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INTRODUCTION 
 

Mild cognitive impairment (MCI) is considered a high-

risk prodromal stage of Alzheimer’s disease (AD) with 

more than a third of patients at increased risk of 

progression to dementia [1]. A diagnosis of MCI is 

characterized by objective cognitive impairment, related 

to memory as well as other cognitive domains, but 

without functional impairment that interferes with 

activities of daily life [2, 3]. Additionally, the presence 

of cerebrovascular risk factors are also thought to place 

cognitively normal individuals at increased risk of 

progression along the AD spectrum [4]. 

 

Indeed, studies show that small-vessel cerebrovascular 

disease, represented by surrogate Magnetic Resonance 

Imaging (MRI) measures particularly white matter 

hyperintensities (WMH) [5, 6], is an important risk 

factor for the clinical manifestation of MCI and 

progression to dementia [7–9]. Moreover, high WMH 

volume itself has been associated with greater risk of 

progression from cognitively normal to MCI as well as 

medial temporal lobe atrophy and cognitive impairment 

in AD [2, 10, 11]. Specifically, WMH-related global 

reductions in grey matter volume (GMV) together with 

frontal and parietal-lobe specific structural alterations 

have been widely observed in AD [12]. Previous studies 

have demonstrated that WMH plays a role in grey 

matter (GM) structural changes and cognitive decline 
even at the MCI stage [13–18]. Structural decline has 

been shown to involve temporal and frontal regions 

comprising the AD-related default mode and executive 
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ABSTRACT 
 

Neuroimaging measures of Alzheimer’s disease (AD) include grey matter volume (GMV) alterations in the 
Default Mode Network (DMN) and Executive Control Network (ECN). Small-vessel cerebrovascular disease, 
often visualised as white matter hyperintensities (WMH) on MRI, is often seen in AD. However, the relationship 
between WMH load and GMV needs further examination. We examined the load-dependent influence of WMH 
on GMV and cognition in 183 subjects. T1-MRI data from 93 Mild Cognitive Impairment (MCI) and 90 cognitively 
normal subjects were studied and WMH load was categorized into low, medium and high terciles. We 
examined how differing loads of WMH related to whole-brain voxel-wise and regional DMN and ECN GMV. We 
further investigated how regional GMV moderated the relationship between WMH and cognition. We found 
differential load-dependent effects of WMH burden on voxel-wise and regional atrophy in only MCI. At high 
load, as expected WMH negatively related to both ECN and DMN GMV, however at low load, WMH positively 
related to ECN GMV. Additionally, negative associations between WMH and memory and executive function 
were moderated by regional GMV. Our results demonstrate non-unidirectional relationships between WMH 
load, GMV and cognition in MCI. 
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control networks [19–21]. Recent findings have shown 

that even at low levels of WMH in cognitively 

unimpaired middle-aged individuals, higher WMH 

lesion volume is significantly associated with a 

widespread pattern of lower GMV in temporal, frontal, 

and cerebellar areas [22]. However, results have been 

mixed with some studies suggesting that higher WMH 

is associated with higher network-based GMV and 

functional connectivity involving the default mode and 

executive control networks in the cognitively normal, 

MCI and AD [20, 23, 24]. This relationship thus needs 

further elucidation in early disease stages. While our 

previous work has also shown that derogatory 

influences of WMH on GMV are most widespread at 

the MCI stage, compared to both cognitively normal 

and AD stages [25], the possible differential effects of 

WMH load on GMV in the cognitively normal and MCI 

remain to be elucidated to allow for development of 

strategies to reduce irreversible structural and cognitive 

damage. 

 

Greater baseline WMH burden is also predictive of 

accelerated neuro-cognitive decline as well as increase 

in clinical dementia rating longitudinally [26]. 

Additionally, cross-sectional studies illustrate 

associations between high WMH and decline in 

memory and executive function in healthy controls and 

MCI [13, 27, 28]. Global and regional cortical thickness 

have also been shown to mediate the relationship 

between WMH and global cognition in cognitively 

healthy individuals, MCI and AD patients [11]. 

Additionally, GMV has also been shown to mediate the 

association between WMH burden with both executive 

function and memory, in mixed populations of 

individuals with cardiovascular risk factors and AD 

patients [29]. However, few studies have explored how 

differing loads of WMH can influence relationships 

between WMH, GMV and cognition. The extent to 

which these associations are present in the early stages 

of disease involving both cognitively normal elderly 

and MCI, especially in the Asian context, has not yet 

been fully assessed. 

 

In light of these uncertainties, we sought to assess the 

load-dependent influence of WMH on whole-brain 

voxel-wise and region of interest-based GMV and 

cognition in cognitively normal individuals and 

individuals with MCI from an Asian cohort. Based on 

prior evidence of the influence of WMH on default 

mode and executive control networks, we assessed the 

effect of WMH on major regions comprising these 

networks. We hypothesized that increasing WMH load 

would result in lower voxel-wise and regional GMV in 
the cognitively normal and MCI stages. We also 

investigated the influence of WMH load on memory 

and executive function. We hypothesized that 

increasing load of WMH would be related to greater 

impairment in domains of memory and executive 

function. Additionally, we also examined the mediating 

and moderating effect of GMV on the relationship 

between WMH and cognition. 

 

MATERIALS AND METHODS 
 

Study participants 

 

Cognitively normal individuals and participants with a 

diagnosis of MCI were recruited from tertiary 

neurology centres in Singapore between August 2013 

and August 2018. Inclusion criteria included diagnosis 

of MCI based on the NIA-AA criteria [30]. Subjects 

with MCI were required to have cognitive symptoms, 

deficits on neuropsychological evaluation, CDR of 0.5 

and to not meet criteria for dementia. For cognitively 

normal subjects, inclusion criteria included absence of 

subjective cognitive symptoms and a CDR of 0. 

Exclusion criteria included: 1) a history of alcohol or 

drug abuse; 2) a current or known history of major 

depression; 3) comorbid neurodegenerative disease such 

as Parkinson’s disease; 4) history of stroke; 5) presence 

of contraindications to MRI. 

 

Participants also underwent APOE genotyping using 

TaqMan SNP genotyping assays on ABI 7900HT 

PCR system (Applied Biosystems, Foster City, CA). 

APOE genotype assignments were performed as 

described [31]. 

 

Informed consent for both studies was sought from each 

patient according to the Declaration of Helsinki and 

local clinical research regulations. The study was 

granted approval by the Singhealth Centralized Review 

Board. Following quality control, we included 90 

cognitively normal individuals and 93 participants with 

MCI in our study. 

 

Neuropsychological assessments 

 

Patients underwent a standardized battery of 

neuropsychological assessments administered by 

trained research staff. Cognitive information collected 

examined domains of 1) episodic memory, assessed 

using Alzheimer’s Disease Assessment Scale 

(ADAS)–Cognitive 10-word delayed recall [32] and 

ADAS-Immediate Recall [33]; and 2) executive 

function, assessed using Frontal Assessment Battery 

[34] and Color Trails 2 [35]. Measures of global 

cognition included the Mini-Mental State 

Examination [36] and the Montreal Cognitive 

Assessment [37]. Performance on the individual tasks 

was transformed into z-scores based on normative 

scores [38–40]. 
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Image acquisition 

 

MRI scans were performed on a 3T Prisma Fit System 

(Siemens, Erlangen, Germany). High resolution T1-

weighted MPRAGE (MagnetizationPrepared Rapid 

Gradient Echo: 192 continuous sagittal slices, TR/TE/TI 

= 2300/2.28/900ms, flip angle = 8◦, FOV = 256×240 

mm2, matrix = 256×240, isotropic voxel size = 

1.0×1.0×1.0mm3, bandwidth = 200 Hz/pixel and 

FLAIR (Fluid Attenuated Inversion Recovery) 

sequences (192 continuous sagittal slices, TR/TE/TI = 

5000/387.0/1800ms, flip angle = 15◦, FOV = 256×256 

mm2, matrix = 256×256, isotropic voxel size = 

1.0×1.0×1.0mm3) were obtained. Scan images were 

reviewed at acquisition and subjects with motion 

artifacts and gross pathological findings were excluded. 

 

Image pre-processing 

 

We used the Computational Anatomy Toolbox (http:// 

dbm.neuro.uni-jena.de/cat12/) protocol in Statistical 

Parametric Mapping (SPM12) (http://www.fil.ion.ucl. 

ac.uk/spm/), to process the T1 images for voxel-based 

morphometry (VBM) analysis. Specifically, all 3D T1-

weighted MRI scans were normalized using an affine 

transformation followed by non-linear registration, 

corrected for bias field inhomogeneities. Images were 

then segmented to derive subject-level GM, white 

matter (WM), and cerebrospinal fluid (CSF) 

components [41]. The Diffeomorphic Anatomic 

Registration Through Exponentiated Lie algebra 

algorithm was used to normalize the segmented scans 

into the standard MNI space which provides better 

precision in spatial normalization to the template [42]. 

Subsequently, the modulation step performed a non-

linear deformation on the normalized segmented 

images. The modulation step provides a comparison of 

the absolute amounts of tissue corrected for individual 

differences in brain size. All obtained segmented, 

modulated, and normalized GM and WM images were 

then smoothed using an 8-mm full-width-half-

maximum isotropic Gaussian smoothing kernel. 

 

White matter hyperintensity derivation 

 

We used the Lesion Segmentation Toolbox (LST 

version 2.0.15), a MATLAB (https://www.mathworks. 

com/?s_tid=gn_logo) and SPM12-based automated tool 

for WMH detection, to extract binary WMH lesion 

belief maps [43, 44]. We employed the automated 

lesion growth algorithm from LST on T1 anatomical 

and FLAIR images to quantify WMH as reported 

previously [23]. This algorithm first co-registers the T2 
FLAIR to T1 and subsequently segments T1 images 

into GM, WM and CSF tissue maps. This information is 

then combined with the co-registered T2 FLAIR images 

to estimate the WMH lesion belief maps. By 

thresholding these maps with a pre-determined initial 

kappa threshold (κ), an initial binary lesion map is 

obtained and is subsequently grown along voxels that 

appear hyperintense on the T2 FLAIR image. To define 

the optimal threshold, T1 and FLAIR images of 10 

randomly chosen subjects with mild to severe WMH 

load were segmented at κ=0.3, κ=0.2 and κ=0.10. After 

further visual inspection of segmentation results at these 

threshold levels, the WMH visual raters determined 

κ=0.10 as the optimal threshold. The total lesion volume 

in each subject was then obtained using the extract 

values of interest option in the LST toolbox. Through 

data-driven means, the obtained lesion volume was 

categorized into terciles separately i.e. low (0.00-1.57), 

medium (1.58-3.16) and high (≥3.17) terciles in the 

cognitively normal and low (0.00-1.49ml), medium 

(1.50-4.19ml) and high (≥4.20ml) terciles for MCI. 

Using published methods, total lesion volume was 

normalized using total intracranial volume and this ratio 

was log-transformed for use in the statistical analyses 

[45]. In the following sections, WMH load will thus 

refer to this log-transformed ratio of WMH over total 

intracranial volume. Additionally, the lesion probability 

maps generated by the algorithm were used for lesion 

filling to correct for the presence of white matter lesions 

which may lower the estimated grey matter fraction on 

the T1-weighted images [43]. These lesion-filled 

images were used for subsequent analyses. 

 

Region of interest derivation 

 

We applied a multiple seed-based approach to test the 

association between GMV and WMH load specifically in 

regions of interest (ROIs) belonging to the Default mode 

network (DMN) and executive control network (ECN). 

We selected six ROIs covering the DMN and ECN based 

on a prior study [46]. The DMN ROIs included the 

posterior cingulate cortex (PCC) and precuneus (PCN) 

and the ECN ROIs included the left and right dorsolateral 

prefrontal cortex (L and R DLPFC) and the left and right 

posterior parietal cortex (L and R PPC) in standard space. 

Average GMV from these network ROIs were derived 

using the MarsBar package in SPM12 [47]. 

 

Statistical analyses 

 

Group differences on participant characteristics across 

the WMH terciles were assessed using one-way 

ANOVA analyses for continuous variables and chi-

square tests for categorical variables (Table 1A, 1B). 

 

Association between WMH and voxel-wise GMV 

 

To assess the positive and negative effect of WMH on 

voxel-wise GMV, we built a voxel-wise multiple 

http://dbm.neuro.uni-jena.de/cat12/
http://dbm.neuro.uni-jena.de/cat12/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
https://www.mathworks.com/?s_tid=gn_logo
https://www.mathworks.com/?s_tid=gn_logo
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Table 1A. Subject demographics: cognitively normal participants. 

 Tercile 1 (n=30) Tercile 2 (n=29) Tercile 3 (n=31) p value 

Age at diagnosis (years) 58.80 (6.44)b,c 64.9 (6.61) 65.6 (6.18) p<0.001 

Sex (M/F), n 17/13 17/12 16/15 p = 0.852 

Education (years) 13.30 (4.41) 13.2 (2.92) 12.6 (3.01) p = 0.661 

MMSE 28.8 (1.35) 28.4 (1.76) 28.7 (1.47) p = 0.616 

MOCA 28.2 (1.38) 27.3 (2.31) 27.7 (1.81) p = 0.183 

WMH (cm3) 0.92 (0.36)c 2.27 (0.51)c 8.03 (5.18) p<0.001 

Total GMV (cm3) 580.52 (40.7) 581.38 (47.2) 559.52 (63.4) p = 0.179 

Average SBP (mmHg) 126.59 (17.36) 127.24 (14.89) 136.07 (16.59) p = 0.060 

Total lacunes 0.20 (0.41) 0.62 (0.97) 1.26 (2.53) p = 0.038 

Total microbleeds, n=38 0.36 (0.67) 0.15 (0.55) 0.64 (0.93) p = 0.245 

APOE4 Carrier, n 4/30 3/29 5/31 p = 0.805 

ADAS Delayed recall z-score 0.168 (0.98) 0.166 (0.73) -0.051 (0.99) p = 0.566 

ADAS Immediate recall z-score -0.364 (0.88) -0.099 (0.85) -0.208 (1.33) p = 0.625 

Color Trails 2 z-score 0.450 (0.608) 0.437 (0.95) 0.406 (1.78) p = 0.99 

FAB z-score 0.683 (0.41) 0.589 (0.45) 0.552 (0.59) p = 0.568 

Values represent mean (SD) unless otherwise indicated. 
Superscript letters indicate whether group mean was significantly different compared with bTercile 2, cTercile 3, 
based on post-hoc comparisons (p < 0.05) following one-way analysis of variance. Chi-square tests were carried 
out on sex. 
Abbreviations: MMSE, mini-mental state examination; MOCA, Montreal Cognitive Assessment; WMH, white 
matter hyperintensity; GMV, grey matter volume; SBP, systolic blood pressure; ADAS, Alzheimer’s disease 
assessment scale; FAB, frontal assessment battery. 

Table 1B. Subject demographics – mild cognitive impairment. 

 Tercile 1 (n=31) Tercile 2 (n=30) Tercile 3 (n=32) p value 

Age at diagnosis (years) 56.40 (6.78)b,c 57.09 (6.38)c 62.28 (6.75) p<0.001 

Sex (M/F), n 10/21 17/13 20/12 p = 0.040 

Education (years) 12.80 (3.15) 13.63 (3.80) 11.62 (3.84) p = 0.094 

MMSE 28.16 (1.44) 27.30 (2.08) 27.46 (1.52) p = 0.115 

MOCA 26.32 (2.65) 24.96 (3.05) 25.62 (2.82) p = 0.183 

WMH (cm3) 0.72 (0.39)b,c 2.55 (0.87)c 10.75 (8.01) p<0.001 

Total GMV (cm3) 590.85 (58.39) 605.31 (59.90) 575.05 (51.92) p = 0.116 

Average SBP (mmHg) 126.94 (18.34) 131.09 (15.74) 131.36 (16.32) p = 0.514 

Total lacunes 0.35 (0.66) 0.4 (0.62) 2.13 (2.43) p<0.001 

Total microbleeds, n=68 0.16 (0.51) 0.36 (0.64) 1.54 (3.98) 0.132 

APOE4 Carrier, n 5/28 8/26 6/28 p = 0.513 

ADAS Delayed recall z-score 0.311 (1.11) 1.17 (1.85) 0.772 (0.99) p = 0.056 

ADAS Immediate recall z-score 0.435 (1.29) 0.998 (1.59) 0.848 (1.55) p = 0.315 

Color Trails 2 z-score -0.092 (0.97) 0.127 (0.84) -0.78 (3.49) p = 0.27 

FAB z-score 0.395 (0.68) 0.371 (0.78) 0.113 (1.10) p = 0.38 

Values represent mean (SD) unless otherwise indicated. 
Superscript letters indicate whether group mean was significantly different compared with bTercile 2, cTercile 3, 
based on post-hoc comparisons (p < 0.05) following one-way analysis of variance. 
Chi-square tests were carried out on sex. 
Abbreviations: MMSE, mini-mental state examination; MOCA, Montreal Cognitive Assessment; WMH, white 
matter hyperintensity; GMV, grey matter volume; SBP, systolic blood pressure; ADAS, Alzheimer’s disease 
assessment scale; FAB, frontal assessment battery. 
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regression model with GMV as the dependent variable 

and log-transformed WMH and total intracranial 

volume ratio as the independent variable of interest. 

Age at diagnosis and sex were added as covariates to 

the analysis. The GM clusters showing significant effect 

of WMH were examined using a threshold of 

uncorrected p<0.001 and a minimum cluster size of 100 

voxels [25, 48]. Significant GM clusters were identified 

using the Automated Anatomical Labelling atlas. This 

analysis was conducted separately for MCI and 

cognitively normal subjects. 

 

Associations between default mode network and 

executive control network regions of interest GMV 

and WMH load 

 

Pearson’s correlation analysis was used to assess the 

association between ROI GMV and WMH load in each 

tercile separately. Significant effect of WMH is reported 

at p<0.05 following False Discovery Rate (FDR) 

correction for multiple comparisons across the six 

regions of interest and then at a lower uncorrected 

threshold of p<0.05. Partial correlation analysis was 

used to assess the association between ROI GMV and 

WMH load while controlling for age at diagnosis, sex, 

hypertension status, systolic blood pressure, history of 

diabetes and hyperlipidaemia, separately. 

 

Associations between WMH load and cognition 

 

Pearson’s correlation analysis was used to assess the 

association between WMH load and cognition 

separately at each WMH tercile. Cognitive test z-scores 

comprising the ADAS delayed recall and ADAS 

immediate recall as well as Color Trails 2 and Frontal 

assessment battery were used in the analyses to 

represent memory and executive function assessments, 

respectively. 

 

Mediation and moderation effect of WMH load on 

the association between ROI GMV and cognition 

 

A mediation analysis was conducted to test whether 

ROI GMV mediated the effect of WMH on cognition. 

Individual mediation models were fitted for each GMV 

ROI and each cognitive test at terciles showing 

significant associations between WMH load and ROI 

GMV. Specifically, each model included WMH load as 

the predictor, ROI GMV as the mediator, and cognitive 

test scores as the outcome. Each model controlled for 

age at diagnosis and sex. The mediation model was 

significant if the relationship between WMH load and 

cognition was reduced when controlling for the 
mediator. The absence of a significant direct 

relationship between WMH and cognition after 

including the mediator was considered a full mediation. 

On the other hand a significant direct relationship after 

including the mediator was considered a partial 

mediation. 

 

A moderation analysis was conducted to assess whether 

ROI GMV moderated the relationship between WMH 

and cognition. For this, we carried out a linear 

regression analysis at each WMH tercile. Cognitive test 

z-scores comprising the ADAS delayed recall, ADAS 

immediate recall, Color Trails 2 and Frontal assessment 

battery were used in the linear regression model to 

represent memory and executive function assessments. 

An interaction term between ROI GMV and WMH load 

was included to assess the moderation effect. Age at 

diagnosis and sex were added as nuisance covariates in 

the linear regression model. Multiple comparisons 

correction across the six ROIs and four cognitive tests 

was conducted using False Discovery Rate (FDR) 

correction for multiple comparisons and then at a lower 

uncorrected threshold of p<0.05. 

 

The statistical analyses for mediation models was 

carried out using the Statistical Package for Social 

Sciences (SPSS, Inc; Chicago, IL, USA) version 23.0 

macro PROCESS [49]. Effect size estimation was 

applied using bias-corrected bootstrap estimation with 

5,000 resamples [50]. A bias-corrected 95% 

bootstrapped confidence interval (CI) that did not 

contain zero indicated a significant effect [50]. All other 

statistical analyses were conducted using R 3.0.3 (R 

CoreTeam, 2014) with RStudio (RStudio Team, 2012). 

 

RESULTS 
 

90 cognitively normal participants (Table 1A) with a 

mean age of 63.1 (SD 7.04), mean WMH of 3.80 (SD 

4.35) and 93 MCI participants (Table 1B) with a mean 

age of 58.65 (SD 7.09) years and mean WMH volume 

of 4.76 (SD 6.44) cm3 were studied. Participant 

demographics and cognitive characteristics categorized 

by tercile of WMH are summarized in Table 1A, 1B. 

Participant age was significantly different between 

WMH terciles. Participants did not differ on disease 

severity as indicated by their comparable global 

cognition, memory and executive function profiles 

(Table 1A, 1B). 

 

Associations between voxel-wise grey matter volume 

and WMH load in the cognitively normal and mild 

cognitive impairment 

 

In the cognitively normal, WMH load was not 

associated with GMV at tercile 1 or tercile 3 (Table 

2A). Only within tercile 2, higher WMH load was 

associated with lower GMV in the left precuneus, right 

middle temporal gyrus, right superior parietal and 
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Table 2. Associations between white matter hyperintensity load and voxel-wise grey matter volume in normal 
controls and mild cognitive impairment. 

A) Normal controls Region 
Peak t-

statistics 

Cluster 

size 

MNI 

coordinates 

Negative association between WMH load and GMV 

Tercile 2 

Left rectus 

Left precuneus; right superior parietal gyrus 

Right middle temporal gyrus 

Right superior parietal; right precuneus 

Left lingual gyrus 

Right lingual gyrus 

5.60 

5.01 

4.69 

4.60 

4.58 

4.44 

193 

168 

341 

329 

208 

146 

-9 26 -14 

-14 -75 56 

63 -48 -4 

16 -60 63 

14 -69 -10 

-20 -60 -12 

B) Mild cognitive impairment Region 
Peak t-

statistics 

Cluster 

size 

MNI 

coordinates 

Positive association between WMH load and GMV 

Tercile 1 Left angular gyrus 4.92 196 -48 -64 28 

Negative association between WMH load and GMV 

Tercile 1 

Right postcentral gyrus 

Right middle/superior frontal gyrus 

Right middle cingulum 

Right anterior cingulum 

Left middle/inferior frontal gyrus 

Left superior/medial frontal gyrus 

Right lingual gyrus 

Left inferior frontal, triangular part 

5.83 

5.60 

5.49 

4.75 

4.57 

4.50 

4.40 

4.25 

805 

277 

428 

183 

221 

118 

117 

190 

46 -16 38 

33 6 57 

15 -39 40 

3 39 22 

-40 44 -10 

-10 42 24 

26 -90 -16 

-36 27 6 

Tercile 3 

Left supramarginal gyrus 

Right superior parietal gyrus; right postcentral 

gyrus; right inferior parietal gyrus 

Left inferior parietal gyrus 

Right middle/inferior frontal gyrus 

Right precuneus; right middle cingulum 

Right angular gyrus 

6.08 

5.08 

 

 

4.49 

4.39 

4.13 

 

3.78 

909 

1172 

 

 

388 

127 

207 

 

102 

-54 -34 32 

26 -57 58 

 

 

-39 -54 52 

42 28 30 

9 -46 42 

 

45 -68 36 

All voxel-wise analyses controlled for age at diagnosis and sex. 
Abbreviations: WMH, white matter hyperintensity; GMV, grey matter volume. 

bilateral lingual gyrus (p<0.001, minimum cluster size = 

100 voxels). 

 

In MCI participants, at tercile 1, WMH was positively 

associated with GMV in areas involving the left angular 

gyrus (Table 2B) including voxels within the posterior 

parietal cortex (p<0.001, minimum cluster size = 100 

voxels; Figure 1A). Additionally, WMH load was also 

negatively associated with GMV primarily in 

frontoparietal regions involving the bilateral middle and 

superior frontal gyrus, bilateral anterior cingulum and 

left inferior frontal gyrus (p<0.001, minimum cluster 

size = 100 voxels). At tercile 3, WMH was only 

negatively associated with GMV in frontoparietal 
regions involving the right superior parietal gyrus, left 

inferior parietal, right middle and inferior frontal gyrus, 

left supramarginal gyrus, right precuneus and right 

angular gyrus (p<0.001, minimum cluster size = 100 

voxels; Figure 1B). 

 

Thus, due to the presence of differential associations 

between WMH and voxel-wise GMV in MCI in 

frontoparietal regions involving the ECN and DMN, we 

further investigated the influence of WMH on ROI-

based GMV in these networks as well as on the 

association between GMV and cognition at the MCI 

stage only. 

 

Associations between ROI grey matter volume and 

WMH load in mild cognitive impairment 

 
In individuals with WMH load within tercile 1, WMH 

volume was positively associated to GMV in the LPPC 

(r=0.48; p=0.0061, FDR-corrected p<0.05; Figure 1C). 
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These results remained significant after controlling for 

age at diagnosis, sex, hypertension status, systolic blood 

pressure, history of diabetes and hyperlipidaemia. No 

association between WMH volume and GMV was 

observed at tercile 2. 

 

However, at tercile 3, a negative relationship was 

observed between WMH and GMV such that 

increasing WMH load was associated with lower GMV 

across both the DMN and ECN: PCC (r=-0.44; 

p=0.011, FDR-corrected p<0.05), PCUN (r=-0.35; 

uncorrected p<0.05), LDLPFC (r=-0.42; p=0.016, 

FDR-corrected p<0.05), RDLPFC (r=-0.38; 

uncorrected p<0.05), LPPC (r=-0.47; p=0.006, FDR-

corrected p<0.05; Figure 1A); RPPC (r=-0.515; 

p=0.0025, FDR-corrected p<0.05; Figure 1D). 

Importantly, these results remained significant after 

controlling for age at diagnosis, sex, hypertension 

status, systolic blood pressure, history of diabetes and 

hyperlipidaemia. 

 

 
 

Figure 1. Load-dependent differential relationships between grey matter and white matter hyperintensity load in mild 
cognitive impairment. (A) The brain slice shows the positive association between voxel-wise GMV and WMH load at Tercile 1 in the left 
parietal cortex and angular gyrus (red) overlapping with the left posterior parietal cortex ROI (blue). Overlapping region is shown in purple. 
(B) The brain slice shows the negative association between voxel-wise GMV and WMH load at Tercile 3 in the left and right parietal cortex 
(red) overlapping with the right posterior parietal cortex ROI (blue). Overlapping regions are shown in purple. Results are shown at the 
uncorrected p<0.001 height threshold with an extent threshold of 100 voxels. Results are displayed on representative sections of the MNI 
template brain. In axial slices, the left side of the image corresponds to the left side of the brain. (C) In tercile 1, GMV in the left posterior 
parietal cortex was positively related to WMH load. No relationship was observed at tercile 2. At tercile 3, on the other hand, the inverse was 
observed, with increasing WMH load relating to lower GMV in the posterior parietal cortex. (D) Similarly, in the right posterior parietal cortex, 
increasing WMH load in the highest tercile 3 was related to lower GMV. Abbreviations: GMV, grey matter volume; WMH, white matter 
hyperintensity; Ter, Tercile; L, left; R, right; PPC, posterior parietal cortex; ROI, region of interest. 
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ROI grey matter volume moderates the relationship 

between WMH load and cognition in mild cognitive 

impairment 

 

A Pearson’s correlation analyses between log WMH/TIV 

in each tercile and cognitive performance on episodic 

memory (ADAS delayed recall, ADAS immediate recall) 

and executive function (color trails 2, frontal assessment 

battery) was carried out at the MCI stage. No significant 

associations were observed between low, medium or high 

WMH and cognitive performance. 

 

We found no mediation effect of DMN or ECN ROI 

GMV on the relationship between WMH load and 

cognition for any of the cognitive tests in MCI. 

 

On the other hand, a moderation analyses revealed 

significant moderating effects of ROI GMV on the 

association between cognition and WMH load. Thus, 

ROI GMV interacted with WMH load to influence 

cognitive function. Specifically, at tercile 1, the 

interaction of increasing WMH load and RDLPFC 

GMV (β=75.38; uncorrected p<0.05; Figure 2A) related 

to worse performance on the ADAS delayed recall test. 

Similarly, the interaction of increasing WMH load and 

PCUN GMV (β=60.19; uncorrected p<0.05; Figure 2B) 

associated with worse performance on the ADAS 

immediate recall test. Higher WMH load and LDLFPC 

(β=127.80; p=0.001, FDR-corrected p<0.05; Figure 2C) 

and RPPC (β=101.40; p=0.0053, FDR-corrected 

p<0.05; Figure 2D) GMV related to worse performance 

on the ADAS immediate recall test. These results were 

controlled for age at diagnosis and sex. 

 

No associations between WMH, GMV and 

memory/executive function were observed at tercile 2 in 

MCI. 

 

At tercile 3 i.e. the highest load of WMH, increasing 

WMH load interaction with ECN GMV related to lower 

FAB scores i.e. the LDLPFC (β=-41.9; uncorrected 

p<0.05; Figure 3A), RDLPFC (β=-40.8; uncorrected 

p<0.05) and LPPC (β=-61.90; uncorrected p<0.05; Figure 

3B). Additionally, increasing WMH load interaction with 

PCC GMV (β=36.50; uncorrected p<0.05; Figure 4A) 

related to worse performance on the ADAS delayed recall 

and increasing WMH load interaction with LDLPFC 

GMV (β=59.03; uncorrected p<0.05; Figure 4B) related 

to worse performance on the ADAS immediate recall test. 

These results were controlled for age at diagnosis and sex. 

 

DISCUSSION 
 

We demonstrate differential relationships between 

WMH load and voxel-wise and regional GM atrophy in 

the DMN and ECN with high WMH as hypothesized 

being negatively associated with GMV, however we 

additionally demonstrate low WMH to be positively 

associated with GMV. Such a differential relationship 

was only observed in the MCI stage with cognitively 

normal individuals showing consistently reduced GMV 

with all loads of WMH. Specifically, in MCI, low 

WMH load related to higher GMV in the ECN and 

lower voxel-wise frontoparietal GMV, however at 

higher WMH load, only a negative relationship was 

observed. At high WMH load, frontoparietal voxel-wise 

GMV and DMN and ECN ROI GMV demonstrated a 

negative relationship with increasing WMH burden. We 

also demonstrate GMV to be a key moderator in the 

relationship between WMH and cognition in MCI. 

Specifically, higher WMH was related to worse 

memory and executive function moderated by GMV in 

the DMN and ECN, while at low WMH load, only 

memory performance was affected. Our results 

highlight variable relationships between WMH and 

GMV, dependent on the amount of cerebral WMH 

burden and their subsequent association with cognition 

in participants with MCI, indicating that such 

associations cannot be assumed to be linear in nature. 

This variable relationship may have important 

implications in the clinical management of MCI patients 

with varying loads of WMH. 

 

Cerebral WMH has been associated with several 

mechanisms including small vessel cerebrovascular 

disease, GM atrophy and neuroinflammation [13, 20, 

25, 51, 52]. It has been widely assumed that irrespective 

of the underlying mechanism, increasing WMH load 

will result in progressive GMV loss. Our study 

demonstrates that this assumption is dependent on the 

baseline WMH load. While we demonstrate GMV 

decline in both the DMN and ECN ROI with high 

WMH volume, at low levels of WMH, this relationship 

is reversed and stage-dependent such that increasing 

WMH is associated with higher GMV, primarily in the 

ECN at the MCI stage. We additionally show, that at an 

intermediate load of WMH, the relationship between 

WMH load and GMV is stable and a negative 

relationship between increasing WMH load and ROI 

GMV is only observed when a certain threshold of 

WMH is reached. Our results are thus one of the first to 

shed light on a differential relationship between 

increasing WMH load and GMV, especially in the 

ECN, a network affected by the presence of 

cerebrovascular disease. In support of such findings, a 

few prior studies have illustrated increased cortical 

thickness related to the presence of WMH in older 

subjects without dementia [20, 53]. Increased cortical 

thickness has also been found in ageing studies likely 
indicative of local plasticity [54–56]. In patients with 

early stage cerebrovascular disease, inflammatory 

responses related to blood-brain barrier disruption may 
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lead to the build-up of WMH accompanied by an 

increase in brain structural measures [52, 57]. Prior 

studies have also attempted to characterise 

compensatory task-based and resting-state functional 

MRI alterations associated with neural and cognitive 

aging. Compensatory ageing-related increases in 

activation in the DMN and parietal lobes are thought to 

reflect remodelling and neuroplasticity related processes 

to help support cognitive performance [58–60]. 

Moreover, the presence of WMH appears to elicit a 

neuroplastic response by stimulating grey matter 

adaptations and functional connectivity increases [20, 

23]. An increase in number of synapses comprising 

synaptogenesis and increase in regional vasculature to 

compensate for ischaemia might be two possible 

mechanisms underlying increases in grey matter [23, 

61]. Such changes would help maintain function in the 

presence of deleterious cerebrovascular disease [62]. 

 

 
 

Figure 2. Grey matter volume in the default mode and executive control networks moderates the relationship between 
white matter hyperintensity volume and memory at low white matter hyperintensity load. In tercile 1, executive control 
network (A) RDLPFC, (C) LDLPFC, (D) RPPC and default mode network (B) PCUN grey matter volume moderated the relationship between 
memory (ADAS delayed recall, ADAS immediate recall) impairment and increasing WMH load. Abbreviations: ADAS, Alzheimer’s disease 
assessment scale; WMH, white matter hyperintensity; TIV, total intracranial volume; LDLPFC, left dorsolateral prefrontal cortex; RDLPFC, right 
dorsolateral prefrontal cortex; RPPC, right posterior parietal cortex; PCUN, precuneus; GMV, grey matter volume. 
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Such processes may underlie the relative sparing of 

GMV at low and intermediate WMH loads in our 

study in early stages of disease. However, the 

functional implications of these associations still 

remain under conjecture and future longitudinal 

studies are needed to understand the trajectory of 

structural changes from the at-risk preclinical stage to 

established disease stage. 

 

 
 

Figure 3. Grey matter volume in the executive control network moderates the relationship between white matter 
hyperintensity volume and executive function at high white matter hyperintensity load. The association between executive function 

(frontal assessment battery) decline and increasing WMH load in tercile 3 was moderated primarily by executive control network (A) LDLPFC, (B) 
RDLPFC and (C) LPPC grey matter volume. Abbreviations: WMH, white matter hyperintensity; TIV, total intracranial volume; LDLPFC, left 
dorsolateral prefrontal cortex; RDLPFC, right dorsolateral prefrontal cortex; LPPC, left posterior parietal cortex; GMV, grey matter volume. 

 

 
 

Figure 4. Grey matter volume in the default mode and executive control networks moderates the relationship between 
white matter hyperintensity volume and memory at high white matter hyperintensity load. In tercile 3, (A) default mode 
network PCC and (B) executive control network LDLPFC grey matter volume moderated the relationship between memory (ADAS delayed 
recall, ADAS immediate recall) impairment and increasing WMH load. Abbreviations: ADAS, Alzheimer’s disease assessment scale; WMH, 
white matter hyperintensity; TIV, total intracranial volume; LDLPFC, left dorsolateral prefrontal cortex; RDLPFC, PCC, posterior cingulate 
cortex; GMV, grey matter volume. 
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The finding of widespread negative association between 

WMH load and GMV at both the voxel-wise and ROI 

level at high WMH load evidenced in our study is 

supported by numerous prior studies [11, 13–16, 18–21, 

25]. However, the mechanisms underlying this 

relationship need to be examined further. One possible 

mechanism includes anatomical disruptions due to the 

presence of subcortical WMH lesions subsequently 

leading to structural alterations of the cortex because of 

anterograde degeneration [63] as well as damage to 

specific white matter tracts connecting these regions 

[24, 64]. High cerebrovascular disease burden has also 

been shown to be related to have repercussions on brain 

structure and cognition through increase in amyloid-

beta deposition or reduced amyloid-beta clearance [65, 

66]. Additionally, changes in cortical structures 

themselves can lead to axonal loss and demyelination 

due to Wallerian degeneration [67]. Furthermore, the 

presence of WMH likely reflects microvascular 

damage, hypoperfusion and ischaemia within the cortex 

which may also underlie reduced GMV in overlapping 

regions and those connecting tracts affected by WMH 

[68, 69]. Notably, in the present study, the relationships 

between WMH and GMV remain unchanged after 

controlling for both hypertension status and systolic 

blood pressure, thus suggesting the involvement of 

other independent WMH-related factors. Thus, in line 

with and in addition to previous findings, our results 

lend evidence to differential load-dependent 

relationships between WMH and brain structure. 

Importantly, studies examining early stages of AD must 

take into account the presence and influence of co-

morbid vascular risk factors as well as their potential 

interaction with AD-related brain pathology in order to 

determine their effects on disease progression. 

 

The influence of WMH on cognition is predominantly 

thought to result in poor outcomes with prior studies 

showing reduction in executive function, memory and 

global cognition including perceptual speed [13, 26]. 

However, in our study there were no pair-wise 

associations between WMH and cognition, nor between 

GMV and cognition. Instead, the negative association 

between WMH and cognition was significant only in 

the presence of ECN and DMN GMV. Specifically, at 

tercile 1, memory decline was associated with 

increasing WMH moderated by GMV in the DMN and 

ECN. At tercile 3, more widespread associations were 

observed. Memory function and executive function 

were negatively associated with increasing WMH 

moderated by GMV in the DMN and ECN. Our results 

thus support the notion that increasing WMH burden is 

related to more widespread cognitive decline, with this 
relationship being strengthened by GMV loss in 

frontoparietal regions. These findings are in line with 

prior studies showing cortical atrophy mediating the 

relationship between WMH and cognition including 

memory [11, 20, 21, 29]. Since GMV moderated the 

relationship between WMH and cognition at both low 

and high WMH loads, it is likely that GMV is an 

important moderator regardless of WMH load. 

Additionally, increasing load of WMH, specifically 

periventricular WMH may result in damage to 

cholinergic neurotransmitter systems, and result in 

cognitive decline [70]. Thus, further studies assessing 

the effect of varying WMH load on cognition and the 

role of regional GMV on this association at various 

stages of disease are required. 

 

The clinical relevance of our study may be that 

specifically in patients with MCI, presence of low 

burden of WMH may be indicative of an early stage of 

cortical dysfunction without neurodegeneration, 

wherein there is no grey matter loss, but instead there is 

compensatory grey matter increase [20, 53]. Detection 

of this stage (MCI with low burden of WMH) may 

provide a window of opportunity to institute 

interventions to retard the neurodegenerative process. 

However, when WMH load crosses a certain threshold, 

irreversible GMV loss begins and disease modifying 

interventions to slow GMV loss may be less beneficial. 

 

Limitations and future directions 

 

Our study has several limitations. Since our analyses are 

based on cross-sectional data, our findings need to be 

further validated using a longitudinal dataset. Some of 

our findings did not pass multiple comparisons 

correction due to our moderate sample size though we 

used normalised data and data-driven methods to 

classify our levels of WMH load. In addition, although 

our MCI group was comprised of largely the amnestic 

sub-type, the presence of non-amnestic MCI subjects 

might confound the relationship between WMH, GMV 

and cognition. Notably, our cohort is representative of 

urban populations in Asia and worldwide. The 

generalizability of our findings to older populations and 

patients with lower education attainment will need to be 

studied further in future studies. Patients in our cohort 

were largely of Chinese ethnicity and future studies 

should focus on inclusion of more ethnicities to assess 

the impact of ethnicity on the relationship between 

WMH load, GMV and cognition. We also do not have a 

sufficient sample size to study this effect on patients 

with AD dementia. Moreover, the amyloid and tau 

status of our subjects was not known, thus we were 

unable to assess the influence of these AD biomarkers 

on the relationship between WMH and brain structure. 

Thus, future work will need to involve understanding 
the interaction between AD risk factors, WMH and 

GMV as well as the effect of white matter disruption on 

cognition across the AD spectrum. 
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CONCLUSIONS 
 

In summary we demonstrate differential effects of 

WMH burden on grey matter atrophy in the DMN and 

ECN in a load-dependent manner. Our results further 

shed light on the non-unidirectional relationship 

between WMH load, GMV and cognitive performance. 

Detection of MCI with low WMH, may enable targeted 

therapeutic interventions to delay neurodegenerative 

changes in ECN and DMN regions. 
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