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IMPORTANCE Atrial fibrillation (AF) is the most common arrhythmia affecting 1% of the
population. Young individuals with AF have a strong genetic association with the disease,
but the mechanisms remain incompletely understood.

OBJECTIVE To perform large-scale whole-genome sequencing to identify genetic variants
related to AF.

DESIGN, SETTING, AND PARTICIPANTS The National Heart, Lung, and Blood Institute’s
Trans-Omics for Precision Medicine Program includes longitudinal and cohort studies that
underwent high-depth whole-genome sequencing between 2014 and 2017 in 18 526
individuals from the United States, Mexico, Puerto Rico, Costa Rica, Barbados, and Samoa.
This case-control study included 2781 patients with early-onset AF from 9 studies and
identified 4959 controls of European ancestry from the remaining participants.
Results were replicated in the UK Biobank (346 546 participants) and the MyCode Study
(42 782 participants).

EXPOSURES Loss-of-function (LOF) variants in genes at AF loci and common genetic variation
across the whole genome.

MAIN OUTCOMES AND MEASURES Early-onset AF (defined as AF onset in persons <66 years
of age). Due to multiple testing, the significance threshold for the rare variant analysis
was P = 4.55 × 10−3.

RESULTS Among 2781 participants with early-onset AF (the case group), 72.1% were men,
and the mean (SD) age of AF onset was 48.7 (10.2) years. Participants underwent
whole-genome sequencing at a mean depth of 37.8 fold and mean genome coverage of
99.1%. At least 1 LOF variant in TTN, the gene encoding the sarcomeric protein titin, was
present in 2.1% of case participants compared with 1.1% in control participants (odds ratio
[OR], 1.76 [95% CI, 1.04-2.97]). The proportion of individuals with early-onset AF who carried
a LOF variant in TTN increased with an earlier age of AF onset (P value for trend, 4.92 × 10−4),
and 6.5% of individuals with AF onset prior to age 30 carried a TTN LOF variant (OR, 5.94
[95% CI, 2.64-13.35]; P = 1.65 × 10−5). The association between TTN LOF variants and AF was
replicated in an independent study of 1582 patients with early-onset AF (cases) and 41 200
control participants (OR, 2.16 [95% CI, 1.19-3.92]; P = .01).

CONCLUSIONS AND RELEVANCE In a case-control study, there was a statistically significant
association between an LOF variant in the TTN gene and early-onset AF, with the variant
present in a small percentage of participants with early-onset AF (the case group). Further
research is necessary to understand whether this is a causal relationship.
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R apid progress has been made in defining the genetic
architecture1 of complex diseases such as diabetes,
hypertension, atrial fibrillation (AF), and myocardial

infarction. A common and efficient approach has been to use
genome-wide association studies (GWAS) to identify disease-

associated loci.2 Chal-
lenges of GWAS include in-
complete coverage of the
genome, limited ascertain-
ment of rare variation, and
difficulties identifying
causal genes and variants.

A complementary approach to GWAS is to perform exome
sequencing in affected individuals to identify loss-of-
function (LOF) variants that unequivocally disrupt gene
function and directly implicate susceptibility genes as being
causally related to disease. For example, a study published in
2016 of 6924 individuals with early-onset myocardial infarc-
tion found that individuals with LOF mutations in ANGPTL4
(Ensembl ENSG00000167772) had lower triglyceride levels
and a lower risk of coronary heart disease than noncarriers.3

In 1998 Haissaguerre et al4 found that AF arose from ec-
topic electrical foci in the pulmonary veins, an observation that
led to the widespread use of catheter ablation procedures to
treat paroxysmal and persistent AF.5 However, AF does not ap-
pear to originate from the pulmonary veins in all individuals,
and the prevailing mechanisms that sustain AF in individuals
remain unclear.

The etiology of AF remains incompletely understood. Since
young individuals with AF appear to have a strong genetic ba-
sis for the disease, large-scale, deep-coverage whole- genome
sequencing was performed in patients with early-onset AF.

Methods
Study Populations and Quality Control
Whole-Genome Sequencing
The Trans-Omics for Precision Medicine (TOPMed) Program
is a National Heart, Lung, and Blood Institute–funded initia-
tive to perform whole-genome sequencing to facilitate
genetic discovery in complex human diseases. The first
phase of the program included individuals with AF, chronic
obstructive pulmonary disease, or asthma, as well as partici-
pants from longitudinal studies such as the Framingham
Heart Study (FHS) and the Jackson Heart Study. All partici-
pants provided written informed consent, and all participat-
ing studies obtained ethical approval from their local institu-
tional review boards.

Patients with early-onset AF (cases) were included in this
program from 9 sites in the United States (eTable 1 and eAp-
pendix 1 in Supplement 1). Early-onset AF was defined as AF
with onset prior to 66 years of age. Case participants were
included from the Atherosclerosis Risk in Communities
Study, Cleveland Clinic Lone Atrial Fibrillation GeneBank
Study, The Heart and Vascular Health Study, FHS, Massachu-
setts General Hospital Atrial Fibrillation Study, Partners
HealthCare Biobank, Women’s Genome Health Study,

Vanderbilt Atrial Fibrillation Registry, and the Vanderbilt
Atrial Fibrillation Ablation Registry. Population-based con-
trols were derived from the remaining studies in phase 1 of
this program; as described in eFigure 1 in Supplement 1, par-
ticipants of genetically determined European ancestry were
selected as controls. Control participants from the FHS were
excluded if they had a diagnosis of AF. The AF status was
unknown in participants from the Genetic Epidemiology of
Chronic Obstructive Pulmonary Disease Study (COPDGene),
the Cleveland Family Study (CFS), and the Pharmacogenom-
ics of Bronchodilator Response in Minority Children with
Asthma Study (GALAII+SAGE).

Replication of a common variant associated with AF was
performed using the UK Biobank, an independent dataset
composed of individuals aged 40 to 69 years. Participants
were recruited in the United Kingdom between 2006
and 2010 and underwent genome-wide genotyping and
imputation. Phenotypic data included disease information
obtained through self-report, verbal interviews, and link-
age to national outpatient, inpatient, and other registries.
The present analyses were conducted in unrelated adults
of European ancestry. All participants provided written
informed consent to participate in research as previously
described,6 and the UK Biobank was approved by the UK Bio-
bank Research Ethics Committee. Use of UK Biobank data
was approved by the local Massachusetts General Hospital
institutional review board. The ascertainment of AF has been
previously described.7

Rare variant associations between LOF variants in the
titin (TTN) (ENSG00000155657) gene and AF were repli-
cated in an independent population from the MyCode Com-
munity Health Initiative at Geisinger. This precision health
project included individuals with exome sequence data,
generated through the DiscovEHR collaboration with
Regeneron Genetics Center, linked to electronic health rec-
ord data with opt-in participant informed consent.8 The
present analysis used data from the participants with com-
pleted exome sequencing and available electronic health
record data as of October 20, 2017. Sample preparation and
exome sequencing were completed per standard Regeneron
Genetics Center methodology, as described by Dewey et al.9

Key Points
Question Are there associations between genetic variants in titin
(TTN), the gene which encodes the sarcomeric protein titin,
and early-onset atrial fibrillation?

Findings In this case-control study that included 2781 participants
with early-onset atrial fibrillation and 4959 controls, there was
a statistically significant association between loss-of-function
variants in TTN and atrial fibrillation (odds ratio, 1.76 [95% CI,
1.04-2.97]), with variants present in 2.1% of case participants
and 1.1% of controls.

Meaning Loss-of-function mutations in the TTN gene were
associated with early-onset atrial fibrillation among some patients,
but further research is needed to understand whether the
relationship is causal.

AF atrial fibrillation

GWAS genome-wide association
studies

LOF loss of function

TTN titin gene
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Early-onset AF was defined based on International Classifi-
cation of Diseases, Tenth Revision (ICD-10) codes on patient
encounters (at least 2 outpatient or 1 inpatient) prior to age
66 years and in the absence of diagnostic codes for myocar-
dial infarction, cardiomyopathy, or heart failure. Control
participants were selected from the remaining sequenced
population with no encounter coded for AF, heart failure,
cardiomyopathy, or myocardial infarction.

Sequencing Methods and Quality Control
Participants were sequenced at the Broad Institute, the
Northwest Genomic Center at the University of Washington,
and the New York Genome Center. Central quality control
and variant calling was performed jointly at the University
of Michigan Informatics Resource Center (eAppendix 2 in
Supplement 1). Further quality control, focused on sample
identity, was performed at the University of Washington
Data Coordinating Center. All methods are described on the
dbGaP website.10

Derivation of the Study Participants
For an overview of the derivation of the study participants
and quality control, see eFigure 1 in Supplement 1. From
participants who underwent genome sequencing, those who
did not provide a suitable consent were excluded from fur-
ther study. Due to the limited availability of individuals of
non-European ancestry with early-onset AF, the study was
restricted to individuals of European ancestry to enhance
power for genetic analyses. Participants of European ancestry
were selected using principal components of genetic ances-
try. In brief, common variants that were present in phase 1
participants of this program and the 1000 Genomes Project,11

who were in low linkage disequilibrium, were selected using
PLINK.12 Principal components were estimated using the
smartpca function of Eigenstrat13 on an unrelated subset of
the study participants (ie, beyond 2 estimated degrees
of relatedness) identified using kinship coefficients derived

from KING.14 Principal components were then projected onto
the related subset. European ancestry participants were
selected if the first and second principal components were
within 6 standard deviations of the mean of the first and sec-
ond principal components of European ancestry participants
from the 1000 Genomes Project as shown in eFigure 2A in
Supplement 1. Principal components were then recomputed
using the selected participants of European ancestry. The
remaining participants underwent further sample level qual-
ity control.

Variant-Level Quality Control
Monomorphic variants, those located in low-complexity
regions,15 or variants with Hardy-Weinberg equilibrium P val-
ues of less than 5 × 10−9 among unrelated control partici-
pants, were excluded from the data set.

Participant-Level Quality Control
Among selected participants of European ancestry, duplicate
participants between studies were identified based on iden-
tity by state using PLINK,12 and 1 participant for each dupli-
cate pair was excluded (with the exception of known mono-
zygotic twins, who were not exclued). Participants with
discordant reported and genetically inferred sex, using chro-
mosome X, were also omitted. Five quality metrics for the se-
quence data were calculated for detecting outliers: call rate,
transition to transversion ratio, number of singletons,
heterozygote to homozygote ratio, and single-nucleotide
polymorphism (SNP) to indel ratio. Participants with any met-
ric beyond 8 times the standard deviation from the mean were
omitted. After excluding individuals who were outliers, mono-
morphic variants were again tabulated and removed. Addi-
tional information regarding participant-level quality control
is provided in Table;and in eFigure 3 in Supplement 1. Upon
completion of participant-level quality control, a set of indi-
viduals were available for genetic analyses (eFigure 1 in
Supplement 1).

Table. Baseline Characteristics of the Study Participants for Common Variant, Rare Variant,
and Titin Sensitivity Analyses

No./Total No. (%)a

Common Variant Analyses Rare Variant Analyses
Early-Onset
AF Group Control Group

Early-Onset
AF Group

Restricted
Early-Onset AFb Control Group

No. of
participants

2781 4959 2752 2047 2116

Women 775/2781 (27.9) 2719/4959 (54.8) 769/2752 (27.9) 502/2047 (24.5) 1129/2116 (53.4)

Age at baseline,
mean (SD), yc

53.8 (10.3) 58.2 (15.3) 53.8 (10.3) 53.8 (10.6) 65.8 (12.1)

No. of
participants

2586 3474 2558 1946 927

Age at diagnosis,
mean (SD), y

48.7 (10.2) - 48.6 (10.3) 47.7 (10.4) -

No. of
participants

2781 2752 2047

Hypertensionc 1259/2758 (45.6) 1524/3364 (45.3) 1241/2729 (45.5) 931/2029 (45.9) 498/847 (58.8)

Diabetesc 296/2758 (10.7) 307/3364 (9.3) 293/2729 (10.7) 199/2029 (9.8) 98/847 (11.8)

Heart failurec 197/2739 (7.2) 33/3474 (0.9) 193/2710 (7.1) - 12/927 (1.3)

Myocardial
infarctionc

74/2734 (2.7) 96/3474 (2.8) 73/2705 (2.7) 35/2004 (1.7) 36/927 (3.9)

Abbreviations: AF, atrial fibrillation;
TTN, Titin.
a Values are reported as No./Total No.

(%) unless otherwise indicated.
b Indicates TTN sensitivity analyses

including early-onset AF cases of
participants who were free from
evidence of heart failure (193
participants), cardiomyopathy
(2 participants), left ventricular
ejection fraction of less than 50%
(101 participants), or had an
unknown left ventricular ejection
fraction (409 participants).

c Baseline data in control group was
only available from Framingham
Heart Study participants.
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Statistical Analysis
For the common variant analyses, the association between a
variant and early-onset AF was tested using the score test from
logistic mixed-effect models to account for relatedness and as-
sumed an additive genetic model.16 Models were adjusted for
fixed effects of sex and 4 principal components of ancestry as-
sociated with early-onset AF. A random effect was used to ac-
count for relationships using the empirical kinship matrix. Prior
to the common variant analysis, the principal component
analysis and the kinship estimation were repeated using the
final selected participants. Since the AF status was unknown
for control participants from COPDGene, CFS, and GALAII +
SAGE studies, age was not adjusted in a regression model. Any
variant with minor allele frequency of less than 1% in the over-
all sample, in case participants alone, or in controls alone, was
excluded.

Common variants with a 2-sided score-test P value of less
than 5 × 10−8, a conventional genome-wide significance thresh-
old, were considered significant. To minimize the probability
of reporting spurious associations, significant variants in re-
gions without additional variants, with a P value of less than
1 × 10−6 present within a 500-kilobase flanking region, were
not reported.

For novel variants exceeding the prespecified threshold
for genome-wide significance, an in silico replication was
performed in the UK Biobank. Among unrelated individuals
of European ancestry, an association between genetic vari-
ants and early-onset AF, adjusting for age, sex, and principal
components, was tested as previously described.7 Next, a
fixed-effects inverse-variance–weighted meta-analysis was
performed with results from the whole-genome sequencing
discovery analysis and replication analysis in the UK Bio-
bank using METAL.17 A 2-sided P value of less than .05 with
the same direction of effect as the discovery represented
evidence of replication for an association.

For rare variant analyses, the association between rare
variants and early-onset AF was analyzed using logistic
regression and adjusted for sex and 4 principal components
of ancestry.18 First, unrelated individuals were selected using
a stringent kinship coefficient threshold of 0.022 (Table).
This was necessary because this study has many more
related individuals in the control group than in the group
with early-onset AF (the case group), which can result in spu-
rious associations for rare variants even when using methods
that account for relationships. Analyses of rare coding vari-
ants focused on the genes within the 25 known AF GWAS
loci,7 identified in individuals of European ancestry and 1
newly identified AF locus. Each locus was defined as the
region bounded by variants with a linkage disequilibrium r2

of at least 0.3 from the sentinel SNP at each locus.
Rare variant analyses were restricted to LOF variants as

annotated using SnpEff 4.1,19 and conservatively defined as
nonsense, splice site disrupting, predicted to disrupt tran-
script reading frame, or large deletions affecting more than
50% of the protein-coding sequence of the transcript or
eliminating the first exon.20 This analysis was motivated by
the goal of identifying genes causally related to AF. Of the 84
genes present in the 26 AF susceptibility loci, 11 had a cumu-

lative minor allele count of at least 10 for LOF variants.
Therefore, after correcting for multiple testing, a 2-sided P
value of less than 4.55 × 10−3 (0.05/11) was used to indicate
evidence of association. For significantly associated genes,
the proportion of individuals carrying a variant in the gene
was tabulated and 95% CIs were estimated using an exact
binomial method.

In addition, post hoc association analyses between rare LOF
variation in TTN and early-onset AF (see Results) were con-
ducted. Since mutations in TTN have been well described in
other cardiomyopathies,21-27 a post hoc TTN sensitivity analy-
sis restricted to early-onset AF participants (case group) with
no evidence of heart failure, cardiomyopathy prior to AF on-
set, and a documented left ventricular ejection fraction of at
least 50% was performed with logistic regression to examine
the association between early-onset AF using different age
thresholds as the case definition (ie, <66, <50, <40, and <30
years at onset), adjusting for sex and ancestry principal com-
ponents. The χ2 test for trend in proportions of TTN LOF vari-
ant carriers was conducted among control participants and the
different age at onset groups. Among case participants, mul-
tiple linear regression with the same adjustments was used to
test the relation between the age of onset of AF and TTN LOF
carrier status.

Additional post hoc sensitivity analyses were performed
to stratify by sex after exclusion of control participants with
heart failure, after exclusion of controls aged 75 years or
younger, and by whether the AF case group participants
were from Vanderbilt or other sites. TTN LOF variants iden-
tified in early-onset AF participants (case group) and control
participants were compared with the pathogenic TTN vari-
ants reported in the ClinVar database28 and on the Cardiodb
website (www.cardiodb.org), a repository for TTN variants
associated with dilated cardiomyopathy24 (eAppendix 3 in
Supplement 1).

Post hoc association testing was performed between TTN
LOF variant carriers with early-onset AF and the cardiac
expression of TTN exons. Using a previously described
approach,24 analyses were limited to exons that are highly
expressed in the human left ventricle, as defined by a percent
splicing index of 90% or greater.29 Association testing was
performed using logistic regression and adjusting for the
same covariates.

Replication of associations observed in the rare variant
analysis was performed in the MyCode Community Health
Initiative at Geisinger. TTN LOF variants in the MyCode
Study were defined based on the following criteria: (1) minor
allele frequency of less than 0.001; (2) annotated as a
high impact for the long cardiac TTN isoform (N2BA,
ENST00000591111) using the Ensembl Variant Effect
Predictor30 (truncating variant, loss of protein function, or
nonsense-mediated decay); and (3) occurring in a constitu-
tively expressed exon with a percent splicing index of 90% or
greater.24 Association testing was performed between TTN
LOF variant carriers in early-onset AF case and control par-
ticipants using logistic regression adjusted for sex. The pro-
portion of patients with early-onset AF who carried a LOF
variant in TTN were computed at different age thresholds.
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For the TTN sensitivity analysis, a fixed-effects inverse-
variance–weighted meta-analysis was performed between
the discovery and replication studies.

Analyses were performed using Hail31 and R version 3.3 sta-
tistical software tools.32

Missing Data
The principal components of ancestry for all study partici-
pants were estimated from genetic variants, and genetically
determined sex was used if the sex of a participant was
not available. For the common variant analyses, the soft-
ware package GENESIS was used to impute missing genotypes
to a mean using a minor allele frequency calculated from
other participants.33

Results
A summary of the participant selection process and the ana-
lytic workflow is illustrated in Figure 1.

Whole-genome sequencing was performed in 18 526 in-
dividuals in the program. After excluding 2649 individuals
without suitable consent, 9475 participants of European
ancestry were identified in an initial principal component
analysis. The principal component analysis was then re-
peated among individuals of European ancestry, and the Amish
participants were found to constitute a genetically distinct
population (eFigure 2B in Supplement 1). Given that AF ascer-
tainment was unavailable in the Amish subset and they com-
prised a distinct principal component group, 1115 Amish par-
ticipants were excluded from the study.

Participant-level quality control steps were then per-
formed and the following 620 individuals were excluded from
further analyses: 556 participants from FHS with AF onset at
older than 65 years of age or with other comorbidities, 32 du-
plicates, 18 individuals with a sex mismatch, 7 individuals with
undetermined genetic sex, 5 outliers from heterozygote to ho-
mozygote ratio, 1 outlier from the SNP to indel ratio analyses,
and 1 individual with mislabeled case status.

After participant-level quality control, 7740 participants
were included in the genetic analyses. The case group partici-
pants (2781 with early-onset AF) came from 9 US-based stud-
ies in the Atrial Fibrillation Genetics Consortium.7 The mean
age of AF onset in the case group was 48.7 years, and 72.1%
(2006) were men (Table). The remaining 4959 participants of
European ancestry were included as controls (eFigure 1 in
Supplement 1). For the 7740 in the case group and the control
group, the mean depth of sequence coverage was 37.8 fold, and
more than 98 million variants were identified.

An association test was performed between early-onset
AF and the 8 248 975 common variants with minor allele
frequency of 1% or greater observed in the sample popula-
tion in this study. For the common variant analyses, the
mean (SD) missing rate of individual variants was 0.04%
(0.001). Variants at 6 previously reported AF loci (PITX2,
ENSG00000164093; PRRX1, ENSG00000116132; NEURL1,
ENSG00000107954; ZFHX3, ENSG00000140836; KCNN3,
ENSG00000143603; and SOX5, ENSG00000134532), and

1 recently identified locus (NAV2, ENSG00000166833,
P < 5 × 10−8; Figure 2; eFigures 4-5 and eTable 2 in Supple-
ment 1) exceeded genome-wide significance. Although not all
of the top genetic variants at 25 previously reported AF loci
reached genome-wide significance, all variants had a P value
of less than .05 (eTable 3 in Supplement 1). The variant with
the lowest P value at the NAV2 locus, rs2625322, was located
intronic to the neuron navigator 2 gene (minor allele fre-
quency = 21.3%; odds ratio [OR], 1.32 [95% CI, 1.21-1.44];
P = 1.46 × 10−8; eFigure 6 and eTable 4 in Supplement 1). The
association with the NAV2 locus was replicated in 9525 par-
ticipants with early-onset AF (cases) and 337 021 control par-
ticipants from the UK Biobank release 3 (OR, 1.11 [95% CI,
1.07-1.15]; P = 9.70 × 10−10; imputation quality 0.99; eTable 4
in Supplement 1), and in a recent GWAS of 65 446 patients
with AF (cases) and 522 746 control participants (rs2625322;
OR, 1.07 [95% CI, 1.05-1.09]; P = 1.00 × 10−16).34

The role of rare LOF variation was assessed within the
genes at the 25 AF GWAS loci previously identified in indi-
viduals of European ancestry and at the NAV2 locus. Among
the 84 potential genes at these 26 common variant loci, 11 genes
had a cumulative minor allele count greater than or equal to
10 and were suitable for association testing. Rare variation in
the gene TTN, encoding the sarcomeric protein titin, was as-
sociated with early-onset AF (OR, 2.16 [95% CI, 1.34-3.48];
P = 1.55 × 10−3; eFigure 7 in Supplement 1).

Since mutations in TTN have been well described in
other cardiomyopathies,21-27 a post hoc TTN sensitivity
analysis was performed after the exclusion of 705 partici-
pants with early-onset AF (cases) with a history of heart fail-
ure or a cardiomyopathy prior to AF onset, a left ventricular
ejection fraction less than 50%, or unknown left ventricular
ejection fraction. Among the remaining 2047 participants
with early-onset AF (cases), there were 44 individuals with
at least 1 rare LOF variant in TTN for a frequency of 2.1% vs
1.1% (24 LOF variant carriers) among 2116 control partici-
pants (OR, 1.76 [95% CI, 1.04-2.97]; P = 3.42 × 10−2; Figure 3;
eTable 5 in Supplement 1).

The proportion of individuals with early-onset AF who car-
ried a LOF variant in TTN increased in a stepwise fashion with
an earlier age of AF onset (Figure 4; eTable 6 in Supplement 1,
P value for trend among those in the case group was
4.92 × 10−4). Of 138 individuals with AF onset prior to age 30
years, 6.5% (9 LOF variant carriers) carried a TTN LOF variant
(OR, 5.94 [95% CI, 2.64-13.35]; P = 1.65 × 10−5). Among indi-
viduals with early-onset AF, those with a TTN LOF variant were
affected with AF a mean of 5.3 (95% CI, 2.20-8.39) years ear-
lier than noncarriers (P = 8.05 × 10−4).

Additional TTN sensitivity analyses were performed by
stratifying by heart failure, age, sex, and study sites (eTable 7
in Supplement 1). The TTN LOF variants located in highly ex-
pressed exons were associated with early-onset AF in all sen-
sitivity analyses (P < .05)

Among the 40 LOF variants in AF case group partici-
pants from the TTN sensitivity analysis, a subset of variants
had been previously reported in association with dilated
cardiomyopathy or observed in control populations (eFigure
8; eTable 8 in Supplement 1). There was no overlap in the
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TTN LOF variants observed in early-onset AF and the TTN
mutations reported in association with hypertrophic cardio-
myopathy, skeletal myopathies or other cardiomyopathies
(eFigure 8 in Supplement 1).

The association between LOF variants in TTN and AF per-
sisted (OR, 4.41 [95% CI, 1.86-10.43]; P = 7.34 × 10−4) after re-
stricting the analysis to include only exons that are highly ex-
pressed in cardiac tissue, defined as exons with a percent

splicing index of at least 90% (32 LOF variants).24 The preva-
lence of early-onset AF case group participants with a TTN LOF
variant in a high cardiac-expressed exon was 1.3% (27 LOF vari-
ant carriers), in contrast to 0.3% (7 LOF variant carriers) among
control group participants.

The relation between TTN LOF variants and early-onset
AF was validated in an independent data set from the
MyCode Community Health Initiative at Geisinger, which

Figure 1. Study Overview With Sample Selection and Analytic Workflow

9051 Excluded
6402 Of non-European ancestry
2649 Unsuitable consent

1735 Excluded
1115 Of Amish ancestry

620 Other excluded
556 In the Framingham Heart Study

with AF onset at ≥66 years or
other comorbidities

32 Duplicates
18 Sex mismatches

7 Undetermined genetic sex
5 Outliers from heterozygote to

homozygote ratio
1 SNP/indel outlier
1 Mislabeled case status

2047 Underwent titin sensitivity analyses

18 526 Individuals from 19 studies underwent
whole-genome sequencinga

9475 Of European ancestry identified

7740 Included as participants after quality control

705 Excluded
409 With unknown LVEF
193 History of heart failure
101 LVEF<50%

2 Cardiomyopathy prior to AF

2116 Underwent titin sensitivity analyses

2116 Found to be unrelated and underwent
rare variant analysis for 11 testable
candidate genes in 26 AF locic

2752 Found to be unrelated and underwent
rare variant analysis for 11 testable
candidate genes in 26 AF locic

29 Excluded (were related) 2843 Excluded (were related)

2781 Assigned to the case participants group
(all had early-onset AF)b 

2781 Underwent common variant genome-
wide association testing as assigned

4959 Assigned to the control groupb

4959 Underwent common variant genome-
wide association testing as assigned

The initial sample selection is from the TOPMed program. Because early-onset
atrial fibrillation (AF) participants in the case group were ascertained from
European ancestry, genetically determined individuals of European ancestry
were identified. Although common variants were tested across the entire
genome, rare variants were examined in genes at AF candidate loci. Unrelated
individuals were defined as those with pairwise relationships greater than
fourth-degree relatives. Further post hoc analyses were performed to
characterize an association identified in the rare variant analyses. Independent
replication populations were from the UK Biobank (common variant analyses
[9525 in the case group; 337 021 in the control group]) and the MyCode study
(rare variant analyses [1582 in the case group; 41 200 in the control group]).

a Individuals who underwent whole-genome sequening were from the National
Heart, Lung, and Blood Institute TOPMed phase I project, which included 9
sites with participants with early-onset AF.

b For cohort descriptions of participants in the case group and the control
group, see eTable 1 in Supplement 1.

c Found among 4868 total participants in the case (2752) and control
(2116) groups.

SNP indicates single nucleotide polymorphism; LVEF, left ventricular
ejection fraction.
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was composed of 1582 early-onset AF case participants and
41 200 control participants who underwent exome sequenc-
ing (eTables 9-10 in Supplement 1).8,9 TTN LOF variants were
also associated with early-onset AF in the MyCode study (OR,
2.16 [95% CI, 1.19-3.92]; P = .01). In a meta-analysis of the dis-
covery and replication results, TTN LOF variants were associ-
ated with early-onset AF (OR, 2.74 [95% CI, 1.67-4.44];
P = 6.03 × 10−5). In the MyCode participants, LOF variants in
TTN were more enriched among those with an earlier age of
AF onset, similar to observations in the discovery study
(eTable 11 in Supplement 1).

Discussion
Using large-scale, deep coverage whole-genome sequencing,
LOF variants in TTN were found to be statistically associated

with a diagnosis of early-onset AF. To date, many individuals
with early-onset AF in the absence of overt heart disease
have been considered to have idiopathic or lone AF. How-
ever, results in this study indicate that a subset of patients
with early-onset AF may have a genetic basis. Future studies
that perform a prospective genetic evaluation of individuals
with early-onset AF will be necessary to determine if there is
a causal relationship between LOF variants in TTN and early-
onset AF.

TTN is the largest protein in humans and is critical for nor-
mal myocardial function. Titin acts as a molecular scaffold for
sarcomere assembly and signaling, providing passive stiff-
ness to the sarcomere. Mutations in TTN have pleiotropic ef-
fects and have been associated with tibial muscular
dystrophy,22 hypertrophic cardiomyopathy,23,27 and dilated
cardiomyopathy.21,24-26 One-third of patients develop heart fail-
ure within 5 years of AF diagnosis in community-based settings,

Figure 3. Loss of Function Variants in TTN Among Early-Onset Atrial Fibrillation Case and Control Participants

3 2

I-band M-bandA-bandZ-disk

Titin

Participants with
early onset AF
(cases group)

Total
Participants

TTN LOF
Variants

2047 40

2 3

Control participants 2116 22

2 3 2 2

Loss-of-function (LOF) variants in participants with early-onset atrial fibrillation
(AF) (cases; first row) and controls (second row) are plotted relative to their
genomic position. If multiple variants are co-localized, the number of unique
variants is indicated above. The participants in this figure were derived from the
TTN sensitivity analysis and included 2047 with early-onset AF (cases) and 2166

controls. There were 40 LOF variants in TTN among participants with
early-onset AF (cases) and 22 LOF variants among control participants. For
consistency with prior reports, the TTN domains (Z-disk, I-band, A-band,
M-band) are illustrated with red, blue, green, and purple colors.23 The region
indicated in gray is a large final exon present in 1 TTN transcript (Novex-3).

Figure 2. Common Variants Associated With Early-Onset Atrial Fibrillation
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Figure shows results of genome-wide association analysis results between
early-onset atrial fibrillation status and common genetic variants with minor
allele frequency of at least 0.01. In total, 7740 participants (2781 with
early-onset atrial fibrillation [cases] and 4959 controls) were analyzed.
Blue dots represent variants located in one of the 25 known atrial fibrillation

associated loci in individuals of European ancestry.7 Six loci (KCNN3, PRRX1,
PITX2, NEURL1, SOX5, and ZFHX3) reached genome-wide significant (P value
less than 5 × 10−8, dotted line) level. Red dots illustrate variants in the recently
identified locus (NAV2). The gene names represent the gene in closest proximity
to the most significant variant at each locus.
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and AF is common after the onset of heart failure.35 The co-
occurrence of TTN LOF variation in AF and also in dilated car-
diomyopathy suggests that impaired sarcomere structure or
function may be an overlapping pathophysiologic mecha-
nism in at least some participants with early-onset AF (cases).27

In addition, the optimal treatments for TTN mutation carri-
ers with early-onset AF remains unclear as current antiarrhyth-
mic therapies utilized to treat AF target ion channels. Al-
though only a small percentage of patients with AF carried TTN
LOF mutations, the study findings support the role for abnor-
malities in cardiac structural or sarcomeric proteins in the
pathogenesis of AF. Further research is necessary to deter-
mine whether individuals with TTN LOF variants will re-
spond to conventional AF treatments, including antiarrhyth-
mic therapy or ablation.

There was also an association between early-onset AF and
common genetic variants at all previously reported AF loci
(P < .05; eTable 3 in Supplement 1). There is a significant as-
sociation between common variants at the TTN locus and AF
in other studies.7,34,36,37 The direction and effect size of the as-
sociation observed in the current study is similar to that pre-
viously reported, but the differences observed in statistical sig-
nificance may be a reflection of the sample size. In the common
variant analysis, there was an association between individu-
als with early-onset AF and genetic variants at the NAV2 lo-
cus, a finding that was observed in 2 recent meta-analyses for
AF.34,37 The neuron navigator 2 gene encodes the Nav2 pro-
tein that was originally identified as an all-trans retinoic acid
responsive gene in a neuroblastoma cell line.38 Knockout of
the NAV2 gene in mice results in loss of normal development
of the glossopharyngeal and vagal cranial nerves and a blunted
baroreceptor response.39 This finding presents a potential link
between early-onset AF and the autonomic nervous system,
particularly since modulation of the autonomic nervous sys-
tem is the focus of a number of ongoing novel therapies for the
treatment of AF.40-42

There were a number of strengths of the current study.
First, this study used large-scale whole-genome sequencing
data in the analysis of a complex trait and highlights the
strengths of using genome sequencing for genetic discovery
and identification of potentially causal associations. Al-
though the case and control participants were derived from sev-
eral source populations, these participants underwent simi-
lar methods for genome sequencing, had comparable depths
of sequencing coverage, multiple levels of quality control were
applied, and the variants were called jointly.

Second, there were detailed analyses of common and rare
genetic variation as well as extensive secondary analyses to
support the association between TTN LOF variants and early-
onset AF.

Third, the primary findings from the common and rare vari-
ant analyses were replicated in independent studies.

Limitations
This study has several limitations. First, the findings should
be interpreted in the context of the study design. Due to the
observational study design, it is possible that imbalance be-
tween case and control participants could lead to residual con-

founding that could explain some of our findings. However,
the association between TTN LOF variants and early-onset AF
was robust to sensitivity analyses for heart failure status, sex,
age, and study location; the association between TTN LOF vari-
ants and early-onset AF was replicated in an independent study.

Second, the analyses were restricted to young and middle-
aged individuals of European ancestry with AF; therefore, the
results may not be applicable to other races or older adults.

Third, even with genome sequencing data for 2781 par-
ticipants with early-onset AF, the power to detect associa-
tions with rare variation and particularly rare noncoding varia-
tion is limited. Large studies would be needed to provide power
to examine the relationship between clinical outcomes re-
lated to TTN LOF variation.

Fourth, due to the low frequency of the TTN mutations
among AF case participants, the primary implications of the
findings may be for understanding the mechanistic basis of
AF rather than for clinical testing. Studies directed at deter-
mining the utility of screening or diagnostic testing in the
participants with the earliest onset of AF, such as those indi-
viduals with an age of AF onset younger than 30 or 40
years, will be helpful.

Conclusions
In a case-control study, there was a statistically significant
association between an LOF variant in the TTN gene and
early-onset AF, with the variant present in a small percent-
age of participants with early-onset AF (the case group). Fur-
ther research is necessary to understand whether this is
a causal relationship.

Figure 4. Proportion of TTN Loss of Function Variant Carriers
in Early-Onset Atrial Fibrillation Stratified by Age
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The percentage of TTN loss-of-function carriers is plotted vs age (years)
category. The age categories for atrial fibrillation (AF) cases are not mutually
exclusive and are cumulative when moving from a younger to an older age.
This figure represents 4163 unrelated participants (controls and participants
with early-onset AF [cases]) without evidence of heart failure and a left
ventricular ejection fraction of at least 50%. Whiskers around each dot show
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