp. 227–229, 2001.

- [43] N. A. Kocabaş, S. Şardaş, S. Cholerton, A. K. Daly, A. H. Elhan, and A. E. Karakaya, "Genetic polymorphism of manganese superoxide dismutase (*MnSOD*) and breast cancer susceptibility," *Cell Biochemistry & Function*, vol. 23, no. 1, pp. 73–76, 2005.
- [44] R. C. G. Martin, Q. Lan, K. Hughes et al., "No apparent association between genetic polymorphisms (-102 C>T) and (-9 T>C) in the human manganese superoxide dismutase gene and gastric cancer," *Journal of Surgical Research*, vol. 124, no. 1, pp. 92–97, 2005.
- [45] M. Taufer, A. Peres, V. M. de Andrade et al., "Is the Val16Ala manganese superoxide dismutase polymorphism associated with the aging process?," *The Journals of Gerontology Series A: Biological Sciences and Medical Sciences*, vol. 60, no. 4, pp. 432–438, 2005.
- [46] S. N. Silva, M. N. Cabral, G. Bezerra de Castro et al., "Breast cancer risk and polymorphisms in genes involved in metabolism of estrogens (CYP17, HSD17β1, COMT and MnSOD): possible protective role of MnSOD gene polymorphism Val/ Ala and Ala/Ala in women that never breast fed," *Oncology Reports*, vol. 16, no. 4, pp. 781–788, 2006.
- [47] C. G. Bica, I. B. M. da Cruz, L. L. de Moura da Silva, N. V. Toscani, C. G. Zettler, and M. S. Graudenz, "Association of manganese superoxide dismutase gene polymorphism (Ala-9Val) and breast cancer in males and females," *Jornal Brasileiro de Patologia e Medicina Laboratorial*, vol. 43, no. 3, pp. 219–225, 2007.
- [48] C. G. Bica, L. L. de Moura da Silva, N. V. Toscani et al., "MnSOD gene polymorphism association with steroiddependent cancer," *Pathology & Oncology Research*, vol. 15, no. 1, pp. 19–24, 2009.
- [49] Y. J. Cheng, Y. D. Wang, Q. Liu et al., "Association of single nucleotide polymorphism of MnSOD gene with carcinogenesis and development of esophageal squamous cell carcinoma," *Chinese Journal of Oncology*, vol. 31, no. 11, pp. 831–835, 2009.
- [50] L. Sun, I. R. Konig, and N. Homann, "Manganese superoxide dismutase (MnSOD) polymorphism, alcohol, cigarette smoking and risk of oesophageal cancer," *Alcohol and Alcoholism*, vol. 44, no. 4, pp. 353–357, 2009.
- [51] J. Zejnilovic, N. Akev, H. Yilmaz, and T. Isbir, "Association between manganese superoxide dismutase polymorphism and risk of lung cancer," *Cancer Genetics and Cytogenetics*, vol. 189, no. 1, pp. 1–4, 2009.
- [52] C. G. Bica, L. L. de Moura da Silva, N. V. Toscani et al., "Polymorphism (ALA16VAL) correlates with regional lymph node status in breast cancer," *Cancer Genetics and Cytogenetics*, vol. 196, no. 2, pp. 153–158, 2010.
- [53] G. Aynali, M. Doğan, R. Sütcü et al., "Polymorphic variants of MnSOD Val16Ala, CAT-262 C < T and GPx1 Pro198Leu genotypes and the risk of laryngeal cancer in a smoking population," *The Journal of Laryngology & Otology*, vol. 127, no. 10, pp. 997–1000, 2013.
- [54] C. Bănescu, A. P. Trifa, S. Voidăzan et al., "CAT, GPX1, MnSOD, GSTM1, GSTT1, and GSTP1 genetic polymorphisms in chronic myeloid leukemia: a case-control study," Oxidative Medicine and Cellular Longevity, vol. 2014, Article ID 875861, 6 pages, 2014.
- [55] D. Goerlitz, S. Amr, C. Dash et al., "Genetic polymorphisms in *NQO1* and *SOD2*: interactions with smoking, schistosoma

infection, and bladder cancer risk in Egypt," *Urologic Oncology: Seminars and Original Investigations*, vol. 32, no. 1, pp. 47.e15–47.e20, 2014.

- [56] E. Reszka, Z. Jablonowski, E. Wieczorek et al., "Polymorphisms of NRF2 and NRF2 target genes in urinary bladder cancer patients," *Journal of Cancer Research and Clinical Oncology*, vol. 140, no. 10, pp. 1723–1731, 2014.
- [57] M. T. Moradi, K. Yari, Z. Rahimi, E. Kazemi, and M. Shahbazi, "Manganese superoxide dismutase (MnSOD Val-9Ala) gene polymorphism and susceptibility to gastric cancer," *Asian Pacific Journal of Cancer Prevention*, vol. 16, no. 2, pp. 485–488, 2015.
- [58] C. Zhang, L. Guo, Y. Qin, and L. Qin, "Interaction between single nucleotide polymorphism of manganese superoxide dismutase gene C1183T, resistin gene promoter-420C/G and cigarette smoking in esophageal squamous cell carcinoma," *Shanghai Medical Journal*, vol. 38, no. 11, pp. 828– 834, 2015.
- [59] C. Bănescu, M. Iancu, A. P. Trifa et al., "From six gene polymorphisms of the antioxidant system, only GPX Pro198Leu and GSTP1 Ile105Val modulate the risk of acute myeloid leukemia," Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 2536705, 10 pages, 2016.
- [60] C. B. Ambrosone, J. L. Freudenheim, P. A. Thompson et al., "Manganese superoxide dismutase (*MnSOD*) genetic polymorphisms, dietary antioxidants, and risk of breast cancer," *Cancer Research*, vol. 59, no. 3, pp. 602–606, 1999.
- [61] H. Green, G. Ross, J. Peacock, R. Owen, J. Yarnold, and R. Houlston, "Variation in the manganese superoxide dismutase gene (SOD2) is not a major cause of radiotherapy complications in breast cancer patients," *Radiotherapy and Oncology*, vol. 63, no. 2, pp. 213–216, 2002.
- [62] A. Hirvonen, J. Tuimala, T. Ollikainen, K. Linnainmaa, and V. Kinnula, "Manganese superoxide dismutase genotypes and asbestos-associated pulmonary disorders," *Cancer Letters*, vol. 178, no. 1, pp. 71–74, 2002.
- [63] A. J. Levine, E. Elkhouly, A. T. Diep, E. R. Lee, H. Frankl, and R. W. Haile, "The MnSOD A16V mitochondrial targeting sequence polymorphism is not associated with increased risk of distal colorectal adenomas: data from a sigmoidoscopybased case control study," *Cancer Epidemiology Biomarkers* & Prevention, vol. 11, pp. 1140-1141, 2002.
- [64] D. Li, P. F. Firozi, W. Zhang et al., "DNA adducts, genetic polymorphisms, and K-ras mutation in human pancreatic cancer," *Mutation Research/Genetic Toxicology and Environmental Mutagenesis*, vol. 513, no. 1-2, pp. 37–48, 2002.
- [65] P. Lin, Y. M. Hsueh, J. L. Ko, Y. F. Liang, K. J. Tsai, and C. Y. Chen, "Analysis of NQO1, GSTP1, and MnSOD genetic polymorphisms on lung cancer risk in Taiwan," *Lung Cancer*, vol. 40, no. 2, pp. 123–129, 2003.
- [66] K. Woodson, J. A. Tangrea, T. A. Lehman et al., "Manganese superoxide dismutase (MnSOD) polymorphism, αtocopherol supplementation and prostate cancer risk in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (Finland)," *Cancer Causes & Control*, vol. 14, no. 6, pp. 513–518, 2003.
- [67] Y. Ichimura, T. Habuchi, N. Tsuchiya et al., "Increased risk of bladder cancer associated with a glutathione peroxidase 1 codon 198 variant," *The Journal of Urology*, vol. 172, no. 2, pp. 728–732, 2004.
- [68] J. A. Knight, U. V. Onay, S. Wells et al., "Genetic variants of *GPX1* and *SOD2* and breast cancer risk at the Ontario site

of the Breast Cancer Family Registry," *Cancer Epidemiology Biomarkers & Prevention*, vol. 13, no. 1, pp. 146–149, 2004.

- [69] R. C. Millikan, J. Player, A. R. de Cotret et al., "Manganese superoxide dismutase Ala-9Val polymorphism and risk of breast cancer in a population-based case-control study of African Americans and whites," *Breast Cancer Research*, vol. 6, no. 4, pp. R264–R274, 2004.
- [70] S. Olson, M. Carlson, H. Ostrer et al., "Genetic variants in SOD2, MPO, and NQO1, and risk of ovarian cancer," *Gynecologic Oncology*, vol. 93, no. 3, pp. 615–620, 2004.
- [71] R. M. Tamimi, S. E. Hankinson, D. Spiegelman, G. A. Colditz, and D. J. Hunter, "Manganese superoxide dismutase polymorphism, plasma antioxidants, cigarette smoking, and risk of breast cancer," *Cancer Epidemiology Biomarkers & Prevention*, vol. 13, pp. 989–996, 2004.
- [72] T. C. Cheng, S. T. Chen, C. S. Huang et al., "Breast cancer risk associated with genotype polymorphism of the catechol estrogen-metabolizing genes: a multigenic study on cancer susceptibility," *International Journal of Cancer*, vol. 113, no. 3, pp. 345–353, 2005.
- [73] S. Landi, F. Gemignani, V. Moreno et al., "A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of colorectal cancer," *Pharmacogenetics and Genomics*, vol. 15, no. 8, pp. 535–546, 2005.
- [74] H. Li, P. W. Kantoff, E. Giovannucci et al., "Manganese superoxide dismutase polymorphism, prediagnostic antioxidant status, and risk of clinical significant prostate cancer," *Cancer Research*, vol. 65, no. 6, pp. 2498–2504, 2005.
- [75] P. D. Terry, D. M. Umbach, and J. A. Taylor, "No association between SOD2 or NQO1 genotypes and risk of bladder cancer," *Cancer Epidemiology Biomarkers & Prevention*, vol. 14, no. 3, pp. 753-754, 2005.
- [76] T. J. Lightfoot, C. F. Skibola, A. G. Smith et al., "Polymorphisms in the oxidative stress genes, superoxide dismutase, glutathione peroxidase and catalase and risk of non-Hodgkin's lymphoma," *Haematologica*, vol. 91, no. 9, pp. 1222–1227, 2006.
- [77] T. E. Slanger, J. Chang-Claude, and S. Wang-Gohrke, "Manganese superoxide dismutase Ala-9Val polymorphism, environmental modifiers, and risk of breast cancer in a German population," *Cancer Causes & Control*, vol. 17, no. 8, pp. 1025–1031, 2006.
- [78] S. S. Wang, S. Davis, J. R. Cerhan et al., "Polymorphisms in oxidative stress genes and risk for non-Hodgkin lymphoma," *Carcinogenesis*, vol. 27, no. 9, pp. 1828–1834, 2006.
- [79] H. Ergen, F. Narter, Ö. Timirci, and T. Isbir, "Effects of manganase superoxide dismutase Ala-9Val polymorphism on prostate cancer: a case-control study," *Anticancer Research*, vol. 27, no. 2, pp. 1227–1230, 2007.
- [80] J. Han, G. A. Colditz, and D. J. Hunter, "Manganese superoxide dismutase polymorphism and risk of skin cancer (United States)," *Cancer Causes & Control*, vol. 18, no. 1, pp. 79–89, 2007.
- [81] S. E. Johnatty, C. M. Nagle, A. B. Spurdle et al., "The MnSOD Val9Ala polymorphism, dietary antioxidant intake, risk and survival in ovarian cancer (Australia)," *Gynecologic Oncology*, vol. 107, no. 3, pp. 388–391, 2007.
- [82] D. Kang, K. M. Lee, S. K. Park et al., "Functional variant of manganese superoxide dismutase (SOD2 V16A) polymorphism is associated with prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer study," *Cancer*

Epidemiology Biomarkers & Prevention, vol. 16, no. 8, pp. 1581–1586, 2007.

- [83] S. Landi, F. Gemignani, M. Neri et al., "Polymorphisms of glutathione-S-transferase M1 and manganese superoxide dismutase are associated with the risk of malignant pleural mesothelioma," *International Journal of Cancer*, vol. 120, no. 12, pp. 2739–2743, 2007.
- [84] E. di Martino, L. J. Hardie, C. P. Wild et al., "The NAD(P)H:quinone oxidoreductase I C609T polymorphism modifies the risk of Barrett esophagus and esophageal adenocarcinoma," *Genetics in Medicine*, vol. 9, no. 6, pp. 341–347, 2007.
- [85] Z. Arsova-Sarafinovska, N. Matevska, D. Petrovski et al., "Manganese superoxide dismutase (*MnSOD*) genetic polymorphism is associated with risk of early-onset prostate cancer," *Cell Biochemistry & Function*, vol. 26, no. 7, pp. 771–777, 2008.
- [86] M. L. Cooper, H. O. Adami, H. Grönberg, F. Wiklund, F. R. Green, and M. P. Rayman, "Interaction between single nucleotide polymorphisms in selenoprotein P and mitochondrial superoxide dismutase determines prostate cancer risk," *Cancer Research*, vol. 68, no. 24, pp. 10171–10177, 2008.
- [87] A. B. Dalan, A. Ergen, H. Yılmaz, A. Karateke, and T. İsbir, "Manganese superoxide dismutase gene polymorphism, MnSOD plasma levels and risk of epithelial ovarian cancer," *Journal of Obstetrics and Gynaecology Research*, vol. 34, no. 5, pp. 878–884, 2008.
- [88] C. Justenhoven, U. Hamann, F. Schubert et al., "Breast cancer: a candidate gene approach across the estrogen metabolic pathway," *Breast Cancer Research and Treatment*, vol. 108, no. 1, pp. 137–149, 2008.
- [89] B. Mikhak, D. J. Hunter, D. Spiegelman et al., "Manganese superoxide dismutase (MnSOD) gene polymorphism, interactions with carotenoid levels and prostate cancer risk," *Carcinogenesis*, vol. 29, no. 12, pp. 2335–2340, 2008.
- [90] P. Rajaraman, A. Hutchinson, N. Rothman et al., "Oxidative response gene polymorphisms and risk of adult brain tumors," *Neuro-Oncology*, vol. 10, no. 5, pp. 709–715, 2008.
- [91] P. Wheatley-Price, K. Asomaning, A. Reid et al., "Myeloperoxidase and superoxide dismutase polymorphisms are associated with an increased risk of developing pancreatic adenocarcinoma," *Cancer*, vol. 112, no. 5, pp. 1037–1042, 2008.
- [92] S. Zienolddiny, D. Campa, H. Lind et al., "A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of non-small cell lung cancer in smokers," *Carcinogenesis*, vol. 29, no. 6, pp. 1164–1169, 2008.
- [93] N. Eras-Erdogan, E. Akbas, H. Senli, S. Kul, and T. Colak, "Relationship between polymorphism in the manganese superoxide dismutase gene and breast cancer," *Mutation Research/Genetic Toxicology and Environmental Mutagene*sis, vol. 680, no. 1-2, pp. 7–11, 2009.
- [94] S. Funke, M. Hoffmeister, H. Brenner, and J. Chang-Claude, "Effect modification by smoking on the association between genetic polymorphisms in oxidative stress genes and colorectal cancer risk," *Cancer Epidemiology Biomarkers & Prevention*, vol. 18, no. 8, pp. 2336–2338, 2009.
- [95] T. Iguchi, S. Sugita, C. Y. Wang, N. B. Newman, T. Nakatani, and G. P. Haas, "*MnSOD* genotype and prostate cancer risk as a function of *NAT* genotype and smoking status," *In Vivo*, vol. 23, no. 1, pp. 7–12, 2009.

- [96] N. A. Kostrykina, E. A. Pechkovskiy, U. A. Boyarskikh et al., "Associations of polymorphic variant of *MnSOD* gene with breast cancer in residents of the Altai region," *Bulletin of Experimental Biology and Medicine*, vol. 147, no. 1, pp. 84– 87, 2009.
- [97] N. A. Ermolenko, U. A. Boyarskikh, A. G. Sushko et al., "Effect of point substitutions in the *MnSOD*, *GPX1*, and *GSTP1* genes on the risk of familial and sporadic breast cancers in residents of Altai Krai," *Russian Journal of Genetics*, vol. 46, no. 12, pp. 1486–1491, 2010.
- [98] S. Ezzikouri, A. E. El Feydi, R. Afifi et al., "Polymorphisms in antioxidant defence genes and susceptibility to hepatocellular carcinoma in a Moroccan population," *Free Radical Research*, vol. 44, no. 2, pp. 208–216, 2010.
- [99] A. Ibrahim, S. A. El-Azim, and M. A. El-Azim, "Association of MnSOD Ala16Val genotype and activity with hepatocellular carcinoma risk in HCV-infected Egyptian patients," *Arab Journal of Gastroenterology*, vol. 11, no. 1, pp. 19–23, 2010.
- [100] M. K. Kim, S. H. Ahn, B. H. Son, and M. K. Sung, "Plasma antioxidant concentration, not superoxide dismutase polymorphism, is associated with breast cancer risk in Korean women," *Nutrition Research*, vol. 30, no. 10, pp. 705–713, 2010.
- [101] C. Méplan, D. J. Hughes, B. Pardini et al., "Genetic variants in selenoprotein genes increase risk of colorectal cancer," *Carcinogenesis*, vol. 31, no. 6, pp. 1074–1079, 2010.
- [102] H. Tang, X. Dong, R. S. Day, M. M. Hassan, and D. Li, "Antioxidant genes, diabetes and dietary antioxidants in association with risk of pancreatic cancer," *Carcinogenesis*, vol. 31, no. 4, pp. 607–613, 2010.
- [103] S. H. Wu, K. W. Lee, C. H. Chen et al., "Epistasis of oxidative stress-related enzyme genes on modulating the risks in oral cavity cancer," *Clinica Chimica Acta*, vol. 411, no. 21-22, pp. 1705–1710, 2010.
- [104] J. F. Yi, Y. M. Li, T. Liu et al., "Mn-SOD and CuZn-SOD polymorphisms and interactions with risk factors in gastric cancer," *World Journal of Gastroenterology*, vol. 16, no. 37, pp. 4738–4746, 2010.
- [105] J. Z. Cerne, M. Pohar-Perme, S. Novakovic, S. Frkovic-Grazio, V. Stegel, and K. Gersak, "Combined effect of *CYP1B1*, *COMT*, *GSTP1*, and *MnSOD* genotypes and risk of postmenopausal breast cancer," *Journal of Gynecologic Oncology*, vol. 22, no. 2, pp. 110–119, 2011.
- [106] T. Y. D. Cheng, M. J. Barnett, A. R. Kristal et al., "Genetic variation in myeloperoxidase modifies the association of serum α-tocopherol with aggressive prostate cancer among current smokers," *The Journal of Nutrition*, vol. 141, no. 9, pp. 1731–1737, 2011.
- [107] B. Mohelnikova-Duchonova, L. Marsakova, D. Vrana et al., "Superoxide dismutase and nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase polymorphisms and pancreatic cancer risk," *Pancreas*, vol. 40, no. 1, pp. 72– 78, 2011.
- [108] J. Zhang, X. Zhang, I. B. Dhakal, M. D. Gross, F. F. Kadlubar, and K. E. Anderson, "Sequence variants in antioxidant defense and DNA repair genes, dietary antioxidants, and pancreatic cancer risk," *International Journal of Molecular Epidemiology and Genetics*, vol. 2, no. 3, pp. 236–244, 2011.
- [109] M. Atoum, M. Abdel-Fattah, N. Nimer, S. Abdel-Rahman, and S. A. Abdeldayem, "Association of alanine-valine manganese superoxide dismutase gene polymorphism and microheterogeneity manganese superoxide dismutase activity in

breast cancer and benign breast tissue," *Journal of Breast Cancer*, vol. 15, no. 2, pp. 157–161, 2012.

- [110] H. Farawela, M. Khorshied, I. Shaheen et al., "The association between hepatitis C virus infection, genetic polymorphisms of oxidative stress genes and B-cell non-Hodgkin's lymphoma risk in Egypt," *Infection, Genetics and Evolution*, vol. 12, no. 6, pp. 1189–1194, 2012.
- [111] M. V. Hemelrijck, S. Rohrmann, A. Steinbrecher, R. Kaaks, B. Teucher, and J. Linseisen, "Heterocyclic aromatic amine [HCA] intake and prostate cancer risk: effect modification by genetic variants," *Nutrition and Cancer*, vol. 64, no. 5, pp. 704–713, 2012.
- [112] C. Kucukgergin, O. Sanli, A. S. Amasyali, T. Tefik, and S. Seckin, "Genetic variants of MnSOD and GPX1 and susceptibility to bladder cancer in a Turkish population," *Medical Oncology*, vol. 29, no. 3, pp. 1928–1934, 2012.
- [113] C. Kucukgergin, O. Sanli, T. Tefik, M. Aydin, F. Ozcan, and S. Seckin, "Increased risk of advanced prostate cancer associated with MnSOD Ala-9-Val gene polymorphism," *Molecular Biology Reports*, vol. 39, no. 1, pp. 193–198, 2012.
- [114] S. M. Tsai, S. H. Wu, M. F. Hou, Y. L. Chen, H. Ma, and L. Y. Tsai, "Oxidative stress-related enzyme gene polymorphisms and susceptibility to breast cancer in non-smoking, non-alcohol-consuming Taiwanese women: a case-control study," *Annals of Clinical Biochemistry: International Journal* of Laboratory Medicine, vol. 49, no. 2, pp. 152–158, 2012.
- [115] E. Ye, Y. Zhang, H. Wang, Y. Shi, and L. Chen, "Association of MnSOD single nucleotide polymorphism with the occurrence and clinical outcome of nasopharyngeal carcinoma in Cantonese," *Journal of Southern Medical University*, vol. 32, no. 6, pp. 798–801, 2012.
- [116] P. Zhao, L. Zhao, P. Zou et al., "Genetic oxidative stress variants and glioma risk in a Chinese population: a hospital-based case-control study," *BMC Cancer*, vol. 12, no. 1, p. 617, 2012.
- [117] S. Amr, R. Dawson, D.'. A. Saleh et al., "Pesticides, gene polymorphisms, and bladder cancer among Egyptian agricultural workers," *Archives of Environmental & Occupational Health*, vol. 70, no. 1, pp. 19–26, 2013.
- [118] W. Ashour, M. Fathy, M. Hamed, O. Youssif, and N. Fawzy, "Association between environmental tobacco smoke exposure and lung cancer susceptibility: modification by antioxidant enzymes genetic polymorphisms," *Egyptian Journal of Chest Diseases and Tuberculosis*, vol. 62, no. 4, pp. 781–788, 2013.
- [119] W. Attatippaholkun and K. Wikainapakul, "Predominant genotypes and alleles of two functional polymorphisms in the manganese superoxide dismutase gene are not associated with Thai cervical or breast cancer," *Asian Pacific Journal of Cancer Prevention*, vol. 14, no. 6, pp. 3955–3961, 2013.
- [120] A. Eken, O. Erdem, Z. Arsova-Sarafinovska et al., "Association between gene polymorphism of manganese superoxide dismutase and prostate cancer risk," *Journal of Biochemical and Molecular Toxicology*, vol. 27, no. 3, pp. 213–218, 2013.
- [121] L. Han, S. W. Lee, J. H. Yoon et al., "Association of SOD1 and SOD2 single nucleotide polymorphisms with susceptibility to gastric cancer in a Korean population," APMIS, vol. 121, no. 3, pp. 246–256, 2013.
- [122] C. Méplan, L. O. Dragsted, G. Ravn-Haren, A. Tjønneland, U. Vogel, and J. Hesketh, "Association between polymorphisms in glutathione peroxidase and selenoprotein P genes,

glutathione peroxidase activity, HRT use and breast cancer risk," *PLoS One*, vol. 8, no. 9, article e73316, 2013.

- [123] D. Atilgan, B. S. Parlaktas, N. Uluocak et al., "The relationship between ALA16VAL single gene polymorphism and renal cell carcinoma," *Advances in Urology*, vol. 2014, Article ID 932481, 5 pages, 2014.
- [124] Y. Liu, L. Zha, B. Li, L. Zhang, T. Yu, and L. Li, "Correlation between superoxide dismutase 1 and 2 polymorphisms and susceptibility to oral squamous cell carcinoma," *Experimental* and Therapeutic Medicine, vol. 7, no. 1, pp. 171–178, 2014.
- [125] N. A. Oskina, N. A. Ermolenko, U. A. Boyarskih et al., "Associations between SNPs within antioxidant genes and the risk of prostate cancer in the Siberian region of Russia," *Pathology & Oncology Research*, vol. 20, no. 3, pp. 635–640, 2014.
- [126] A. L. Brown, P. J. Lupo, M. F. Okcu, C. C. Lau, S. Rednam, and M. E. Scheurer, "SOD2 genetic variant associated with treatment-related ototoxicity in cisplatin-treated pediatric medulloblastoma," *Cancer Medicine*, vol. 4, no. 11, pp. 1679–1686, 2015.
- [127] E. Jablonska, J. Gromadzinska, B. Peplonska et al., "Lipid peroxidation and glutathione peroxidase activity relationship in breast cancer depends on functional polymorphism of *GPX1*," *BMC Cancer*, vol. 15, no. 1, p. 657, 2015.
- [128] B. S. Parlaktas, D. Atilgan, Y. Gencten et al., "A pilot study of the association of manganese superoxide dismutase and glutathione peroxidase 1 single gene polymorphisms with prostate cancer and serum prostate specific antigen levels," *Archives of Medical Science*, vol. 11, no. 5, pp. 994–1000, 2015.
- [129] S. Su, K. He, J. Li et al., "Genetic polymorphisms in antioxidant enzyme genes and susceptibility to hepatocellular carcinoma in Chinese population: a case-control study," *Tumour Biology*, vol. 36, no. 6, pp. 4627–4632, 2015.
- [130] S. W. Kang, "Superoxide dismutase 2 gene and cancer risk: evidence from an updated meta-analysis," *International Journal of Clinical and Experimental Medicine*, vol. 8, no. 9, pp. 14647–14655, 2015.
- [131] A. Bag and N. Bag, "Target sequence polymorphism of human manganese superoxide dismutase gene and its association with cancer risk: a review," *Cancer Epidemiology Biomarkers & Prevention*, vol. 17, no. 12, pp. 3298–3305, 2008.
- [132] Z. Meng and H. Shi, "Association between genetic polymorphisms of antioxidant enzyme genes and susceptibility to hepatocellular carcinoma: a meta-analysis," *International Journal of Clinical and Experimental Medicine*, vol. 9, pp. 15645–15655, 2016.
- [133] F. Jin, W. J. Xiong, J. C. Jing, Z. Feng, L. S. Qu, and X. Z. Shen, "Evaluation of the association studies of single nucleotide polymorphisms and hepatocellular carcinoma: a systematic review," *Journal of Cancer Research and Clinical Oncology*, vol. 137, no. 7, pp. 1095–1104, 2011.
- [134] G. G. Sun, Y. D. Wang, Y. F. Lu, and W. N. Hu, "Different association of manganese superoxide dismutase gene polymorphisms with risk of prostate, esophageal, and lung cancers: evidence from a meta-analysis of 20,025 subjects," *Asian Pacific Journal of Cancer Prevention*, vol. 14, no. 3, pp. 1937–1943, 2013.
- [135] C. Mao, L. X. Qiu, P. Zhan et al., "MnSOD Val¹⁶Ala polymorphism and prostate cancer susceptibility: a meta-analysis involving 8,962 Subjects," Journal of Cancer Research and Clinical Oncology, vol. 136, no. 7, pp. 975–979, 2010.

- [136] G. Liu, G. Sun, Y. Wang, D. Wang, W. Hu, and J. Zhang, "Association between manganese superoxide dismutase gene polymorphism and breast cancer risk: a meta-analysis of 17,842 subjects," *Molecular Medicine Reports*, vol. 6, no. 4, pp. 797–804, 2012.
- [137] L. X. Qiu, L. Yao, C. Mao et al., "Lack of association between MnSOD Val16Ala polymorphism and breast cancer risk: a meta-analysis involving 58,448 subjects," *Breast Cancer Research and Treatment*, vol. 123, no. 2, pp. 543–547, 2010.
- [138] S. Young-McCaughan, "Potential for prostate cancer prevention through physical activity," *World Journal of Urology*, vol. 30, no. 2, pp. 167–179, 2012.
- [139] G. Bresciani, I. B. M. Cruz, J. A. de Paz, M. J. Cuevas, and J. González-Gallego, "The MnSOD Ala16Val SNP: relevance to human diseases and interaction with environmental factors," *Free Radical Research*, vol. 47, no. 10, pp. 781–792, 2013.

The Scientific World Journal

Research and Practice

Disease Markers

Research and Treatment

Research International

Oxidative Medicine and Cellular Longevity