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IMPORTANCE Deep learning convolutional neural networks (CNNs) have shown a

performance at the level of dermatologists in the diagnosis of melanoma. Accordingly, further

exploring the potential limitations of CNN technology before broadly applying it is of special

interest.

OBJECTIVE To investigate the association between gentian violet surgical skin markings in

dermoscopic images and the diagnostic performance of a CNN approved for use as a medical

device in the Europeanmarket.

DESIGN AND SETTING A cross-sectional analysis was conducted fromAugust 1, 2018,

to November 30, 2018, using a CNN architecture trained with more than 120000

dermoscopic images of skin neoplasms and corresponding diagnoses. The association of

gentian violet skin markings in dermoscopic images with the performance of the CNNwas

investigated in 3 image sets of 130melanocytic lesions each (107 benign nevi, 23

melanomas).

EXPOSURES The same lesions were sequentially imaged with and without the application

of a gentian violet surgical skin marker and then evaluated by the CNN for their probability

of being amelanoma. In addition, the markings were removed bymanually cropping the

dermoscopic images to focus on themelanocytic lesion.

MAIN OUTCOMES ANDMEASURES Sensitivity, specificity, and area under the curve (AUC)

of the receiver operating characteristic (ROC) curve for the CNN’s diagnostic classification

in unmarked, marked, and cropped images.

RESULTS In all, 130melanocytic lesions (107 benign nevi and 23melanomas) were imaged.

In unmarked lesions, the CNN achieved a sensitivity of 95.7% (95% CI, 79%-99.2%) and a

specificity of 84.1% (95% CI, 76.0%-89.8%). The ROC AUCwas 0.969. In marked lesions, an

increase in melanoma probability scores was observed that resulted in a sensitivity of 100%

(95% CI, 85.7%-100%) and a significantly reduced specificity of 45.8% (95% CI,

36.7%-55.2%, P < .001). The ROC AUCwas 0.922. Cropping images led to the highest

sensitivity of 100% (95% CI, 85.7%-100%), specificity of 97.2% (95% CI, 92.1%-99.0%),

and ROC AUC of 0.993. Heat maps created by vanilla gradient descent backpropagation

indicated that the bluemarkings were associated with the increased false-positive rate.

CONCLUSIONS AND RELEVANCE This study’s findings suggest that skinmarkings significantly

interfered with the CNN’s correct diagnosis of nevi by increasing themelanoma probability

scores and consequently the false-positive rate. A predominance of skin markings in

melanoma training images may have induced the CNN’s association of markings with a

melanoma diagnosis. Accordingly, these findings suggest that skin markings should be

avoided in dermoscopic images intended for analysis by a CNN.

TRIAL REGISTRATION German Clinical Trial Register (DRKS) Identifier: DRKS00013570
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I
ncidenceratesofmalignantmelanomaareincreasinginmany

countries of theworld.1Despitemuchprogress beingmade

regardingpublicawareness,basic research,andclinical care

for treatingmalignantmelanoma,mortality ratesare still high.2

Therefore, there is a continuous need for improvements in the

methods for theearlydetectionofmalignantmelanoma.When

diagnosed early,melanomamaybe cured by surgical excision,

whereastheprognosisofmoreadvancedcasesis limited. Inclini-

cal routine, a high sensitivity for the detection ofmelanoma is

ofutmost importance;nevertheless, thenumberof excisedbe-

nignnevi shouldbe limited.3Dermoscopywasshowntosignifi-

cantly improve the diagnostic sensitivity and specificity com-

paredwith thatobtainedbynakedeyeexamination.4-6Various

dermoscopic featureshavebeenassociatedwith thediagnoses

ofmelanoma,7andanumberofsimplifiedalgorithmshavebeen

defined and validated to support dermatologists in deciding

which lesions to excise.8-10

As in other fields of medicine, automated and computer-

ized deep learning systems are emerging for the diagnosis of

skin cancer.11 Deep learning is defined as a form of machine

learning inwhich largedata sets (eg, dermoscopic images) and

corresponding classification labels (eg, diagnoses of nevi or

melanomas) are fed into a neural network for training pur-

poses. Within the network, which is composed of many se-

quential layers, input images are assessed on a pixel level for

thepresenceof“goodrepresentations” (here,dermoscopic fea-

tures) of the input classification.With the increasing number

of training images, thenetwork assembles andweights image

features that are useful for differentiating nevi frommelano-

mas. Therefore, deep learning could be described as a hierar-

chical feature learning.Deep learningconvolutionalneuralnet-

works (CNNs) forma subcategory of deep learning algorithms

that have shown strong performance in image classification.

To date, deep learning CNNs have demonstrated a diagnostic

performanceat the levelofexperiencedphysicians in theevalu-

ation of medical images from the fields of dermatology,12-14

radiology,15 ophthalmology,16 and pathology.17

Whileasinglephysicianwitha lowdiagnosticperformance

in the detection ofmelanomamay cause serious harm, the ef-

fectofabroadlyappliedneuralnetworkwith inherent“diagnos-

tic gaps”orunknownpitfallswouldbeevenmoredetrimental.

Indermoscopicimages,artifactssuchasairbubbles,hair,orover-

layed rulers have previously been reported to present some of

the difficulties in automated image evaluation.11 Because sus-

piciouslesionsareoftenroutinelymarkedwithgentianvioletsur-

gical skinmarkers,our study investigatedwhetherhighlighting

lesionswith a skinmarkermay alter the evaluation scores of a

computerized deep learning CNN formelanoma recognition.

Methods

Thisnoninterventional studywasapprovedby theethics com-

mittee of themedical faculty of the University of Heidelberg,

Heidelberg, Germany, and performed in accordance with the

Declaration of Helsinki18 principles. Informed consent of pa-

tients was waived by the ethics committee because all im-

ages were acquired as part of clinical routine procedures and

only deidentified data were used. The study was conducted

fromAugust 1, 2018, toNovember 30, 2018.ApretrainedCNN

architecture (Inception-v4; Google)19 was used that was ad-

ditionally trained with more than 120000 dermoscopic im-

ages and corresponding labels (Moleanalyzer-Pro; FotoFinder

Systems GmbH). Details on the CNN architecture and train-

ing have been described earlier.12

For thepresent study, 3 image setswere created,witheach

including 130 melanocytic lesions (107 benign nevi and 23

melanomas). Dermoscopic images of nevi with and without

skin markings were prospectively and sequentially acquired

in clinical routine with a mobile digital dermatoscope at-

tached to a smartphone (Handyscope; FotoFinder Systems

GmbH). The diagnoses of benign nevi were not based on

histopathologic findings but rather on the absence of any

melanoma-associated clinical and dermoscopic features in

combination with an uneventful follow-up over the past 2

years. Skinmarkings includedvariabledots, streaks, or circles

made with a gentian violet skin marker (Devon Surgical Skin

Marker;CardinalHealthorpfmmedical skinmarker;pfmmedi-

cal ag) to the skin adjacent to the nevi. All nevi were first im-

aged as unmarked lesions, after which they were marked in

vivo and imaged again as marked lesions (Figure 1). Mela-

noma imageswithoutmarkingswere randomly selected from

the image library of the Department of Dermatology, Univer-

sity of Heidelberg. Allmelanoma caseswere validated by his-

topathologic analysiswith additional informationon localiza-

tion, Breslow thickness, and patient data being available. To

allowforcorrespondinganalysesofmelanomas, theskinmark-

ingsweredigitallysuperimposedonthemelanomaimageswith

theuseofphotographmanipulation software (PhotoshopCS6,

version 13.0.1 x32;Adobe Inc). For a statistical comparison, 20

nevi fromthe test setwereused todemonstrate that electroni-

cally superimposed markings provide comparable results to

invivomarkings. In20unmarkedbenignnevi, theCNN’smean

melanomaprobabilityscorewas0.15 (95%CI,0.01-0.29).Mela-

noma probability scores can range from 0 to 1; higher scores

indicate a higher probability of the measured lesion being a

melanoma. Invivomarkings increased themean score to0.52

(95%CI,0.31-0.74),whereaselectronicallysuperimposedmark-

ings led to a comparable mean score of 0.59 (95% CI, 0.39-

0.79). TheMann-Whitney test did not reveal a significant dif-

ference between in vivo and electronically marked nevi

Key Points

Question Are surgical skin markings in dermoscopic images

associated with the diagnostic performance of a trained and

validated deep learning convolutional neural network?

Findings In this cross-sectional study of 130 skin lesions, skin

markings by standard surgical ink markers were associated with

a significant reduction in the specificity of a convolutional neural

network by increasing themelanoma probability scores,

consequently increasing the false-positive rate of benign nevi by

approximately 40%.

Meaning This study suggests that the use of surgical skin markers

should be avoided in dermoscopic images intended for analysis

by a convolutional neural network.
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(P = .78). Moreover, in each of the 20 nevi, the CNN classifi-

cation of in vivo and electronically marked lesions showed

consistent results. Formoredetails, refer to the eMethods and

eFigures 1 and 2 in the Supplement. All dermoscopic images

were then cropped to reduce the background and to focus

solely on themelanocytic lesions. The aforementioned steps

resulted in 3 complete sets of the same 130 dermoscopic im-

ages, namely, set 1 with unmarked lesions, set 2 withmarked

lesions, and set 3 with cropped images.

HeatMaps

Deep learningCNNsdonotprovideany informationaboutwhy

a certain classification decisionwas reached. There aremany

different interpretability approaches that may help to more

clearly visualize the information “learned” by the model.20

Heatmapswerecreated to identify themost importantpix-

els for the CNN’s diagnosis to better explain how much each

pixel of the image contributes to thediagnostic classification.

These heat maps were derived by vanilla (meaning “basic”)

gradient descent backpropagation.21

Statistical Analysis

Theprimaryoutcomemeasuresweresensitivity, specificity,and

areaunder the curve (AUC) of receiver operating characteristic

(ROC) curves for the diagnostic classification of lesions by the

CNN.TheCNNaccordedamalignancyprobabilityscorebetween

0and1,andavalidatedapriori cutoffgreater than0.5 for thedi-

chotomousclassificationofmalignantvsbenign lesionswasap-

plied.Descriptivestatisticalmeasures, suchasfrequency,mean,

range, andSD,wereused.Mann-Whitney testswereperformed

toassess thedifferences in themelanomaprobability scoresbe-

tween the 3 sets of images. A 2-sampleMcNemar test was per-

formedtocompare thesensitivitiesandspecificitiesattainedby

theCNN.22Resultswereconsideredstatisticallysignificantatthe

P < .05 level (2-sided).All analyseswere carriedoutusingSPSS

version 24 (IBM).

Results

Characteristics of Imaged Lesions

In all, 130melanocytic lesions (107benignnevi and23melano-

mas)wereimaged.Ofthe23imagedmelanomas,18(78.3%)were

localizedonthetrunkandextremities,3(13.0%)onthefacialskin,

1 (4.3%) on the scalp, and 1 (4.3%) on the palmoplantar skin

(eTable in theSupplement).Nineteenmelanomas (82.6%)were

invasive (mean thickness, 1 mm [range, 0.2-5.6 mm]) and 4

(17.4%) insitu.Theanalysisofmelanomasubtypes revealed the

followingsubtypes: 15 superficial spreadingmelanomas, 2 len-

tigomalignamelanomas,1nodularmelanoma,and1acrolentigi-

nousmelanoma.Of the4 in situmelanomas, 1was classifiedas

lentigomaligna (eTable in theSupplement).The123 imagedbe-

nignnevi showednoclinicalordermoscopic criteria associated

with thepresence ofmelanomaandhad anuneventful follow-

up for at least 2 years (Figure 1).

CNN’sMelanoma Probability Scores

Boxplots inFigure2showthedistributionoftheCNNmelanoma

probability scores for the 3different sets of images (unmarked,

marked,andcropped).Skinmarkingssignificantly increasedthe

mean melanoma probability scores of the classifier in benign

nevi from0.16 (95%CI, 0.10-0.22) to 0.54 (95%CI, 0.46-0.62)

Figure 1. Convolutional Neural Network (CNN) Classification andMelanoma Probability Scores

for Dermoscopic Images of Unmarked, Marked, and Cropped Benign Nevus andMelanoma

Unmarked benign nevusA Marked benign nevusB Cropped benign nevus imageC

Unmarked melanomaD Marked melanomaE Cropped melanoma imageF A gentian violet surgical skin marker

was used to highlight themarked

examples. A, CNN classification:

benign; score, 0.001. B, CNN

classification: malignant; score,

0.981. C, CNN classification: benign;

score, 0.001. D, CNN classification:

malignant; score, 0.999. E, CNN

classification: malignant; score,

0.999. F, CNN classification:

malignant; score, 0.999.
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(P < .001).Figure3andFigure4 showheatmapsof representa-

tiveunmarkedandmarkednevi inwhichthemostimportantpix-

els for theCNN’sdiagnosticclassificationswere identifiedbyva-

nillagradientdescentbackpropagation.21 Inneviimagesthatwere

cropped to reduce the background, themeanmelanomaprob-

abilityscoresweresignificantlyreducedto0.03(95%CI,0-0.06)

comparedwiththose inunmarked(0.16;95%CI,0.10-0.22)and

marked(0.54;95%CI,0.46-0.62)images(P < .001). Inmelanoma

images we also observed an increase of the mean melanoma

probabilityscores inunmarkedvselectronicallymarked images

from0.94 (95%CI,0.85-1.00) to 1.00 (95%CI,0.99-1.00).How-

ever, as unmarked melanoma images already showed mean

scoresclose to themaximumscoreof 1, the inducedchangesdid

not reachstatistical significance (P = .10). Irrespectiveofmark-

ups or cropping, the statistical differences inmelanoma prob-

ability scores between benign nevi vs melanomas remained

significantacrossall imagesets.At thesametime,nosignificant

difference was observed between the melanoma probability

scores of in situ melanomas vs invasive melanomas across all

image sets.

CNN’s Sensitivity, Specificity, and ROCAUC

At theapriori operationpoint of0.5, the sensitivityof theCNN

in the unmarked image set was 95.7% (95% CI, 79%-99.2%)

Figure 2. Box Plots Representing Convolutional Neural Network (CNN)’s Melanoma Probability Scores

for Benign Nevi, In SituMelanomas, and InvasiveMelanomas
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Probability scores are presented for unmarked lesions, lesions marked by a

gentian violet ink surgical pen, and cropped lesion images. Probability scores

range from0 to 1; scores closer to 1 indicate a higher probability of melanoma.

The top and bottom borders of the boxes indicate the 75th and 25th

percentiles, respectively, while the horizontal line in the box represents the

median. The whiskers indicate the full range of the probability scores. Statistical

analyses revealed significantly different melanoma probability scores when

comparing benign lesions with in situ or invasive melanomas (P < .001).

Figure 3. HeatMaps of 2 Benign NeviWith UnchangedMelanoma Probability Scores

After Addition of In Vivo SkinMarkings
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The heat maps were created by

vanilla (meaning basic) gradient

descent backpropagation. A and E,

Unmarked input images. B and F,

Heat maps reveal relevant pixels for

the convolutional neural network’s

(CNN’s) prediction of benign nevi.

C and G, Marked input images. D and

H, Heat maps reveal that skin

markings are “ignored” by the CNN,

thus leaving the CNN’s prediction of

benign nevi unchanged.
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and the specificitywas 84.1% (95%CI, 76%-89.8%).When le-

sions weremarked, the sensitivity changed to 100% (95% CI,

85.7%-100%) and the specificity to 45.8% (95% CI, 36.7%-

55.2%). In cropped images, the CNN showed a sensitivity

of 100% (95% CI, 85.7%-100%) and a specificity of 97.2%

(95%CI,92.1%-99%).Apairwise comparisonof theCNN’s sen-

sitivities inunmarked,marked, or cropped images revealedno

significant differences. A pairwise comparison of the speci-

ficities showedsignificantdifferencesbetweenunmarkedand

marked images (84.1%; 95% CI, 76.0%-89.8% vs 45.8%;

95% CI, 36.7%-55.2%; P < .001), unmarked and cropped im-

ages (84.1%; 95% CI, 76.0%-89.8% vs 97.2%; 95% CI, 92.1%-

99.0%; P = .003), and marked and cropped images (45.8%;

95%CI,36.7%-55.2%vs97.2%;95%CI,92.1%-99.0%;P < .001).

The ROC AUC in unmarked images was 0.969 (95% CI,

0.935-1.000), in marked images was 0.922 (95% CI, 0.871-

0.973), and in cropped images was 0.993 (95% CI, 0.984-

1.000). All 3 ROC curves that were calculated for the 3 image

sets are depicted inFigure 5 and illustrate a significant reduc-

tion in specificity of nearly 40% in marked vs unmarked le-

sions as well as the outperformance of the CNN when using

cropped lesions.

Discussion

Deep learningCNNshave recentlybeenapplied todifferentdi-

agnostic tasks in medical image recognition and classifica-

tion (eg, ophthalmology,16 radiology,15 histopathology,17 and

dermatology23). Several landmark studies compared human

and machine accuracy in skin cancer detection.24,25 Two re-

cent publications reported anexpert dermatologist-level clas-

sification of dermoscopic images of benignmelanocytic nevi

and cutaneousmelanomas,12,13 and a first deep learning CNN

for classification of skin neoplasms has gainedmarket access

inEuropeas amedical device (Moleanalyzer-Pro).While these

achievements representmajor successes, furtherexploring the

limitations of deep learningCNNs is important before consid-

ering a broader application worldwide.

Figure 4. HeatMaps of 2 Benign NeviWithMajor Increase inMelanoma Probability Scores

After Addition of In Vivo SkinMarkings
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vanilla (meaning basic) gradient

descent backpropagation. A and E,
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Heat maps reveal relevant pixels for

the convolutional neural network’s

(CNN’s) prediction of benign nevi.

C and G, Marked input images. D and

H, Heat maps reveal that skin

markings are of high relevance for

CNN’s changed prediction of

malignant melanomas, while the

nevus itself is mostly ignored.

Figure 5. Receiver Operating Characteristic (ROC) Curves

of the Performance of the Convolutional Neural Network (CNN)
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of the CNN for each image set at the a priori operation point are indicated by a

circle on the curve and were as follows: (1) unmarked images: sensitivity, 95.7%;

specificity, 84.1%; area under the curve (AUC), 0.969; (2) marked images:

sensitivity, 100%; specificity, 45.8%; AUC, 0.922; and (3) cropped images:

sensitivity, 100%; specificity, 97.2%; AUC, 0.993.

Surgical Skin Markings in Dermoscopic Images and Deep Learning Convolutional Neural Network Recognition of Melanoma Original Investigation Research

jamadermatology.com (Reprinted) JAMADermatology October 2019 Volume 155, Number 10 1139

© 2019 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

http://www.jamadermatology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamadermatol.2019.1735


It has previously been shown that artifacts in dermo-

scopic images, suchasdarkcorners (causedbyviewingthrough

the tubular lens of the dermatoscope), gel bubbles, superim-

posed color charts, overlayed rulers, and occluding hair, may

impede image segmentation and classification by automated

algorithms.11,26 Various methods have been reported for the

removal of such artifacts,27,28 and strategies for preprocess-

ingof imagesweredescribed to improve the classificationout-

comes of CNNs.29However, the removal of artifacts by image

preprocessing may ultimately alter the original image and it-

self be prone to error. Therefore, a major advantage of deep

learningCNNs is that the rawRGBdermoscopic imagemaybe

used as an input, thus bypassing preprocessing.30

This study investigated the possible association of surgi-

cal skin markers as artifacts in dermoscopic images with the

classificationoutcomesbyadeep learningCNN. Inclinical rou-

tine, suspicious lesionsare frequentlymarkedbeforebeingex-

cised or photographed. Our attentionwas drawn to this issue

whenevaluatingdermoscopic imagesofbenignneviunder se-

quential digital dermoscopy follow-up. We observed that se-

quentially imaged benign nevi, although largely unchanged,

were frequently labeled as beingmalignant by the CNNwhen

inkmarkers were visible at the periphery of the dermoscopic

image.To systematically andprospectively investigateourob-

servation, 3 sets of dermoscopic images (unmarked, marked,

and cropped) of the same 130 melanocytic lesions were cre-

ated. Our assessments of these images with the CNN showed

that skinmarkings at the periphery of benign nevi were asso-

ciatedwithan increase in themelanomaprobability scores that

increased the false-positive rate by approximately 40%. To

prove that this associationmaybe attributed solely to theder-

moscopicbackgroundandnot themelanocytic lesion itself, the

dermoscopic images were croppedmanually. This procedure

reversed thenegative associationof skinmarkingswith thedi-

agnostic performance of the CNN. Overall, image preprocess-

ing by manually cropping images led to the best diagnostic

performanceof theCNN,achievingasensitivityof 100%,speci-

ficity of 97.2%, and ROC AUC of 0.993. The CNN’s specificity

in the cropped images (97.2%) was significantly improved

compared with that in the unmarked images (84.1%). How-

ever, croppingwasdonemanually byexperienceddermatolo-

gists, and the results may deteriorate with automated crop-

pingbya formalpreprocessing stepusingborder segmentation

algorithms.

When reviewing the open-access International Skin

Imaging Collaboration database, which is a source of training

images for research groups, we found that a similar percent-

age of melanomas (52 of 2169 [2.4%]) and nevi (214 of 9303

[2.3%]) carry skin markings. Nevertheless, it seems conceiv-

able that either an imbalance in the distribution of skinmark-

ings in thousands of other training images that were used in

the CNN tested herein or the assignment of higher weights

to blue markings only in lesions with specific (though un-

known) accompanying features may induce a CNN to associ-

ate skinmarkingswith the diagnosis ofmelanoma. The latter

hypothesismayalsoexplainwhymelanomaprobability scores

remainedalmostunchanged inmanymarkedneviwhilebeing

increased in others.

The fact that blue markings are associated with changes

inmelanoma probability scores while the underlyingmecha-

nisms remainunclearhighlights the lackof transparency in the

classification process of neural network models. Thus, al-

though not being dependent on manmade criteria for classi-

fication has opened a new level of performance, it may im-

pede the insights into amechanistic understanding. TheCNN

tested in this study applies themelanomaprobability score as

a softmaxoutput classifier. Recently, content-based image re-

trieval has been shown to provide results comparable to soft-

max classifiers.14 In this alternative approach, the CNN gen-

eratesseveral images thatarevisuallysimilar to the input image

along with the corresponding diagnoses. The displayed out-

put images are retrieved from the compiled training images

based on overlapping features identified by the neural net-

work. This strategy has beenhypothesized to increase the ex-

plainability for clinicians.

There are several approaches to the problem of bias in-

ducedby skinmarkings. Avoidingmarkings in images that are

intended for analysis seems the most straightforward solu-

tion for theCNNtested inourstudy.Avoidingmarkings in train-

ing images (eg, by cropping images before training) is logical

with regard to futurealgorithms. In contrast, teaching theCNN

to ignore parts of the image that may or may not be artificial

skinmarkingsappears ratherdifficult. Because therearemany

more types of artifacts in images other than blue surgical skin

markers, some artifacts may still be undetected. At the same

time, other parts of imagesmay erroneously be interpreted as

artifacts that preclude them from analysis by the CNN.More-

over, as statedabove, automatedsegmentationwithborderde-

tection of the lesion of interest may be another option to im-

prove evaluation.27

Limitations

Our studyhas some limitations.First, benignmelanocyticnevi

werenot excised forhistologic verification, but ratherwere se-

lected frompatients under follow-up and showedno changes

during thepast 2 years. Second, dermoscopic images ofmela-

nomas were extracted from a validated database; thus, skin

markings couldnot be added invivo.Alternatively, skinmark-

ingswereelectronicallyduplicated fromdigital imagesandsu-

perimposedonthemelanomabackground.Thisprocedureand

its association with changes in the classification by the CNN

wereextensively testedwith imagesofbenignnevi. Inall these

cases,nodifferenceswere foundbetween themelanomaprob-

ability scores attained with the CNN in images with “in vivo”

markings vs images with electronically superimposed mark-

ings. Third, most images included in this study were derived

fromfair-skinnedpatients residing inGermany; therefore, the

findings may not be generalized for lesions of patients with

other skin types and genetic backgrounds.

Conclusions

In summary, the results of our investigation suggest that skin

markings at the periphery of dermoscopic images are signifi-

cantlyassociatedwith theclassification resultsof adeep learn-
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ing CNN. Melanoma probability scores of benign nevi appear

to be significantly increased bymarkings causing a strong in-

crease in the false-positive rate. In clinical routine, these le-

sions may have been sent for unnecessary excisions. There-

fore, we recommend to avoid skin markings in dermoscopic

images intended for analysis by a deep learning CNN.
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