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Abstract

Objective—Somatostatin receptors (SSTRs), products of gene superfamily SSTR1-5, are 

commonly expressed in neuroendocrine tumors (NETs). Somatostatin analogs (SSAs) bind to 

SSTRs and are used as therapeutic agents in patients with advanced NETs. We hypothesized that 

tumor SSTR expression status would be associated with clinical outcomes in NET.

Methods—Expression of the five SSTRs was evaluated by immunohistochemistry, using tissue 

microarrays comprising 173 primary NETs, 24 matched metastases, and 22 metastatic NETs from 

195 patients. Cox proportional hazards regression analysis was used to assess the association of 

SSTR expression status (high vs. low) with clinical outcomes, adjusting for potential confounders.

Results—High expression of SSTR2 was associated with longer overall survival in the cohort 

overall (multivariate hazard ratio 0.42, 95% confidence interval 0.21–0.84; P = 0.013). In a 

subgroup of patients with metastatic small intestine NET treated with SSAs and evaluable for 

progression, SSTR2 expression was associated with both longer progression-free and overall 

survival. No associations with progression-free or overall survival were observed with expression 

of other SSTRs.

Conclusions—Our study demonstrated that expression of SSTR2, but not other SSTRs, is 

associated with longer overall survival. In patients treated with SSAs, expression of SSTR2 is 

associated with longer progression-free survival.

Keywords

somatostatin receptor; somatostatin analog; prognosis; progression-free survival and overall 

survival; carcinoid; neuroendocrine tumor

INTRODUCTION

Somatostatin (SST) was first described in 1968 as an inhibitor of hormone secretion.1 The 

effects of somatostatin are mediated through interaction with five somatostatin receptor 

family gene products (SSTR1 to SSTR5).2,3 Somatostatin signaling pathways inhibit both 

Qian et al. Page 3

Pancreas. Author manuscript; available in PMC 2017 November 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



cell secretion and cell growth through a variety of signaling pathways, including modulation 

of mitogen-activated protein kinase (MAPK) signaling and induction of apoptosis.2–4 SSTRs 

are commonly expressed on neuroendocrine tumors (NETs), and somatostatin analogs 

(SSAs) have long been used to control secretory symptoms in such patients.3–8 Recent 

studies have demonstrated that SSAs also inhibit tumor growth, both in vitro and in the 

clinical setting.3,9–20

Octreotide and lanreotide, two synthetic SSAs, bind primarily to SSTR2 and SSTR5.5,9,10,21 

Several prior studies have examined associations between expression of somatostatin 

receptors and prognosis, though most studies have focused primarily on SSTR2.6–8,22 In a 

study evaluating 79 pancreatic NETs for expression of SSTR2, high expression of SSTR2 

was associated with a favorable prognosis.22 Other studies including a range of 

gastroenteropancreatic NET have similarly found that SSTR2 expression is associated with 

favorable outcomes.7,8

To optimize and expand the clinical applications of SSAs, newer multi-targeted somatostatin 

analogs have been developed. These analogs bind to several SSTR subtypes, and include 

SOM230 (pasireotide), with high affinity for SSTR2, SSTR3 and SSTR5 (but lower affinity 

for SSTR1), and KE108, with high affinity for all five SSTRs.2,3 Because of the 

development of new SSAs, as well as radiopeptides that target multiple SSTR subtypes,2,3 

assessment of SSTR subtypes has become increasingly relevant. Comprehensive studies 

evaluating expression patterns of SSTR1 to SSTR5 in neuroendocrine tumors are limited; 

and the SSTR subtypes most critical in mediating a cytostatic effect remains unclear.2,3

To help address these questions, we used immunohistochemical techniques to 

comprehensively evaluate the expression of SSTR1 to SSTR5 in a large cohort of NETs, 

comprising small intestinal NET, pancreatic NET, and other NET subtypes. We further 

evaluated co-expression of SSTR subtypes. Finally, we evaluated whether SSTR subtype 

expression was associated with survival, both in the cohort overall and in a highly 

characterized cohort of patients with small intestinal NET that had been treated with SSAs 

and followed for both progression-free survival and overall survival.

MATERIALS AND METHODS

Study Population

Tissue blocks were obtained from patients with a confirmed diagnosis of NET, from 1991 to 

2009, recruited to an IRB-approved study at Dana-Farber Cancer Institute. Additional IRB 

approval was obtained for the molecular analysis of tumor blocks and correlation with 

clinical variables performed in this study. Demographic and clinical information was 

obtained from medical records; the American Joint Committee on Cancer TNM 

classification system was used for staging. If not available in the medical record, survival 

data was obtained from the Social Security Death Index.

Tissue Microarray (TMA) Construction

Tissue microarrays were constructed from formalin-fixed, paraffin-embedded tissue 

comprising 216 resection specimens and 4 liver wedge biopsies using a tissue-array 
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instrument (Beecher Instruments, Silver Spring, MD). Three representative 0.6-mm-

diameter tissue cores were taken from each specimen. Two TMA blocks were designed 

containing 145 and 75 samples, respectively, from a total of 195 patients. Multiple 4-μm 

sections were cut and transferred to adhesive-coated slides for immunohistochemical 

staining.

Immunohistochemistry

Anti-SSTR1, anti-SSTR2, anti-SSTR3, and anti-SSTR5 antibodies were obtained from 

Epitomics Inc, Burlingame. (Cambridge, MA, USA). Anti-SSTR4 was obtained from Cell 

Signaling Technology (Millipore, MA, USA). Anti-MKI67 mouse monoclonal antibody was 

obtained from DakoCytomatin (Glostrup, Denmark).

Immunohistochemistry was based on the labeled streptavidin-biotin method, and was 

performed on TMA sections for SSTRs and full sections for MKI67. After deparaffinization 

and antigen retrieval using an autoclave oven technique, sections were incubated overnight 

at 4°C with antibodies : anti-SSTR1 (1:200, rabbit monoclonal, clone UMB-7, ab137083), 

anti- SSTR2 (1:400, rabbit monoclonal, clone UMB-1, ab134152), anti-SSTR3 (1:100, 

rabbit monoclonal, clone UMB-5, ab137026), anti-SSTR4 (1:400, rabbit polyclonal, 

AB9487)23,24, anti-SSTR5 (1:100, rabbit monoclonal, clone UMB-4, ab109495) and anti-

MKI67 antibody (1:100, mouse monoclonal, clone JC70A). Antigen–antibody complexes 

were detected using the cobalt-3, 3′-diaminobenzidine (Co-DAB) reaction. The antibodies 

used for SSTRs 1, 2, 3, and 5 in this study have been previously used and validated.25,26 In 

our studies, normal pancreatic islet cells, which are known to be positive for SSTRs 1-5, 

were used as positive controls.27,28 We used omission of the primary antibody as one 

method of negative control for SSTRs 1-5. Additionally SSTR2 peptide (ab171899, Abcam, 

Cambridge, Mass.) and SSTR5 peptide (ab178801 Abcam) were available to absorb the 

respective antibodies and were used as negative controls. Antibodies for SSTR4 have been 

less well studied. To further validate anti-SSTR4, we used a CHO-SSTR4 cell line that 

overexpressed SSTR4 as a positive control, using previously described techniques,29,30 and 

used normal CHO cells as negative controls.

The MKI67 (Ki-67) labeling index was determined by counting the number of positive cells 

in a total of up to 2000 tumor cells observed within areas of highest immunostaining by 

high-power fields (× 400). Membranous expression of SSTR2, and the assessed-combined 

expression of cytoplasmic and membrane staining of the receptor proteins SSTR1, SSTR3, 

SSTR4, and SSTR5 were scored by applying a semi-quantitative immunohistochemistry 

scoring (IHCS) system, as previously described.26,31–33 In brief, staining intensity was 

scored as 0 (no immunostaining), 1 (weak), 2 (moderate) or 3 (strong). The percentage of 

immunoreactive cells was scored as 0 (none), 1 (< 10%), 2 (10–50%), 3 (51–80%) or 4 (> 

80%). Multiplication of the staining intensity score and the percent immunoreactivity score 

resulted in an IHCS score, which ranged from 0 to 12 for each tissue core. The overall IHCS 

score for each case was calculated by averaging the IHCS scores in three tissue cores. The 

median IHCS score for each marker, based on analysis of all cases in the cohort, was used as 

the cutoff to define high vs. low expression. High IHCS scores were as follows: ≥ 4 for 

SSTR1, ≥ 6 for SSTR2, ≥ 4 for SSTR3, ≥ 6 for SSTR4, and ≥ 8 for SSTR5. To 
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independently confirm the scores, a random selection of 70 cases was examined for each 

marker by a second blinded observer (YM). Concordance scores (all p < 0.0001) were: κ 
=0.74 (SSTR1), κ = 0.73 (SSTR2), κ = 0.72 (SSTR3), κ = 0.84 (SSTR4), and κ = 0.78 

(SSTR5).

Statistical analysis

Overall survival was calculated from the date of initial diagnosis to the date of death. Overall 

survival from time of metastatic disease was calculated from the date of diagnosis distant 

metastasis until death. Progression-free survival (PFS) was defined as period from when the 

patient initiated treatment to radiologic or clinical progression of disease, next treatment, last 

follow-up or death. SAS software (version 9.2; SAS Institute Inc, Cary, North Carolina) was 

used. All P values were two sided at alpha = 0.05. We categorized protein expression level as 

low vs. high. The Chi-Square test was used to assess associations between the categorized 

expression levels, the tumor subgroups, and MKI67 (Ki-67) labeling index status. The 

Spearman rank order correlation was used for the pairwise correlation analyses of expression 

between proteins. To compare mean age, an ANOVA, assuming equal variances, was 

performed. The Kaplan-Meier method was used to compute survival probabilities and 

comparisons were assessed with the log-rank test. Cox proportional hazards regression 

models were used to compute mortality hazard ratios (HR) and 95% confidence intervals 

(CI). Multivariate Cox proportional hazards regression models included sex, age at 

diagnosis, TNM stage, and MKI67 labeling index. A backward elimination with threshold of 

P = 0.05 was used to select variables in the final models.

RESULTS

Clinicopathologic characteristics

We evaluated primary neuroendocrine tumor (NET) samples from 173 patients, together 

with 24 matched metastases. Patient demographics are described in Table 1, and included 

112 patients with small intestinal NETs, 19 patients with pancreatic NETs, and 42 patients 

with other NETs derived from other sites. Approximately half (50%) of the cohort had 

localized disease (Stages I–III); the remainder had advanced metastatic disease (Table 1). All 

tumors were well differentiated; 55% had MKI67 (Ki-67) labeling index ≤ 2; and 45% had a 

MKI67 (Ki-67) labeling index > 2%.

Expression of SSTRs in NET according to tumor subtype

Expression (any level) of SSTR1, SSTR2, SSTR3, SSTR4 and SSTR5 was detected in 65%, 

76%, 90%, 86%, and 93% of 173 primary NETs, respectively (Figure 1A–C). The frequency 

of expression according to tumor primary location is shown in Figure 2A. We further 

categorized expression of SSTRs as either high or low based on the scoring system 

described in the methods section. High expression of SSTR1, SSTR2, SSTR3, SSTR4 and 

SSTR5 was detected in 47%, 51%, 23%, 36%, and 43% NETs, respectively. Expression 

levels of SSTRs varied according to both receptor subtype and tumor subtype. High 

expression of both SSTR1 and SSTR2 were frequently observed in pancreatic NET (Figure 

2B). High SSTR2 expression was observed in >50% of both pancreatic NET and small 

intestine NET (Figure 2B), whereas high expression of SSTR3, SSTR4, and SSTR5 was 
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uncommon and observed in less than half of NETs, regardless of tumor subtype. We found 

no major differences in patterns of SSTR expression between primary tumors and 

metastases, nor did we find differences in SSTR expression patterns based on clinical 

characteristics such as sex, age and TNM stage.

Association between expression of SSTRs and MKI67 (Ki-67) labeling index

All NETs in our cohort were classified as well differentiated [MKI67 (Ki-67) labeling index 

<20%]. To examine whether SSTR expression was associated with differences in MKI67 

(Ki-67) index within this group, we categorized tumors according to whether the 

proliferative index was less than or greater than 2%. We found that high expression of 

SSTR2 and SSTR3 was more common in tumors with low MKI67 (Ki-67) labeling index 

[59% and 29% in 95 MKI67 (Ki-67) labeling index ≤ 2% vs. 42% and 15% in 78 MKI67 

(Ki-67) labeling index > 2%] (Chi-square: P = 0.029 and P = 0.028; respectively).

Correlations between expression of SSTR subtypes

We further identified correlations between expressions of SSTR subtypes. Co-expression of 

SSTR1, SSTR2, SSTR3, and SSTR5 was common; whereas expression of SSTR4 appeared 

to be independent of expression of the other receptor subtypes (Table 2).

Association between expression of SSTRs and somatostatin receptor scintigraphy

Eighty-one patients in our study had tumors that were evaluated with somatostatin 

scintigraphy (Octreoscan). Of these patients, 74 (91%) had tumors that demonstrated uptake, 

and 7 (9%) had no evidence of uptake. We did not observe any clear correlations between 

high vs. low expression of SSTRs 1-5 and uptake on somatostatin scintigraphy, nor did we 

observe any correlations when we classified expression of SSTRs as either present or absent.

Association between expression of SSTRs and clinical outcomes

To evaluate associations between SSTR expression and clinical outcomes, we first assessed 

whether expression of SSTRs was associated with overall survival in our overall cohort. 

Among 173 cases with primary tumors available for evaluation, there were 40 deaths with 

median follow up time of 5.5 years. High expression of SSTR2 was associated with 

improved overall survival [multivariate HR, 0.42; 95% confidence interval (CI), 0.21 to 

0.84; P = 0.013] (Table 3). We additionally assessed associations between SSTR expression 

and overall survival from time of metastatic disease. Among 103 patients who had metastatic 

disease either at diagnosis or during follow up, there were 38 deaths with median follow up 

time of 5.6 years. In a multivariate analysis, expression of SSTR2 was also associated with 

favorable overall survival from time of metastatic disease (HR, 0.46; 95% CI 0.23 to 0.92; P 

= 0.027). Expression of other four SSTRs was not significantly associated with overall 

survival or overall survival from time of metastatic disease.

We evaluated associations between SSTR2 expression and survival in each subgroup of 

patients, those with small intestinal NETs, pancreatic NETs and other NETs, respectively, 

adjusting for age, gender, tumor stage and MKI67 (Ki-67) labeling index. We found that 

SSTR2 was most strongly associated with survival in patients with small intestine NETs 

[multivariate HR, 0.45; 95% CI, 0.20 to 0.97; P = 0.042; Log-rank P = 0.02] (Table 4, Figure 
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3A); although a trend toward improved survival in patients with pancreatic NETs was also 

evident (Table 4). No clear association between survival and SSTR2 expression was 

observed in patients with other NET subtypes (Table 4).

SSTR Expression, PFS, and OS in small intestine NET treated with SSAs

The reason for the association between SSTR2 expression and outcome in our patient 

population is uncertain; however, it is known that currently available SSAs target primarily 

SSTR2. We explored whether expression of SSTR2 or other SSTRs was associated with PFS 

in NET patients treated with SSA in a highly characterized cohort of patients who had been 

treated with single-agent SSAs and were evaluable for progression-free survival. To 

minimize patient heterogeneity, we focused on the group of 54 patients with small intestinal 

NETs who had received treatment with SSAs. We found that high expression of SSTR2 was 

associated with longer PFS (multivariate HR 0.40, P = 0.012; Log-rank P = 0.023; median 

PFS: 2.6 years for SSTR2-high v 1.3 years for SSTR2-low) (Table 5, Figure 3B). We 

confirmed that that high expression of SSTR2 was significantly associated with longer 

overall survival in this cohort as well (Table 5). There were no significant associations 

between PFS, overall survival, or expression of the other four SSTRs (Table 5).

DISCUSSION

Studies comprehensively investigating expression of all five SSTRs and correlating 

expression with clinical outcomes in NET are limited.34,35 We found that expression, at 

some level, of all receptor subtypes is relatively common in NETs.3,36,37 We further 

evaluated expression of SSTRs using an IHCS system that differentiates between high and 

low expression.26,31–33 SSTR2 was highly expressed in 51% of cases, followed by SSTR1 

(47%) and SSTR5 (43%); while the remaining SSTR4 (36%) and SSTR3 (23%) generally 

had low expression levels. High expression of SSTR1 and SSTR2 was more frequently 

observed in pancreatic NETs and small intestinal NETs than in other NETs. Our 

observations are consistent with previous, more limited studies demonstrating that 

expression of receptor subtypes tends to be similar between small intestine and pancreatic 

NET.34,35,38

We further observed evidence of co-expression of SSTR1, SSTR2, SSTR3 and SSTR5. Our 

observation of a high concordance between expression SSTR2, SSTR3 and SSTR5 is 

consistent with prior studies.39,40 Interestingly, we found no correlation between expression 

of SSTR4 and other SSTRs, suggesting that SSTR4 may play different biologic role. 

Previous studies have reported that high expression of SSTR2 is correlated with lower 

MKI67 (Ki-67) labeling index in NETs, though many of these studies included both low and 

high grade tumors,22,33,38,41–44 Our study was limited to well differentiated NETs. We 

found that, even within this group, expression of SSTR2 is inversely associated with MKI67 

(Ki-67) labeling index. We did not observe any clear correlation between expression of 

SSTRs 1-5 and uptake on somatostatin scintigraphy (Octreoscan). While this observation is 

perhaps surprising, particularly with regard to SSTR2 which is known to strongly bind 

octreotide, the low number (9%) of negative scans in our patient cohort may have precluded 

our ability to detect this association.
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Among the SSTR1 to SSTR5, we found that only SSTR2 expression was independently 

associated with overall survival. Several studies have evaluated the potential prognostic 

value of SSTR expression profiles in NET.6–8,22 However, most have included a relatively 

small number of samples or examined a limited number of SSTR subtypes. Recently, one 

comparatively comprehensive study evaluated expression of SSTR1 to SSTR5, in 31 midgut 

and 55 pancreatic NETs. This study similarly found that expression of SSTR2, but not other 

SSTRs is associated with a favorable prognosis.8 Our study confirms a key role for SSTR2 

as a prognostic marker, and suggests that SSTR2 may play a significant role in mediating 

tumor growth.

First-generation SSAs (such as octreotide and lanreotide) exhibit high affinity for SSTR2 

and lower affinity to SSTR3 and SSTR5.21 Few studies have examined the potential 

predictive role of SSTR expression in SSA treatment response. Toboada et al. reported that 

elevated tumor expression of SSTR1, SSTR2, and dopamine receptor 2 may help improve 

responsiveness to SSA in somatotropinomas.45 In other study of 21 advanced well-

differentiated pancreatic neuroendocrine carcinoma treated with SSA, there was no 

significant association between expression of SSTR2 or SSTR5, and patient survival.46

Our study is unique in its ability to correlate SSTR expression with clinical outcomes in a 

large, highly characterized population of patients treated with somatostatin analogs, and our 

observation that high expression of SSTR2 was associated with both improved PFS and 

overall survival in patients treated with SSAs targeting primarily SSTR2, suggests that such 

an association may exist. Limitations of our study include our use of paraffin-embedded 

tissue and consequent reliance on immunohistochemistry rather than other, potentially more 

specific, techniques to assess expression of SSTRs 1-5. Additionally, due to the prevalence 

of SSA treatment in patients with NETs, we were unable to assess either PFS or overall 

survival in a non-treatment control group, limiting our ability to make firm conclusions 

regarding the association of SSTR expressions and treatment response to SSAs.

In conclusion, SSTR2 is commonly expressed in a range of neuroendocrine tumors. SSTRs 

co-expressed with SSTR2 include SSTR3, and SSTR5. Among the five SSTR subtypes, only 

expression of SSTR2 was associated with PFS in patients treated with SSAs, and with 

overall survival in patients overall. Further assessment of the mechanisms by which SSTR2 

modulates tumor growth is warranted.
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Figure 1. Expression of SSTRs in small intestine NET

A. Representative expression of SSTR2 and SSTR5 in small intestinal NET. Strong staining 

(a and f), weak staining (b and g), negative staining in (c and h) are shown, respectively. 

Positive staining in normal pancreatic islet cells in (d and i), and negative staining after 

using blocking peptides are shown in (e and j), respectively.

B. Representative expression of SSTR1 and SSTR3 in small intestinal NET. Strong staining 

is shown in a and d, respectively. Positive staining in normal pancreatic islet cells is shown 

in b and e, with negative staining after omitting the primary antibodies shown in c and f.

C. Representative expression of SSTR4 in small intestinal NET. Strong staining is shown in 

(a). Positive staining is additionally shown in an SSTR4-expressing CHO cell line (b), and 

in normal pancreatic islet cells (c). Negative staining is shown after omitting the primary 

antibody (d).
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Figure 2. 

A. Frequency of expression (at any level) of SSTR1-5 is shown according to tumor primary 

sites (small intestinal NETs, pancreatic NETs and other NETs). B. Frequency of high 

expression of SSTR1-5 is shown according to tumor primary site.
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Figure 3. 

Progression-free survival (A) and overall survival (B) according to expression of SSTR2 in 

patients with small intestine NET receiving treatment with an SSA.
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TABLE 1

Characteristics of the Patient Population

No. (%)
173

Sex

 Female 88 (51)

 Male 85 (49)

Mean age (yrs) ± SD 54.7 ± 13

TNM stage

 I 15 (9)

 II 32 (19)

 III 46 (27)

 IV 78 (46)

Tumor primary site

Small intestine 112 (65)

Pancreas 19 (11)

Other a 42 (24)

MKI67 Libeling Index

 ≤ 2% 95 (55)

 > 2% 78 (45)

a
Others: appendix, colon, lung, ovary, rectum, stomach, thyroid, and unknown.

Pancreas. Author manuscript; available in PMC 2017 November 01.
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TABLE 2

Co-Expression of SSTRs (N=173)

SSTR1 SSTR2 SSTR3 SSTR4

SSTR2
R: 0.28

P = 0.0002

SSTR3
R: 0.34 R: 0.55

P < 0.0001 P < 0.0001

SSTR4
R: 0.094 R: 0.14 R: 0.21

P = 0.22 P = 0.058 P = 0.0057

SSTR5
R: 0.33 R: 0.39 R: 0.46 R: 0.10

P < 0.0001 P < 0.0001 P < 0.0001 P = 0.17

Pancreas. Author manuscript; available in PMC 2017 November 01.
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TABLE 3

Expression of SSTRs and Overall Survival in 173 Primary NETs

SSTRs expression No./events Multivariate HR a(95% CI) P

SSTR1
−/Low 91 / 19 1 (reference)

0.67
High 82 / 21 1.15 (0.61 to 2.17)

SSTR2
−/Low 84 / 20 1 (reference)

0.013
High 89 / 20 0.42 (0.21 to 0.84)

SSTR3
−/Low 133 / 33 1 (reference)

0.31
High 40 / 7 0.64 (0.27 to 1.51)

SSTR4
−/Low 111 / 25 1 (reference)

0.56
High 62 / 15 1.22 (0.64 to 2.32)

SSTR5
−/Low 98 / 22 1 (reference)

0.87
High 75 / 18 0.95 (0.51 to 1.78)

Abbreviation: CI, confidence interval; HR, hazard ratio.

a
Hazard Ratios adjusted for tumor primary site, age at diagnosis (continuous), sex, tumor stage and MKI67 LI (continuous).

Pancreas. Author manuscript; available in PMC 2017 November 01.
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TABLE 4

SSTR2 Expression and Overall Survival in Patients with NETs according to Primary Site

Primary sites SSTR2 expression No./events Multivariate HR a(95% CI) P

Small intestinal −/Low 46 / 14 1 (reference)
0.027

NETs (N=112) High 66 / 16 0.44 (0.21 to 0.91)

Pancreatic NETs (N=19) −/Low 6 / 2 1 (reference)
0.69

High 13 / 3 0.69 (0.11 to 4.32)

Other NETs (N=42) −/Low 32 / 4 1 (reference)
0.9

High 10 / 1 1.18 (0.08–16.7)

Abbreviation: CI, confidence interval; HR, hazard ratio.

a
Hazard Ratios adjusted for age at diagnosis (continuous), sex, tumor stage and MKI67 LI (continuous).
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