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Social	network	analysis	has	provided	important	insight	into	many	population	

processes	in	wild	animals.	Constructing	social	networks	requires	quantifying	the	

relationship	between	each	pair	of	individuals	in	the	population.	Researchers	often	

use	association	indices	to	convert	observations	into	a	measure	of	propensity	for	

individuals	to	be	seen	together.	At	its	simplest,	this	measure	is	just	the	probability	of	

observing	both	individuals	together	given	that	one	has	been	seen	(the	simple	ratio	

index).	However,	this	probability	becomes	more	challenging	to	calculate	if	the	

detection	rate	for	individuals	is	imperfect.	We	first	evaluate	the	performance	of	

existing	association	indices	at	estimating	true	association	rates	under	scenarios	

where	(1)	only	a	proportion	of	all	groups	are	observed	(group	location	errors),	(2)	

not	all	individuals	are	observed	despite	being	present	(individual	location	errors),	

and	(3)	a	combination	of	the	two.	Commonly	used	methods	aimed	at	dealing	with	

incomplete	observations	perform	poorly	because	they	are	based	on	arbitrary	

observation	probabilities.	We	therefore	derive	complete	indices	that	can	be	

calibrated	for	the	different	types	of	observation	probabilities	to	generate	accurate	

estimates	of	association	rates.	These	are	provided	in	an	R	package	that	readily	

interfaces	with	existing	routines.	We	conclude	that	using	calibration	data	is	an	

important	step	when	constructing	animal	social	networks,	and	that	in	their	absence,	

researchers	should	use	a	simple	estimator	and	explicitly	consider	the	impact	of	this	

on	their	findings.	
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	 A	foundation	of	animal	social	network	analysis	is	estimating	the	frequency	

that	two	individuals	associate	or	interact.	Social	networks	are	typically	a	description	

of	interconnections	that	are	formed	by	relationships	(edges)	among	multiple	

individuals	(nodes).	Social	network	analysis	is	a	set	of	tools	that	can	be	used	to	

describe	the	patterns	formed	by	these	interconnections	or	evaluate	these	against	

hypotheses	(Farine	&	Whitehead,	2015;	Whitehead,	2008).	One	feature	of	social	

network	analysis	that	is	perhaps	unique	to	studies	on	animal	populations	is	that	

researchers	rarely	have	a	complete	record	of	all	interactions	or	all	associations	(but	

see	Boogert,	Farine,	&	Spencer,	2014;	Farine,	Spencer,	&	Boogert,	2015;	Strandburg-

Peshkin,	Farine,	Couzin,	&	Crofoot,	2015).	Thus,	relationships	are	often	imperfectly	

sampled,	which	can	introduce	uncertainty	in	the	social	network.	To	account	for	

variation	in	sampling	effort	and	observation	frequency,	Cairns	and	Schwager	(1987)	

outlined	commonly	used	association	indices.	These	indices	convert	the	number	of	

observations	of	pairs	of	individuals	seen	associating	or	interacting	into	an	

association	rate,	representing	their	propensity	to	associate	or	their	probability	of	

being	observed	together.		

	 Incomplete	sampling	of	animal	interactions	or	associations	can	occur	due	to	

a	range	of	different	reasons.	We	can	classify	data	sets	as	having	two	possible	types	

of	missing	data	(Cairns	&	Schwager,	1987):	(1)	single	or	few	observers	can	only	

collect	data	on	one	or	a	few	groups	at	a	time	and	miss	many	simultaneous	

associations	or	interactions	occurring	elsewhere,	and	(2)	individuals	are	difficult	to	

observe	or	identify	and	missed	even	when	they	are	present.	In	type	(1),	while	a	

number	of	pairs	of	individuals	(also	known	as	dyads)	are	being	observed	together	in	

one	or	more	groups,	the	status	of	other	individuals	in	the	population	is	unobserved.	

In	type	(2),	when	one	or	more	groups	are	being	observed	they	are	incompletely	

sampled,	resulting	in	data	that	suggest	that	certain	dyads	were	not	interacting	or	

associating	even	when	they	were	and	could	have	been	observed	doing	so.	In	both	

cases,	the	relationships	inferred	from	the	observed	data	are	likely	to	be	influenced	

by	the	amount	of	data	that	was	missed.	However,	the	propensity	for	each	type	of	

missing	observations	to	impact	our	estimates	of	association	or	interaction	rates	and	

social	network	structure	remains	to	be	properly	explored.	
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	 Properly	controlling	for	missed	observations	is	one	of	the	most	important	

steps	in	social	network	analysis.	Using	simulated	data,	Franks,	Ruxton,	and	James	

(2010)	identified	the	impact	of	missing	observations	when	constructing	social	

networks.	They	found	that	missing	observations	between	known	individuals	was	

more	problematic	than	missing	individuals	altogether,	and	concluded	that	social	

network	sampling	should	maximize	the	amount	of	data	collected	about	known	

individuals	rather	than	maximizing	the	number	of	individuals	sampled.	One	reason	

for	this	is	because	a	key	component	of	social	networks,	weak	edges,	are	often	

disproportionately	likely	to	be	missed,	and	leaving	these	out	can	have	profound	

implications	on	the	structure	of	the	social	network	(Granovetter,	1973).	These	

findings	are	also	supported	by	the	work	of	Silk,	Jackson,	Croft,	Colhoun,	and	Bearhop	

(2015)	who	explored	the	effect	of	completely	missing	individuals	in	the	social	

network.	They	found	that,	with	adequate	sampling,	having	as	few	as	30%	of	

individuals	known	can	be	enough	to	produce	informative	networks	for	hypothesis	

testing.	

	 Missing	observations	that	could	have	been	recorded	can	have	large	impacts	

on	the	social	network	that	is	generated,	and	these	impacts	are	made	worse	when	

particular	individuals	are	missed	more	often	than	others.	Farine	and	Whitehead	

(2015)	recently	demonstrated	how	small	differences	in	the	likelihood	of	observing	

individuals	of	different	classes	can	introduce	systematic	biases	in	their	social	

network.	They	first	simulated	observations	of	individuals	associating	with	preferred	

and	avoided	associates.	They	then	introduced	a	small	observation	bias,	in	this	case	

reducing	the	probability	of	observing	one	of	two	classes	of	individuals	to	80%	by	

removing	20%	of	the	observations	of	those	individuals.	This	resulted	in	a	significant	

effect	of	class	on	degree	(the	sum	of	the	association	strengths	in	the	nodes	with	

intact	data	was	higher	than	in	the	nodes	where	data	had	been	removed).	This	means	

that	the	social	network	estimated	for	the	individuals	in	this	population	is	incorrect.	

	 In	this	paper,	we	theoretically	re-evaluate	existing	association	indices	and	

derive	new	measures	to	deal	with	missing	observations	of	groups,	missing	

individuals	in	groups,	and	the	combination	of	these.	We	show	that	the	extent	that	

existing	association	indices	adjust	estimates	of	association	strength	is	entirely	
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arbitrary,	and	are	as	likely	to	overcorrect	any	bias	that	might	occur	as	they	are	to	

reduce	it.	Existing	association	indices	can	also	perform	poorly	at	estimating	relative	

association	strengths,	which	has	implications	for	many	social	network	studies.	We	

instead	derive	improved	association	indices	that	enable	researchers	to	correct	

properly	for	the	biases	arising	from	group	location	error	and	individual	

identification	error,	and	discuss	how	to	collect	appropriate	calibration	data.	Finally,	

we	provide	an	R	package	‘assocInd’	that	allows	researchers	to	calculate	accurate	

association	indices	for	pairs	of	individuals	from	their	observation	data,	and	to	

simulate	the	effects	of	different	types	of	errors	on	estimates	of	associations.	

	

THE	SIMPLE	RATIO	AND	THE	HALF-WEIGHT	INDEX	

	

	 The	purpose	of	an	association	index	is	to	estimate	the	proportion	of	time	any	

two	individuals,	a	and	b,	spent	associated.	Association	indices	typically	range	from	0	

(the	two	individuals	were	never	observed	together)	to	1	(the	individuals	are	always	

seen	together).	The	resulting	association	rates	are	often	used	as	a	proxy	to	quantify	

the	propensity	for	pairs	of	individuals	to	interact	(Farine,	2015;	Whitehead	&	

Dufault,	1999),	although	the	assumption	that	individuals	interact	in	proportion	to	

their	association	rate	should	be	considered	on	a	case-by-case	basis	(Castles	et	al.,	

2014).	Association	data	are	collected	by	repeatedly	sampling	the	population,	and	

recording	who	is	associating	with	whom	in	each	sampling	period.	For	any	two	

individuals,	we	can	then	calculate:	

	

�:	the	number	of	sampling	periods	with	a	and	b	observed	associated.	

�∃:	the	number	of	sampling	periods	with	just	a	identified.	

�%:	the	number	of	sampling	periods	with	just	b	identified.	

�∃%:	the	number	of	sampling	periods	with	a	and	b	identified	but	not	

associated.	

�&∋((:	the	number	of	sampling	periods	with	neither	a	nor	b	identified.	
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	 In	an	ideal	scenario,	every	individual	is	seen	and	correctly	identified	in	every	

sampling	period,	such	as	in	many	captive	populations,	or	at	least	we	have	the	

situation	where	�&∋(( = 0.	Intuitively,	in	the	ideal	scenario,	researchers	can	validly	

use	the	simple	ratio	index	(SRI),	� �∃ + �% + �∃% + � ,	as	an	estimate	of	the	

proportion	of	time	a	and	b	spend	together.	However,	when	errors	arise	from	

missing	observations,	it	is	less	clear	that	the	simple	ratio	is	appropriate.	The	most	

commonly	used	approach	for	correcting	association	indices	to	account	for	missing	

observations	is	to	reduce	the	weighting	given	to	observations	of	just	one	individual	

(because	we	have	a	lower	confidence	in	these).	Because	missing	observations	are	

widespread	in	behavioural	research,	many	researchers	use	the	half-weight	index	

(HWI):	� −

.
�∃ + �% + �∃% + � .	This	index	is	believed	to	correct	for	the	biases	

arising	from	such	error,	in	particular	when	individuals	are	relatively	more	likely	to	

be	detected	when	they	are	apart	than	when	they	are	together.	When	investigating	

the	performance	of	association	indices,	Cairns	and	Schwager	(1987)	found	that	the	

HWI	resulted	in	lower	bias	and	lower	error	for	a	given	estimate	than	the	simple	

ratio	when	observations	were	missed.	However,	while	this	has	served	as	useful	

justification	for	many	researchers,	it	is	also	important	to	note	that	Cairns	and	

Schwager	(1987)	reported	up	to	four	times	greater	error	in	the	HWI	than	what	they	

achieved	using	a	maximum	likelihood	function	(see	also	below).	Furthermore,	they	

noted	a	number	limitations	of	association	indices	arising	from	hidden	assumptions.	

	 Here	we	revisit	some	of	the	assumptions	of	the	half-weight	index.	Notably,	

we	show	that	the	extent	to	which	the	half-weight	index	adjusts	estimates	of	

association	is	entirely	arbitrary,	and	is	as	likely	to	‘overcorrect’	any	bias	that	might	

occur	as	it	is	to	reduce	that	bias.	Note	that	an	alternative	variant	to	the	HWI,	the	

twice-weight	index	(TWI),	� 2 �∃ + �% + �∃% + � ,	is	a	monotonic	function	of	the	

HWI	and	thus	we	do	not	investigate	it	in	this	paper.	Ginsberg	and	Young	(1992)	

previously	raised	the	issue	that	the	HWI	and	TWI	use	arbitrary	weightings,	and	they	

predicted	that	association	indices	will	continue	to	be	widely	used.	Indeed,	the	HWI	

is	still	the	most	commonly	used	index	in	animal	social	network	studies.		
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	 A	first	consideration	is	to	determine	what	constitutes	an	association.	

Researchers	commonly	make	the	simplifying	assumption	that	all	individuals	

observed	together	(and	apart	from	other	individuals,	i.e.	in	a	group)	are	associated	

with	each	other	(the	gambit	of	the	group).	However,	the	appropriate	definition	of	

‘group’	will	depend	on	the	species	being	studied	and	the	question	being	addressed	

(Whitehead,	2008).	For	some	questions,	a	‘group’	need	not	be	a	social	group	but	

may	simply	be	an	aggregation	of	individuals	in	close	proximity	(e.g.	when	

determining	who	is	likely	to	have	had	an	opportunity	to	interact	with,	or	observe	

and	learn	socially	from,	another	individual).	When	using	this	gambit	to	collect	

association	data,	researchers	list	the	individuals	in	each	group	found	for	each	

sampling	period	(henceforth	‘group-level	data’).	For	simplicity,	in	our	discussion	

and	terminology	we	assume	that	the	gambit	of	the	group	is	being	used.	Therefore,	

we	consider	the	effect	of	cases	where	entire	groups	are	missed	in	a	sampling	period	

(group	location	error)	and	when	a	group	is	located	but	one	or	more	individuals	in	

that	group	are	missed,	or	they	are	not	identified	(individual	identification	error).	

However,	our	mathematical	models	themselves	do	not	assume	the	gambit	of	the	

group	is	being	used,	since	they	are	framed	in	terms	of	the	probabilities	that	a	

member	of	a	dyad	will	be	missed	when	both	individuals	are	together	versus	when	

they	are	apart.	This	is	equally	applicable	to	data	recorded	on	an	individual	basis,	

where	a	record	is	made	of	who	each	individual	is	associated	with	(henceforth	

‘individual-level	data’).	In	such	cases	the	group	location	error	can	be	thought	of	as	

‘dyad	location	error’.	Consequently,	the	indices	derived	in	this	paper	are	applicable	

to	both	group-level	and	individual-level	data.	

	 To	address	the	need	to	properly	correct	for	biases	arising	from	group	

location	error	and	individual	identification	error,	we	derive	improved	association	

indices	that	can	be	calibrated	independently	for	each	study.	We	start	by	addressing	

the	impact	of	group	location	error	before	moving	on	to	the	effect	of	individual	

identification	error,	and	finally	the	combination	of	the	two.	

	

CORRECTING	FOR	GROUP	LOCATION	ERROR	
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	 Here	we	start	with	the	assumption	that	if	you	see	individual	a	in	a	group	but	

do	not	see	b	in	that	group,	you	know	a	is	not	with	b,	and	vice	versa.	This	assumption	

will	be	valid	if	there	is	no	individual	identification	error	(i.e.	all	the	individuals	in	a	

group	that	is	located	by	the	researcher	will	always	be	identified).	However,	

uncertainty	remains	for	all	of	the	sampling	periods	in	which	we	did	not	see	a	or	b,	

since	we	do	not	know	if	they	were	together	during	such	periods.	

	 Let	us	denote	the	event	that	a	and	b	are	together	in	a	sampling	period	as	ab	

and	the	event	that	they	are	not	together	as	!ab.	The	aim	is	to	estimate	the	

association	between	a	and	b,	aab	=	P(ab).	We	start	by	developing	a	maximum	

likelihood	estimator	(MLE)	for	aab.	In	any	given	sampling	period,	the	probability	we	

see	only	individual	a	(i.e.	not	b),	is	given	by:	

	

P(see	a,	not	see	b)	=	P(see	a|!ab)	(1	–	P(see	b|!ab))	(1	-	aab)	

	

Note	that	P(!ab)	=	1	-	P(ab)	=	1	–	aab.	The	probability	of	seeing	a	and	b	in	different	

groups	is	given	by:	

	

P(see	a,	see	b)	=	P(see	a|!ab)	P(see	b|!ab)	(1	-	aab)	

	

The	probability	of	seeing	a	and	b	together	in	a	group	is:	

	

P(see	ab)	=	P(see	ab|ab)	aab	

	

And	the	probability	of	seeing	neither	a	nor	b	is:	

	

P(not	see	a,	not	see	b)	=	(1	-	P(see	a|!ab))	(1	–	P(see	b|!ab))	(1	-	aab)	+	(1	–	

P(not	see	ab|ab)	aab	

	

From	this	we	can	derive	the	log	likelihood,	L,	for	the	data	obtained:	

	

L=ya[log(P(see	a|ab))	+	log([1	-	P(see	b|!ab)])	+log(1	-	aab)]		
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+	yb[log(P(see	b|!ab))	+	log([1	-	P(see	a|!ab)])	+	log(1	-	aab)]	

+	yab[log(P(see	a|!ab))	+	log(P(see	b|!ab))	+	log(1	-	aab)]	

+x[log(P(see	ab|ab))	+	log(aab)]	

+	yNull	log[(1	-	P(see	a|!ab))(1	-	P(see	b|!ab))(1	-	aab)	+	(1	-	P(see	ab|ab))aab]	

	

This	simplifies	to:	

	

L	=	(ya+	yb	+	yab)	log(1	-	aab)	+	x	log(aab)	+	ya	[log(1	-	A)	+	log(B)]	+	yb[log(1	-	

B)+log(A)]	+	yab[log(1	-	A)	+	log(1	-	B)]	+	x	log(1	-	C)	+	yNull	log[AB(1	-	aab)	+	C	

aab]	

	

where	A	=	P(!see	a|!ab);	B	=	P(!see	b|!ab);	C	=	P(!see	ab|ab).	We	can	find	the	

maximum	likelihood	estimator,	�∃%	by	solving:	

	

d�

d�∃%
= −

�∃ + �∃ + �∃%

1 − �∃%
+

�

�∃%
+ �&∋((

� − ��

��∃% + �� 1 − �∃%
= 0	

	

In	practice,	A	(the	probability	of	not	seeing	a	when	a	and	b	are	not	together),	B	(the	

probability	of	not	seeing	b	when	a	and	b	are	not	together)	and	C	(the	probability	of	

not	seeing	a	or	b	when	they	are	together)	will	not	be	known.	Thus,	to	estimate	an	

accurate	value	for	the	association	strength	between	two	individuals	requires	

validation	data	at	the	level	of	individuals.	However,	progress	can	be	made	by	making	

different	assumptions	about	the	relationship	between	A,	B	and	C.	First,	if	C	=	AB,	the	

MLE	is:	

		

�∃% =
�

�∃ + �% + �∃% + �
	

	

which	is	the	simple	ratio	index.	So,	if	the	probability	of	failing	to	see	a	and	b	together	

is	the	same	as	the	probability	of	failing	to	see	both	when	they	are	apart,	then	the	SRI	
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is	valid.	Note	also	that	the	simple	ratio	is	valid	as	an	MLE	if	yNull	=	0,	as	intuition	

suggests.		

	 Alternatively,	we	could	assume	that	� = ��(1 + ω),	where	failing	to	observe	

a	group	containing	individuals	a	and	b	is	more	(ω > 0)	or	less	(ω < 0)	likely	than	

failing	to	observe	both	the	group	containing	individual	a	and	the	group	containing	

individual	b	when	a	and	b	are	not	together.	In	this	case	the	MLE	is	given	by	the	

solution	to:	

	

−
�∃ + �% + �∃%

1 − �∃%
+

�

�∃%
+ �&∋((

ω

ω�∃% + 1
= 0,	

	

which	can	be	rearranged	to	form	a	quadratic:		

	

−ω��∃%
Α
+ (�ω + �&∋((ω− �Β)�∃% + � = 0,		

	

where	�Β 	is	the	number	of	directly	informative	sampling	periods,	i.e.	�Β = �∃ + �% +

�∃% + �,	and	T	is	the	total	number	of	sampling	periods,	i.e.	� = � + �&∋((.	The	MLE	is	

given	by	the	lower	root	of	this	equation,	i.e.	

	

�∃% =
−(�ω + �&∋((ω− �Β) − (�ω + �&∋((ω− �Β)

Α + 4ω��

−2ω�
	

	

We	term	this	index	the	group	location	error	corrected	index	(GLECI).	As	expected,	

the	GLECI	reduces	to	the	simple	ratio	index	�∃% = �/�	when	�&∋(( = 0.	The	standard	

error	(see	Supplementary	Material	for	derivation)	can	be	calculated	as	for	a	

proportion,	 �∃% 1 − �∃% �Γ,	but	with	an	effective	sample	size	of:	

	

�Γ = �Β + �&∋((
ω�∃% 1 − �∃%

ω�∃% + 1
Α
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assuming	sampling	periods	are	sufficiently	spaced	in	time	and/or	space	to	assume	

they	are	independent.	

	

CORRECTING	FOR	INDIVIDUAL	IDENTIFICATION	ERROR	

	

	 Here	we	assume	that	there	is	no	group	location	error,	but	define	the	

probability	of	failing	to	identify	an	individual	in	a	group	that	has	been	under	

observation,	i.e.	the	individual	observation	error	rate,	as	�.	(In	the	case	of	individual-

level	data	this	amounts	to	the	assumption	that	if	only	one	individual	in	a	dyad	is	

seen,	we	do	not	know	whether	that	dyad	was	associated	or	not,	in	contrast	to	the	

group	location	error	above).		We	suspect	this	scenario	will	be	rare,	as	individual	

identification	error	will	usually	be	accompanied	by	group	location	error	(see	next	

section).	However,	we	consider	the	case	in	order	to	analyse	the	effect	of	the	two	

types	of	error.	We	get	the	following	probabilities:	

	

� see	a, see	b = 1 − � Α(1 − �∃%)	

� see	ab = 1 − � Α�∃%	

� not	see	a, not	see	b = �Α	

� see	a, not	see	b = +	� 1 − � 	

	

Therefore	the	likelihood	for	the	data	can	be	obtained	as:	

	

� = �∃% 2 log 1 − � + log(1 − �∃%) + � 2 log 1 − � + log(�∃%) + �&∋(( 2 log �

+ �∃ + �% log � + log 1 − � 	

	

And	the	MLE	found	as	follows:	

	

d�

d�∃%
=

−�∃%

1 − �∃%
+

�

�∃%
= 0	
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−�ΘΡ − � �∃% + � = 0	

�∃% =
�

�∃% + �
	

	

In	this	case	the	MLE	�∃%	is	a	simple	proportion,	using	only	the	�	and	�∃%	counts	as	

informative	data,	and	requires	no	calibration	data.	The	terms	�∃	and	�%	are	not	used,	

in	contrast	to	the	simple	ratio	and	half-weight	indices,	since	they	are	known	to	be	

unreliable	in	this	scenario:	if	only	individual	a	is	recorded,	it	is	possible	that	

individual	b	was	associated	with	individual	a	and	has	been	missed	through	

individual	identification	error.	We	call	this	index	the	very	simple	ratio	index	(vSRI).	

The	standard	error	(see	Supplementary	Material	for	derivation)	is	calculated	for	a	

proportion	as	usual	with	 �∃% 1 − �∃% �Γ,	with	an	effective	sample	size	of	�Γ =

�∃% + �,	assuming	sampling	periods	are	sufficiently	spaced	in	time	and/or	space	to	

assume	they	are	independent.	

	

GENERAL	ERROR	MODEL	

	

	 In	practice,	both	types	of	error	are	likely	to	occur	in	a	given	sampling	

procedure.	To	model	this	situation,	we	define	a	model	with	a	more	general	

relationship	between	the	errors	in	each	count.	We	define:	

	

� see	a, see	b = 1 −	∈∃|!∃% 1 −	∈%|!∃% (1 − �∃%)	

� see	ab = 1 −	∈∃|∃%− 	∈%|∃%−	∈∃%|∃% �∃%	

� not	see	a, not	see	b =	∈ΘΡ|ΘΡ �∃% +	∈∃|!∃%∈%|!∃% (1 − �∃%)	

� see	a, not	see	b =	∈%|∃% �∃% + 1 −	∈∃|!∃% ∈%|!∃% (1 − �∃%)	

	

where	∈∃|!∃%	is	the	probability	of	missing	a,	given	a	is	not	with	b;	∈∃|∃%	is	the	

probability	of	missing	a,	but	not	b,	given	a	is	with	b;	and	∈∃%|∃%	is	the	probability	of	

missing	a	and	b	given	they	are	together.	
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	 Note	that	the	group	location	error	scenario	is	the	special	case	with	∈∃|!∃%= �;	

∈%|!∃%=	B;	∈∃%|∃%= � = 1 + ω �� = 1 + ω ∈∃|!∃%∈%|!∃%;	∈∃|!∃%=∈%|!∃%= 0.	The	

individual	identification	error	scenario	is	given	by	∈∃|!∃%=∈%|!∃%= �;	∈∃|!∃%=∈%|!∃%=

	�(1 − �);	∈∃%|∃%= �Α.	Thus,	when	group-level	data	are	being	collected,	the	general	

error	model	can	be	seen	as	a	combination	of	group	location	error	and	individual	

identification	error.	When	individual-level	data	are	being	collected,	the	model	can	

be	seen	as	a	general	model	of	how	the	error	is	related	to	whether	members	of	a	

dyad	are	associated	or	not.		

	 Let	us	assume	that	the	probability	of	missing	both	a	and	b	when	they	are	in	

the	same	group	is	 1 + ω 	×	the	probability	of	missing	a	and	b	when	they	are	not	

together	(where	ω > −1).	The	probability	that	both	a	and	b	will	be	missed	when	

they	are	together	is	therefore:	

	

	 ∈∃%|∃%= 1 + ω 	∈∃|!∃%∈%|!∃%	

	

The	probability	of	at	least	one	of	a	or	b	being	missed	is	∈= 1 − �(see	ab|ab).	Let	us	

set	∈∃%|∃%= ϕ ∈,	where	0 < ϕ ≤ 1.	Since	∈=∈∃|∃%+∈%|∃%+∈∃%|∃%	

	

	 ∈∃|∃%+∈%|∃%= 1 − ϕ ∈	

∈∃|∃%+∈%|∃%=
1 − ϕ 1 + ω ∈∃|!∃%∈%|!∃%

ϕ
	

	

We	can	make	the	simplifying	assumption	that	∈∃|∃% ∈∃|∃%+∈%|∃% =

∈∃|!∃% ∈∃|!∃%+∈%|!∃% .	This	simply	means	that	the	relative	probability	of	missing	

each	individual	is	not	dependent	on	whether	the	dyad	is	associated,	for	example	if	

individual	a	is	twice	as	likely	to	be	missed	as	individual	b	when	they	are	apart,	then	

individual	a	is	also	twice	as	likely	as	b	to	be	missed	when	they	are	together.	It	seems	

reasonable	to	assume	that	individual	elusiveness	is	approximately	consistent	in	this	

manner.		This	gives	us:	
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∈∃|∃%=
1 − ϕ 1 + ω ∈∃|!∃%

Α∈%|!∃%

ϕ ∈∃|!∃%+∈%|!∃%
	

	

where	ϕ	determines	the	relative	importance	of	group	location	error	relative	to	

individual	identification	error,	with	the	group	location	error	model	given	when	ϕ =

1.	We	can	now	refine	the	probabilities	given	above:	

	

� see	a, see	b = 1 −∈∃|!∃% 1 −∈%|!∃% (1 − �∃%)	

� see	ab = 1 − 1 + ω ∈∃|!∃%∈%|!∃% ϕ �∃%	

� not	see	a, not	see	b = 1 + ω ∈∃|!∃%∈%|!∃% �∃% +∈∃|!∃%∈%|!∃% (1 − �∃%)	

� see	a, not	see	b

=	∈%|!∃%
1 − ϕ 1 + ω ∈%|!∃%∈∃|!∃%

ϕ ∈∃|!∃%+∈%|!∃%
�∃% + 1 −∈∃|!∃% (1

− �∃%) 	

	

Giving	a	log	likelihood	of:	

	

� = �∃ log ∈%|!∃% + log
1 − ϕ 1 + ω ∈%|!∃%∈∃|!∃%

ϕ ∈∃|!∃%+∈%|!∃%
�∃% + 1 −∈∃|!∃% (1 − �∃%)

+ �% log ∈∃|!∃%

+ log
1 − ϕ 1 + ω ∈%|!∃%∈∃|!∃%

ϕ ∈∃|!∃%+∈%|!∃%
�∃% + 1 −∈%|!∃% (1 − �∃%)

+ �∃% log 1 −∈∃|!∃% + log 1 −∈%|!∃% + log(1 − �∃%)

+ � log 1 − 1 + ω ∈∃|!∃%∈%|!∃% + log �∃%

+ �&∋((log 1 + ω ∈∃|!∃%∈%|!∃% �∃% +∈∃|!∃%∈%|!∃% (1 − �∃%) 	

	

To	obtain	the	MLE,	�∃%,	we	need	to	solve	the	equation:	
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d�

d�∃%
=

�∃
1 − ϕ 1 + ω ∈%|!∃%∈∃|!∃%

ϕ ∈∃|!∃%+∈%|!∃%
− 1 −	∈∃|!∃%

1 − ϕ 1 + ω ∈%|!∃%∈∃|!∃%

ϕ ∈∃|!∃%+	∈%|!∃%
�∃% + 1 −	∈∃|!∃% (1 − �∃%)

+

�Ρ
1 − ϕ 1 + ω ∈%|!∃%∈∃|!∃%

ϕ ∈∃|!∃%+ 	∈%|!∃%
− 1 −	∈%|!∃%

1 − ϕ 1 + ω ∈%|!∃%∈∃|!∃%

ϕ ∈∃|!∃%+	∈%|!∃%
�∃% + 1 − 	∈%|!∃% (1 − �∃%)

−
�∃%

1 − �∃%

+
�

�∃%
+

�&∋(( 1 + ω ∈∃|!∃%∈%|!∃%	− 	∈∃|!∃%∈%|!∃%

1 + ω ∈∃|!∃%∈%|!∃% �∃% +	∈∃|!∃%∈%|!∃% (1 − �∃%)
= 0	

	

	 To	generate	an	estimate	of	association	using	this	function	first	requires	

values	for	ω	(the	group	location	error	term)	and	ϕ	(the	error	components	

importance	term).	These	could	reasonably	be	calibrated	at	the	population	level	(i.e.	

we	could	assume	that	these	quantities	are	constant	across	all	dyads).	However,	the	

estimate	also	requires	estimates	for	∈∃|!∃%	and	∈∃|!∃%,	which	require	calibration	data	

at	the	level	of	individuals,	making	this	approach	infeasible	in	most	cases.	None	the	

less,	we	might	obtain	an	approximate	solution,	�∃%,	if	we	substitute	a	population	

averaged	estimate	(averaged	across	all	dyads,	or	those	dyads	for	which	data	is	

available),	∈=∈∃|!∃%=∈%|!∃%:	

	

�∃ + �%
1 − ϕ ϕ 1 + ω ∈ −2 1	−	∈

1 − ϕ ϕ 1 + ω ∈ �∃% + 2 1	−	∈ (1 − �∃%)
−

�∃%

1 − �∃%
+

�

�∃%

+
�&∋((ω

ω�∃% + 1
= 0	

	

	 The	calibration	measures	required	to	solve	this	equation	are	ω,ϕ	and	∈,	and	

can	be	solved	using	a	nonlinear	equation	solver.	We	call	the	solution	to	this	equation	

�∃%,	the	combined	errors	corrected	index	(CECI).	In	our	R	package,	we	provide	a	

function	that	calculates	the	CECI	in	the	R	statistical	environment	(R	Development	

Core	Team,	2017),	using	the	‘uniroot’	function	in	the	‘rootSolve’	package	(Soetaert	&	
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Herman,	2009).	Note	that	by	setting	ϕ = 1,	we	reduce	the	model	to	the	group	

location	error	model,	giving	�∃%	as	the	GLECI.	We	can	also	reduce	the	model	to	the	

individual	identification	error	model	by	setting	∈∃|∃%	= 	∈%|∃%	=	∈ (1	−	∈)	and	

∈∃%|∃%	= 	∈Α,	giving	us	ϕ = ∈ 2	−	∈ 	and	ω = 0.	Thus	�∃%	reduces	to	the	vSRI.	

	

COMPARISON	OF	INDEX	PERFORMANCE	

	

	 In	this	section	we	examine	how	the	SRI,	HWI,	GLECI,	vSRI	and	CECI	perform	

under	scenarios	where	there	is	group	location	error,	individual	identification	error,	

and	a	combination	of	the	two.	In	simple	cases	we	do	this	by	first	deriving	

expressions	for	the	expected	value	of	each	index,	and	then	dividing	by	the	value	it	is	

intended	to	estimate,	� �∃% �∃%,	thus	showing	us	the	circumstances	under	which	

�∃%	is	biased	upwards	or	downwards.	However,	we	also	recognize	that	in	many	

circumstances	only	the	relative	sizes	of	�∃%	within	the	social	network	may	be	

required,	e.g.	if	estimating	scale-free	node-based	or	network	metrics.	Consequently,	

we	also	derive	 � �∃% � �∋Ζ �∃% �∋Ζ 	to	determine	the	circumstances	under	

which	each	index	tends	to	overestimate	or	underestimate	ratios	of	association	

values.	Here	u	and	v	denote	a	different	dyad,	so		 � �∃% � �∋Ζ �∃% �∋Ζ 	

measures	the	bias	when	index	�∃%	is	used	to	estimate	the	relative	strength	of	two	

associations.	

	 In	each	case	we	also	use	simulations	to	illustrate	the	performance	of	the	

indices	for	a	given	set	of	values,	investigate	bias	where	we	were	unable	to	do	so	

analytically	and	examine	the	performance	of	Wald	95%	confidence	intervals	

calculated	from	the	standard	errors	presented	above.	For	each	scenario,	we	

simulated	10	000	data	sets	consisting	of	1000	independent	sampling	periods	(to	

ensure	we	have	high	certainty	of	the	estimate	of	the	mean	of	the	estimated	

association	indices)	for	two	individuals	a	and	b,	in	the	R	statistical	environment	(R	

Development	Core	Team,	2017).	We	start	by	allocating	the	probability	�∃% = 0.5	

that	a	and	b	were	associating	in	a	given	sampling	period.	We	then	repeated	all	

simulations	with	�∃% = 0.25	and	�∃% = 0.75	and	found	results	were	qualitatively	
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similar	in	each	case.	Here	we	present	the	results	for	the	value	of	�∃%	that	shows	the	

bias	most	clearly	in	each	case	(by	avoiding	ceiling	or	floor	effects).	We	then	

simulated	the	observation	process	according	to	the	models	described	above,	to	yield	

values	for	�∃, �%,	�∃%, �	and	�&∋((		that	we	used	to	calculate	the	value	of	each	of	the	

target	association	indices.	For	each	scenario,	we	repeated	the	simulation	for	a	range	

of	values	of	group	location	and	individual	identification	errors.	For	the	scenario	

including	only	group	location	error,	we	ran	simulations	for	a	range	of	values	of	ω =

	 −0.9, −0.8, … ,2.5 	with	A	=	B	=	0.5,	where	A	=	P(!see	a|!ab)	and	B	=	P(!see	b|!ab).	

For	the	scenario	including	only	individual	identification	error,	we	ran	simulations	

for	a	range	of	values	of	∈= 	 0,0.05, … ,0.95 .	For	the	scenario	with	both	types	of	

error,	we	varied	ω =	 −0.9, −0.8, … ,0.9 ,	∈	= 	 0.1, 0.3,0.5 	and	ϕ =	 0.1, 0.3,0.5 ,	

excluding	impossible	cases	where	 1 + ω ∈Α ϕ > 1,	since	this	would	mean	there	is	

a	negative	probability	of	observing	a	and	b	together.	In	each	case	we	recorded	the	

mean	value	for	each	association	index,	in	order	to	detect	bias,	and	the	proportion	of	

times	the	Wald	95%	confidence	intervals	(calculated	as	±1.96	×	SE)	contained	the	

true	value	for	�∃%.	

	 However,	recall	that	the	CECI	relies	on	an	approximation,	∈	= 	∈∃|!∃%	=	∈%|!∃%,	

which	replaces	the	individual	specific	error	rates	with	population-level	ones.	The	

simulations	described	above	only	test	the	performance	of	the	combined	errors	

when	this	approximation	holds	in	the	data,	i.e.	when	error	rates	are	the	same	across	

all	individuals.	Consequently,	we	reran	simulations	to	test	the	performance	of	the	

CECI	when	there	was	individual	variation	in	error	rate.	In	each	case	we	set	the	

population	mean	error,	∈,	arbitrarily	to	0.5,	but	drew	individual	errors	from	a	

normal	distribution	with	standard	deviation	σ = 0,0.2, … 2.0 ,	discarding	and	

resampling	values	that	were	<0	or	>1,	and	likewise	for	∈%|!∃%.	We	then	conducted	the	

simulations	as	described	above	with	ϕ = 0.5.	

	

Group	Location	Error	Only	
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	 We	find	that	the	GLECI	is	an	unbiased	estimator	of	�∃%	(see	Table	1,	Fig.	1)	

across	a	range	of	group	location	errors	ω.	By	contrast,	the	simple	ratio	is	biased	

upwards	when	ω < 0	(i.e.	when	a	and	b	are	less	likely	to	be	missed	when	associated	

than	both	are	to	be	missed	when	apart)	and	biased	downwards	when	ω > 0.		The	

commonly	used	HWI	shifts	the	estimate	of	�∃%	upwards,	such	that	it	is	biased	

upwards	when	�� 1 + ω < � + � 2	and	biased	downwards	when	�� 1 + ω >

� + � 2.	Consequently	the	HWI	is	only	unbiased	when	the	probability	of	seeing	a	

and	b	together	is	equal	to	the	average	of	the	probability	of	seeing	each	of	them	

apart.		In	our	terminology,	this	is	denoted	(1 − �) = 1 − � + 1 − � 2,	

giving	� = � + � 2.	Thus,	under	this	scenario,	the	HWI	assumes	that	the	

probability	of	missing	individuals	a	and	b	when	they	are	together	is	equal	to	half	the	

probability	of	missing	either	a	or	b	when	they	are	apart.	This	seems	to	us	to	be	an	

arbitrary	a	priori	assumption,	without	the	functionality	to	adjust	the	assumption	

using	supporting	calibration	data.	

	 The	vSRI	performs	very	poorly	when	only	group	location	error	is	present,	

overestimating	�∃%	while	ω < (� + � − 2��) ��.	This	is	because	it	excludes	�∃	and	

�%	from	the	denominator	on	the	assumption	that	these	data	are	uninformative,	

whereas	in	this	scenario	these	are	cases	where	we	know	that	a	and	b	were	not	

associating.	As	ω	increases,	an	increasing	number	of	cases	where	a	and	b	were	

associating	are	erroneously	assigned	to	�&∋((.	Thus,	exclusion	of	�&∋((	from	the	index	

eventually	offsets	the	positive	bias	(when	ω = (� + � − 2��) ��)	resulting	from	

exclusion	of	�∃	and	�%	from	the	denominator.	The	vSRI	is	therefore	not	a	useful	

index	as	it	contains	assumptions	that	are	unlikely	to	be	met	in	the	majority	of	

studies.	

	 The	GLECI	is	generally	unbiased	because	�&∋((	is	included	in	the	index	in	such	

a	way	that	excludes	this	positive	bias.	Importantly,	the	95%	confidence	intervals	for	

the	GLECI	contained	the	true	value	of	�∃%in	close	to	95%	of	cases,	showing	they	

perform	validly	in	this	scenario	(see	Fig.	1b).	In	contrast,	the	95%	confidence	

intervals	associated	with	the	simple	ratio,	half-weight	index	and	very	simple	ratio	
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index	(vSRI)	only	performed	acceptably	for	a	very	narrow	range	of	values	of	ω.	

Furthermore,	the	GLECI	(and	CECI	index	with	ϕ = 1)	is	the	only	index	of	those	

considered	that	is	unbiased	when	estimating	the	ratio	of	two	associations	(see	Table	

1).	This	suggests	that	the	SRI,	HWI	and	vSRI	are	not	suitable	for	estimating	either	

the	relative	or	absolute	strength	of	associations	when	group	location	error	is	

believed	to	be	present,	and	that,	ideally	the	GLECI	should	be	used	if	calibration	data	

can	be	obtained.		

	 Note	that	the	simulations	assumed	that	the	researcher	has	an	accurate	

estimate	of	ω	with	which	to	calculate	the	GLECI	(see	below).	In	reality	the	better	the	

estimate	of	ω	is,	the	better	the	estimate	of	�∃%	will	be,	but	even	a	rough	estimate	of	

ω	will	be	preferable	to	no	calibration	at	all.	Furthermore,	we	assume	that	the	

probability	of	missing	a	and	b	when	they	are	together	will	be	 1 + ω 	times	that	of	

missing	both	a	and	b	when	they	are	separate	(� = 1 + ω ��).	Further	work	may	

conclude	that	this	relationship	does	not	generally	hold,	in	which	case	the	GLECI	

might	be	suitably	modified	to	use	a	different	calibration	statistic.	None	the	less,	the	

relationship	posited	here	requires	weaker	a	priori	assumptions	to	be	made	about	

the	data	than	the	commonly	used	half-weight	index,	which	assumes	that	C	=	(A	+	

B)/2.	We	show	that	when	this	assumption	is	even	slightly	wrong,	the	half-weight	

index	will	be	a	poor	estimate	of	�∃%.	

	 One	possible	option	to	resolve	the	half-weight	index	is	to	generalize	it	to	be	

an	M-weight	index	(MWI):	� � �∃ + �% + �∃% + � .	The	M-weight	index	assumes	

that	the	probability	of	seeing	a	and	b	together	is	equal	to	M	times	the	sum	of	the	

probability	of	seeing	each	of	them	each	apart.	Equivalently,	missing	individuals	a	

and	b	when	they	are	together	is	M	times	more	likely	than	missing	them	both	when	

they	are	apart.	Thus	the	MWI	could	be	calibrated	to	the	data	analogously	to	the	

GLECI,	but	each	index	assumes	a	different	relationship	among	the	observation	

errors	in	the	population.		

	 When	calibration	data	cannot	be	obtained,	there	is	a	strong	case	for	

preferring	the	simple	ratio	index.	Use	of	the	SRI	results	in	biases	that	are	more	likely	
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to	be	qualitatively	predictable	in	the	absence	of	calibration	data	than	are	biases	

resulting	from	the	HWI	or	vSRI	(see	Table	1).	For	instance,	when	a	researcher	

suspects	that,	in	general,	missing	two	individuals	when	they	are	together	is	more	

likely	than	missing	both	when	they	are	apart,	they	can	expect	(1)	SRI	values	to	be	

underestimates	of	�∃%,	(2)	for	this	underestimation	to	be	more	pronounced	for	

smaller	values	of	�∃%	and	for	less	commonly	seen	individuals	and	(3)	for	bigger	

ratios	between	real	associations	to	be	overestimated	relative	to	smaller	ratios.	Thus	

a	researcher	can	assess	whether	these	inaccuracies	are	likely	to	have	any	great	

bearing	on	their	conclusions	in	their	specific	case.	In	contrast,	using	the	HWI	we	

cannot	easily	make	such	qualitative	predictions	unless	we	are	in	a	position	to	judge	

the	relative	size	of	�� 1 + ω 	versus	 � + � 2;	and,	for	the	vSRI,	ω	versus	

(� + � − 2��) ��.	Making	such	judgments	empirically	is	likely	to	be	at	least	as	

challenging	as	acquiring	the	calibration	data	required	to	calculate	the	GLECI	or	a	

calibrated	MWI.	Consequently,	if	only	group	location	error	is	present	and	calibration	

data	cannot	be	obtained,	we	recommend	use	of	the	SRI,	with	careful	consideration	

of	how	the	biases	identified	above	might	affect	the	interpretation	of	the	study.	

	

Individual	Identification	Error	Only	

	

	 When	only	individual	identification	error	is	present,	we	find	that	the	vSRI	is	

an	unbiased	estimator	of	�∃%,	whereas	the	simple	ratio	and	half-weight	indices	are	

biased	downwards	whenever	� > 0	(see	Table	2,	Fig.	2).	This	is	because	as	�	

increases,	more	and	more	cases	where	a	and	b	are	associating	are	erroneously	

attributed	to	�∃	or	�%.	Since	�∃	and	�%	are	included	in	the	denominator	for	the	SRI	

and	HWI,	this	results	in	an	underestimation	of	�∃%.	The	effect	is	reduced	in	the	HWI	

since	�∃	and	�%	have	a	reduced	weighting	in	this	index.	However,	this	is	not	

sufficient	to	ensure	that	the	HWI	is	valid	for	even	small	individual	identification	

error	rates.	The	GLECI	was	not	included	separately	in	these	simulations	since	in	this	

scenario	 1 + ω �Α = �Α,	so	ω = 0,	meaning	the	GLECI	reduces	to	the	simple	ratio.	
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Consequently,	we	can	see	that	the	GLECI	also	performs	badly	at	estimating	absolute	

association	values	when	there	is	individual	identification	error	but	no	group	

location	error.	

	 The	95%	confidence	intervals	for	the	vSRI	contained	the	true	value	of	�∃%in	

close	to	95%	of	cases,	showing	they	perform	validly	under	a	scenario	of	only	

individual	identification	error	(see	Fig.	2b).	This	dropped	slightly	with	very	high	

error	rates,	as	a	result	of	the	effective	sample	size	decreasing	as	most	data	are	

attributed	to	�∃,	�%or	�&∋((	(note	that	with	small	sample	sizes,	Wald	confidence	

intervals	are	likely	to	be	anticonservative:	too	narrow).	In	contrast,	the	95%	

confidence	intervals	associated	with	the	SRI	(and	hence	the	GLECI)	and	HWI	

performed	very	badly	with	even	small	individual	identification	error	rates.	

Consequently,	if	a	researcher	is	interested	in	estimating	the	absolute	values	of	�∃%	

and	only	individual	identification	error	is	likely	to	be	present	(we	anticipate	this	

scenario	to	be	rare),	we	recommend	use	of	the	vSRI,	which	requires	no	calibration	

data.	

	 In	contrast	to	the	group	location	error	only,	all	association	indices	gave	

unbiased	estimates	of	the	relative	size	of	associations	between	pairs	of	individuals	

(see	Table	2).	This	means	that	if	the	research	aims	are	purely	in	the	scale-free	

properties	of	a	system,	such	as	the	relative	position	of	individuals	in	a	social	

network	(Aplin,	Firth,	et	al.,	2015;	Wilson,	Krause,	Dingemanse,	&	Krause,	2013),	

any	of	the	indices	considered	will	be	sufficient	(provided	sufficient	samples	are	

collected	to	accurately	estimate	the	relative	node	metrics	for	each	individual;	

Costenbader	&	Valente,	2003;	Farine	&	Strandburg-Peshkin,	2015).	However,	if	

there	is	also	a	risk	of	group	location	error,	and	appropriate	calibration	data	cannot	

be	obtained	(see	next	section),	we	recommend	use	of	the	SRI	to	estimate	relative	

associations	due	to	the	advantages	in	interpreting	this	index	in	the	presence	of	

group	location	error	(see	above).		

	

Combined	Errors	
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	 We	find	that	the	CECI	is	an	unbiased	estimator	of	�∃%	across	the	possible	

range	of	values	for	∈,	ω	and	ϕ	when	we	assumed	∈∃|!∃%=∈	for	all	individuals	(see	

Supplementary	Fig.	S1).	Furthermore,	the	CECI	was	also	an	unbiased	estimator	of	

�∃%	when	∈∃|!∃%	was	allowed	to	vary	across	the	population	regardless	of	the	

magnitude	of	variation	in	∈∃|!∃%	(see	Supplementary	Fig.	S2).	In	contrast,	the	SRI,	

HWI,	vSRI	and	GLECI	were	biased	in	a	manner	that	was	dependent	on	the	

combination	of	values	for	∈,	ω	and	ϕ.	When	ϕ	was	close	to	1,	the	pattern	of	bias	was	

similar	to	when	only	group	location	error	was	present.	In	other	words,	when	it	is	

unlikely	that	only	one	of	a	and	b	will	be	missed	when	they	are	in	the	same	group,	

bias	is	similar	to	when	we	have	only	group	location	error.	As	ϕ	becomes	smaller	

(more	likely	that	only	one	of	a	and	b	will	be	missed	when	they	are	in	the	same	

group),	all	four	indices	start	to	underestimate	�∃%	at	a	lower	value	of	ω.	The	effects	

of	both	ϕ	and	ω	are	magnified	more	as	∈	gets	larger.	Consequently,	if	individual	

identification	errors	are	likely	to	be	common	in	addition	to	group	location	error,	we	

suggest	calibration	data	are	acquired	to	estimate	∈,	ω	and	ϕ	and	the	CECI	is	used.	

The	pattern	of	bias	in	the	other	indices	will	be	difficult	to	predict	qualitatively	unless	

the	risk	of	individual	identification	error	is	known	to	be	small.	Consequently,	if	

calibration	data	cannot	be	obtained	under	such	circumstances	we	suggest	extra	

efforts	are	made	to	minimize	individual	identification	error,	and	the	SRI	be	used	

with	the	understanding	that	it	will	provide	noisy	estimates	of	�∃%.	

	 When	we	assume	observation	error	is	homogeneous	across	the	population,	

the	95%	confidence	intervals	for	the	CECI	tend	to	contain	the	true	value	of	�∃%in	

>95%	of	cases	(see	Supplementary	Fig.	S3).	This	suggests	that,	at	large	sample	sizes	

at	least,	the	Wald	confidence	intervals	are	slightly	too	wide.	However,	given	that	

Wald	confidence	intervals	are	always	an	approximation	and	are	widely	used	in	

statistics,	this	is	a	minor	concern.	However,	when	observation	error	varies	greatly	

across	a	population,	the	95%	confidence	intervals	become	far	too	narrow	(see	

Supplementary	Fig.	S4),	as	a	result	of	the	extra	uncertainty	that	is	unaccounted	for	
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in	the	derivation	of	the	standard	error.	Correcting	the	standard	errors	for	this	

uncertainty	does	not	seem	straightforward,	although	further	work	could	address	

this	if	the	CECI	proves	to	be	useful	and	becomes	widely	adopted.	Therefore,	we	

suggest	that	the	standard	errors	and	confidence	intervals	for	the	CECI	be	trusted	as	

approximately	valid	if	the	variation	in	observation	rate	is	believed	to	be	small,	and	

not	be	trusted	if	that	variation	is	believed	to	be	large.	

	 Our	recommendations	for	the	choice	of	association	index	are	shown	as	a	

flowchart	in	Fig.	3.	The	indices	and	their	standard	errors	are	shown	in	Table	3.	

	

OBTAINING	CALIBRATION	DATA	

	

	 Here	we	suggest	some	initial	ideas	for	obtaining	calibration	data	that	can	be	

used	to	estimate	the	calibration	parameters	derived	above.	These	suggestions	can	

almost	certainly	be	improved	upon,	by	taking	account	of	what	data	collection	

protocols	are	feasible	in	specific	circumstances,	perhaps	by	deriving	maximum	

likelihood	estimates	of	calibration	parameters	given	the	data	yielded	by	each	such	

protocol.	Here	we	limit	ourselves	to	providing	relatively	simple	intuitive	ways	of	

estimating	calibration	parameters.	While	not	optimal,	our	analysis	above	suggests	

that	these	methods	are	nevertheless	likely	to	be	an	improvement	on	the	

unsupported	use	of	a	noncalibrated	index	such	as	the	HWI.	

	 One	way	a	researcher	might	obtain	estimates	of	calibration	parameters	is	to	

collect	data	that	can	be	assumed	to	be	approximately	error	free	for	a	subset	of	

individuals,	while	simultaneously	collecting	association	data	using	their	standard	

protocol.	This	could	be	done	by	focal	follows	of	a	sample	of	individuals	conducted	by	

one	researcher,	while	another	collects	data	using	the	association	data	collection	

protocol.	Alternatively	some	individuals	could	be	tagged	with	GPS	or	proximity	

loggers	(Kays,	Crofoot,	Jetz,	&	Wikelski,	2015;	Krause	et	al.,	2013),	which	are	able	to	

record	encounters	between	individuals	with	more	precision.		

	 First	we	suggest	that	a	researcher	assesses	whether	or	not	individual	

identification	error	is	present	and	important.	This	could	be	done	by	calculating	the	
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proportion	of	sampling	periods	in	which	each	individual	included	in	the	error-free	

data	set	was	present	in	a	group	that	was	located	using	the	standard	protocol	but	not	

recorded	as	being	present.	If	this	proportion	is	0	or	close	to	0	for	most	individuals,	

we	suggest	individual	identification	error	be	ignored,	and	the	GLECI	or	MWI	can	be	

used.	Otherwise,	the	CECI	should	be	used	(unless	group	location	error	is	believed	

not	to	be	present,	in	which	case	the	vSRI	should	be	used,	which	does	not	require	

calibration).	

	 If	individual	identification	error	is	not	present	or	negligible,	the	researcher	

needs	to	choose	between	the	GLECI	and	MWI	and	then	estimate	the	relevant	

calibration	parameter	(ω	or	M).	For	any	two	individuals	a	and	b	in	the	error-free	

sample,	we	know	in	which	sampling	periods	they	were	together	and	in	which	they	

were	not	together.	This	enables	the	researcher	to	calculate	�&∋((|∃%,	the	number	of	

times	a	and	b	were	not	recorded	by	the	association	protocol	during	the	calibration	

data	collection	period,	when	a	and	b	were	known	to	be	together.	C,	the	probability	

that	individuals	a	and	b	will	be	missed	when	they	are	together,	can	be	estimated	as	

�&∋((|∃% �∃%	where	�∃%	is	the	number	of	sampling	periods	that	individuals	a	and	b	

were	known	to	be	together.	A	can	then	be	estimated	as	the	proportion	of	sampling	

periods	in	which	individual	a	was	not	recorded	by	the	association	protocol	and	

known	not	to	be	with	individual	b.	B	can	be	estimated	in	an	analogous	manner.		

	 This	process	can	be	repeated	for	every	combination	of	two	individuals	in	the	

error-free	sample.	The	researcher	can	then	use	plots	of	these	data	to	choose	

between	the	GLECI	and	MWI.	If	the	assumptions	of	the	GLECI	hold,	we	would	expect	

C	to	have	a	linear	relationship	with	AB,	with	a	slope	of	(1 + ω),	whereas	if	the	

assumptions	of	the	MWI	hold,	we	would	expect	C	to	have	a	linear	relationship	with	

(A	+	B)	with	a	slope	of	1/M.	We	suggest	the	researcher	make	each	plot	to	decide	

which	assumption	is	most	realistic,	and	thus	chose	between	the	GLECI	and	MWI.	If	

the	GLECI	is	chosen,	they	can	then	fit	a	linear	regression	(constrained	to	pass	

through	the	origin)	of	C	against	AB	and	take	ω	=	slope	-	1.	If	the	MWI	is	chosen,	they	

can	then	fit	a	linear	regression	(constrained	to	pass	through	the	origin)	of	C	against	

A	+	B	and	take	M	=	1/slope.	
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	 The	CECI	requires	estimates	of	ω,ϕ	and	∈.	∈	can	be	estimated	as	the	

population	average	of	∈∃|!∃%.	To	this	end,	we	suggest	for	each	dyad	of	individuals	a	

and	b,	where	a	is	an	individual	for	which	we	have	error-free	data,	we	calculate	�∃|!∃%	

as	the	number	of	sampling	periods	in	which	the	standard	sampling	protocol	missed	

individual	a	and	we	know	(from	the	error-free	sample)	that	a	and	b	were	not	

together.	We	can	then	estimate	∈∃|!∃%= �∃|!∃% �!∃%,	where	�!∃%	is	the	number	of	

sampling	periods	that	a	and	b	were	known	not	to	be	together.	∈	can	then	be	

estimated	as	the	average	of	both	∈∃|!∃%	across	all	dyads	containing	at	least	one	

individual	in	the	error-free	data	set.	Next	the	researcher	can	estimate	ω,	using	the	

relationship	∈∃%|∃%= 1 + ω 	∈∃|!∃%∈%|!∃%	in	the	same	manner	as	suggested	for	

estimating	ω	for	the	GLECI	above.		

	 To	estimate	ϕ	a	researcher	can	use	the	relationship:	

	

∈∃|∃%=
1 − ϕ 1 + ω ∈∃|!∃%

Α∈%|!∃%

ϕ ∈∃|!∃%+∈%|!∃%
	

	

	 For	each	dyad	of	individuals	for	which	we	have	error-free	data,	a	researcher	

can	obtain	an	estimate	of	∈∃|∃%= �∃|∃% �∃%,	where	�∃|∃%	is	the	number	of	sampling	

periods	in	which	the	standard	sampling	protocol	missed	individual	a	and	we	know	

(from	the	error-free	sample)	that	a	and	b	were	together,	and	where	�∃%	is	the	

number	of	sampling	periods	that	a	and	b	were	known	to	be	together.	Using	the	

estimates	of	∈∃|!∃%	and	∈%|!∃%	obtained	above,	the	researcher	can	then	obtain	an	

estimate	of	∈∃|!∃%
Α∈%|!∃% ∈∃|!∃%+∈%|!∃% .	∈%|∃%	can	likewise	be	estimated	as	

�%|∃% �∃%,	and	∈%|!∃%
Α∈∃|!∃% ∈∃|!∃%+∈%|!∃% .	The	researcher	can	then	fit	a	linear	

regression	(constrained	to	go	through	the	origin)	with	the	set	of	∈∃|∃%	and	∈%|∃%	as	

the	dependent	variable	and	the	set	of	∈∃|!∃%
Α∈%|!∃% ∈∃|!∃%+∈%|!∃% 	and	

∈%|!∃%
Α∈∃|!∃% ∈∃|!∃%+∈%|!∃% 	as	the	independent	variable.	Since	the	slope	of	the	

regression	will	estimate	 1 − ϕ 1 + ω ϕ,	we	can	estimate		ϕ =

1 + ω slope + 1 + ω .	
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	 A	second	way	we	suggest	a	researcher	might	obtain	estimates	of	calibration	

parameters	is	to	have	two	researchers	or	research	teams	independently	collecting	

association	data	using	their	standard	protocol,	for	a	portion	of	the	data	collection	

period.	For	example,	this	might	be	done	by	having	the	second	researcher	(denoted	

Y)	collect	data	a	short	time	after	the	first	(denoted	X),	on	a	short	enough	timescale	

that	group	composition	is	unlikely	to	have	changed.	Here	we	suggest	a	procedure	

for	obtaining	calibration	statistics	for	the	CECI	since	this	reduces	down	to	the	vSRI	

or	GLECI	when	the	calibration	data	reveals	the	relevant	component	of	error	to	be	

absent.	

	 We	suggest	that	researchers	first	obtain	estimates	of		∈∃|!∃%.	Ideally	we	wish	

to	estimate	�ε∃|!∃% �!∃%,	the	proportion	of	events	that	X	missed	individual	a	when	

individuals	a	and	b	were	together.	We	suggest	researchers	do	this	by	calculating	the	

proportion	of	sampling	periods	that	X	missed	individual	a	given	that	Y	recorded	

individuals	a	and	b	in	different	groups	(which	we	denote	Y!ab),	i.e.	�ε∃|φ!∃% �φ!∃%.	We	

can	repeat	this	procedure,	reversing	the	role	of	X	and	Y	to	obtain	�φ∃|ε!∃% �ε!∃%.	We	

can	then	take	the	mean	as	our	estimate,	i.e.	∈∃|!∃%= �ε∃|φ!∃% 2�φ!∃% +

�φ∃|ε!∃% 2�ε!∃%.	∈	can	then	be	estimated	as	the	population	average	of	∈∃|!∃%	as	

above.	

	 Researchers	can	then	obtain	estimates	of	∈∃|∃%,	the	probability	that	

individual	a	is	missed	when	it	is	in	a	group	with	individual	b.	Again,	we	have	

potentially	two	estimates	of	this	for	each	combination	of	a	and	b.	First,	we	have	

�ε∃|φ∃% �φ∃%,	the	proportion	of	sampling	periods	in	which	researcher	X	missed	

individual	a	given	researcher	Y	recorded	a	and	b	together,	and	conversely	we	have	

�φ∃|ε∃% �ε∃%.	We	suggest	∈∃|∃%	be	estimated	as	the	average	of	these,	i.e.	∈∃|∃%=

�ε∃|φ∃% 2�φ∃% +�φ∃|ε∃% 2�ε∃%.	We	suggest	this	be	done	for	all	combinations	of	a	

and	b	for	which	a	and	b	were	frequently	seen	together,	in	order	to	obtain	estimates	

of	ω	and	ϕ.	ω	can	be	estimated	using	the	relationship	∈∃%|∃%= 1 + ω 	∈∃|!∃%∈%|!∃%	

in	the	same	manner	as	suggested	for	estimating	ω	for	the	GLECI	above.	ϕ	can	be	

estimated	as	above	by	fitting	a	linear	regression	(constrained	to	go	through	the	

origin)	with	the	set	of	∈∃|∃%	and	∈%|∃%	as	the	dependent	variable	and	the	set	of	
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∈∃|!∃%
Α∈%|!∃% ∈∃|!∃%+∈%|!∃% 	and	∈%|!∃%

Α∈∃|!∃% ∈∃|!∃%+∈%|!∃% 	as	the	independent	

variable	yielding	the	estimate		ϕ = 1 + ω slope + 1 + ω .	

	

DISCUSSION	

	

	 Studies	of	animal	social	networks	have	shed	new	light	on	many	ecological	

and	evolutionary	processes.	For	example,	the	structure	of	the	social	environment	

can	shape	how	information	(Aplin,	Farine,	et	al.,	2015;	Aplin,	Farine,	Morand-

Ferron,	&	Sheldon,	2012;	Farine,	Aplin,	Sheldon,	&	Hoppitt,	2015)	and	diseases	

(VanderWaal,	Atwill,	Isbell,	&	McCowan,	2013;	VanderWaal	et	al.,	2016)	spread	in	

wild	populations.	Furthermore,	studies	of	animal	social	networks	have	provided	

important	insights	into	the	role	of	the	social	environment	on	shaping	selection	

(Farine	&	Sheldon,	2015;	Formica	et	al.,	2011;	McDonald,	2007;	Oh	&	Badyaev,	

2010;	Silk,	Alberts,	&	Altmann,	2003;	Silk	et	al.,	2010;	Wey,	Burger,	Ebensperger,	&	

Hayes,	2013).	However,	studies	have	used	varying	approaches	to	quantify	the	

relationships	among	individuals.	While	care	is	generally	taken	to	ensure	that	the	

chosen	approach	has	biological	relevance,	the	underlying	assumptions	behind	the	

approach	used	are	almost	never	explicitly	considered.	The	results	of	our	study	into	

different	association	indices	suggests	that	many	commonly	used	approaches	should	

be	avoided	as	they	do	not	accurately	estimate	the	(absolute	or	relative)	strengths	of	

social	bonds,	which	has	implications	on	estimates	of	social	structure	and	social	

processes	occurring	through	social	networks.	

	 Ideally,	studies	of	animal	social	networks	would	capture	information	about	

all	individuals	in	the	study	population	at	once.	Realistically,	this	is	unlikely	to	be	

possible	in	all	but	a	very	select	number	of	studies.	Thus,	before	constructing	a	social	

network	from	a	given	set	of	data,	we	suggest	that	the	following	questions	should	be	

addressed.	

	

	 (1)	How	much	data	has	been	collected	on	each	dyad?	

	 (2)	Are	all	individuals	sampled	equally?	
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	 (3)	What	proportion	of	the	population	is	observed	in	each	sample?	

	 (4)	Are	there	any	mistakes	in	the	observations?	

	

	 The	issues	surrounding	question	(1)	have	now	been	relatively	well	outlined	

in	the	literature	(Farine	&	Strandburg-Peshkin,	2015;	Franks	et	al.,	2010;	Lusseau,	

Whitehead,	&	Gero,	2008;	Silk	et	al.,	2015;	Whitehead,	2008).	In	general,	these	

studies	have	found	that	collecting	enough	data	on	each	dyad	(at	least	20	

observations	per	dyad)	is	important	for	accurately	estimating	global	social	network	

structure.	In	the	current	study,	we	address	issues	arising	from	questions	(2)	and	(3),	

and	how	better	indices	can	reduce	the	potential	impact	that	missing	observations	

can	have	on	both	the	absolute	and	relative	estimates	of	association	strengths	among	

individuals.	Question	(4)	represents	an	area	requiring	some	further	investigation.		

	 Our	study	suggests	that	a	critical	step	in	the	study	of	animal	social	networks	

will	be	the	collection	of	calibration	data.	Currently	used	association	indices	are	all	

based	on	arbitrary	rates	of	missing	observations.	For	example,	the	half-weight	index	

assumes	that	the	probability	of	missing	individuals	a	and	b	when	they	are	together	

is	exactly	half	the	probability	of	missing	either	individual	when	they	are	apart.	

Importantly,	we	have	shown	that	when	this	is	not	true,	the	HWI	does	not	result	in	a	

‘better	approximation’	of	the	real	association	rate	when	compared	to	the	simple	

ratio	index.	Thus,	we	recommend	avoiding	the	use	of	the	HWI,	and	instead	using	the	

SRI	when	no	calibration	data	is	available	(see	Fig.	3).	In	reality,	it	is	likely	that	the	

rates	of	observation	could	be	estimated	from	parameters	of	the	observation	data,	

such	as	the	average	group	size,	the	average	number	of	individuals	observed	in	a	

sampling	period	and	the	average	number	of	groups	sampled.	Whether	these	can	be	

used	to	parameterize	the	M-weighted	index	warrants	further	investigation.	

	 Several	extensions	of	association	indices	have	been	proposed	to	deal	with	

other	issues	arising	when	sampling	populations.	Godde,	Humbert,	Cote,	Réale,	and	

Whitehead	(2013)	suggested	a	method	to	correct	for	the	fact	that	individuals	that	

prefer	large	groups	are	more	likely	to	be	observed	together.	This	involves	

normalizing	the	association	index	values	by	the	two	individuals’	combined	

gregariousness	(the	sum	of	their	association	indices	to	others).	To	deal	with	other	
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potentially	confounding	influences	on	association	patterns	(such	as	home	range	

overlap)	when	attempting	to	estimate	true	association	rates,	Whitehead	and	James	

(2015)	proposed	regressing	association	indices	against	other	input	parameters.	Our	

proposed	indices	work	equally	well	with	both	of	these	approaches	as	they	are	

simply	new	ways	of	defining	the	association	value	for	pairs	of	individuals.	The	above	

two	studies	highlight	how	patterns	of	affiliation	can	be	affected	by	a	range	of	

different	factors.	Thus,	even	if	good	calibration	data	can	be	obtained	to	estimate	

accurate	relationship	strengths,	it	will	always	be	important	to	use	null	models	when	

conducting	hypothesis	testing	with	animal	social	networks	(Farine,	2017).		

	 We	encourage	further	investigation	into	methods	for	collecting	informative	

calibration	data	alongside	the	social	network	data.	One	potential	avenue	could	be	to	

use	mark–recapture	techniques	that	explicitly	investigate	detection	probabilities,	

and	these	could	be	conditioned	on	having	observed	one	or	more	particular	

individuals.	There	are	also	increasing	numbers	of	studies	that	are	collecting	

complete	data	sets	from	groups	or	populations	of	animals,	and	these	could	provide	

very	useful	data	for	testing	different	approaches	to	collect	calibration	data.	A	

particular	challenge	that	will	arise	is	that	social	network	analysis	has	proved	

particularly	useful	in	species	or	communities	that	exhibit	fission–fusion	dynamics	

(Aureli	et	al.,	2008;	Couzin,	2006;	Silk,	Croft,	Tregenza,	&	Bearhop,	2014).	Here,	the	

rate	of	turnover	in	group	membership	can	be	very	rapid	(e.g.	group	membership	in	

great	tits,	Parus	major,	can	be	close	to	random	after	just	10	min;	Farine,	Firth,	et	al.,	

2015).	Similarly,	when	using	focal	observations	(following	a	single	individual	and	

recording	its	interactions	with	others),	the	concept	of	a	‘group’	is	unclear,	and	we	do	

not	yet	have	a	definition	for	how	to	estimate	the	group	location	error.	This	is	

because	all	individuals	can	be	observed,	but	only	interactions	among	a	subset	of	

edges	(those	connected	to	the	focal)	are	recorded.	Thus,	in	such	systems,	more	

research	is	required	to	find	robust	approaches	for	collecting	calibration	data.	

	 In	all	of	our	simulations,	and	more	generally	in	the	assumptions	of	how	well	

any	analysis	captures	reality,	our	estimates	of	accuracy	are	a	‘best-case	scenario’.	

Few	studies	have	explicitly	investigated	the	implications	arising	from	mistaken	

identities	on	the	estimation	of	social	network	traits.	In	the	current	study,	we	are	
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focused	on	the	accuracy	of	estimating	the	relationship	for	two	individuals.	However,	

most	researchers	are	interested	in	the	broader	topology	that	is	made	up	by	all	of	the	

edges.	Here,	the	presence	of	false	edges	will	have	much	greater	potential	to	impact	

conclusions	than	inaccurate	true	edges,	as	these	can	fundamentally	change	the	

structure	of	the	network.	Many	field	biologists	use	techniques	to	minimize	mistakes	

during	data	collection,	such	as	by	performing	focal	follows	(which	require	

identifying	fewer	individuals	at	once).	Association	indices	are	unlikely	to	be	able	to	

correct	for	mistaken	identities	(recording	interactions	that	did	not	occur),	although	

field	studies	could	estimate	how	often	they	mistake	identities	and	use	this	

information	to	remove	edges	that	were	observed	fewer	times	than	expected	at	the	

estimated	rate	of	mistakes.	The	trade-offs	of	doing	so	require	theoretical	

investigation.	

	 Another	source	of	error	is	that	associated	with	identifying	groups.	Our	

association	indices	do	not	deal	with	situations	in	which	two	groups	are	identified	as	

one.	However,	we	have	good	reasons	to	believe	that	this	is	unlikely	to	cause	a	great	

deal	of	concern.	First,	most	studies	now	use	weighted	social	network	metrics	in	

their	analyses,	meaning	that	strong	edges	(those	frequently	observed)	will	be	more	

important	in	the	analysis	than	weak	edges	(rarely	observed,	e.g.	members	of	

different	groups	observed	together).	Second,	the	individuals	that	appeared	to	form	

one	group	were	likely	to	be	in	contact,	meaning	that	there	is	a	biological	plausibility	

that	associations	occurred.	Finally,	association	indices	are	designed	to	deal	with	

uncertainty	about	how	connected	individuals	are,	and	perform	well	given	enough	

data	(Farine	&	Strandburg-Peshkin,	2015).	For	example,	Psorakis	et	al.	(2015)	

reconstructed	known	social	networks	from	simulated	data.	In	these	data,	groups	

could	overlap	in	both	space	and	time,	yet	the	resulting	networks	were	accurate	

given	sufficient	data.	

	 Our	paper	makes	it	clear	that	we	should	avoid	blindly	using	association	

indices	without	proper	consideration	of	the	assumptions	that	they	entail.	We	also	

recommend	discontinuing	the	use	of	the	HWI,	which	Cairns	and	Schwager	(1987)	

already	identified	30	years	ago	as	being	problematic	because	of	the	many	

assumptions	it	makes.	Instead,	we	recommend	using	properly	calibrated	association	
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indices	wherever	possible,	and	using	the	SRI	if	no	appropriate	calibration	data	or	

estimates	of	rates	of	detectability	are	available.	Whichever	approach	is	used,	we	

hope	that	our	paper	will	at	least	encourage	researchers	to	carefully	and	explicitly	

consider	their	choice	of	approach	for	estimating	association	strengths	among	

individuals	in	their	study	population.		
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Table	1	

Biases	in	different	association	measures	arising	from	group	location	error	

�∃%	 � �∃% �∃%	 � �∃%/�∋Ζ �∃% �∋Ζ 	

SRI! 1 − �� 1 + ω

1 − �� 1 + �∃%ω
	

• Unbiased when ω = 0!

• Underestimates �∃% when ω > 0: effect 

more pronounced for smaller values of �∃% 

and less commonly seen individuals!

• Overestimates �∃% when ω < 0: effect more 

pronounced for smaller values of �∃% and 

less commonly seen individuals!

1 − �� 1 + ω 1 − �� 1 + �ηιω

1 − �� 1 + ω 1 − �� 1 + �∃%ω
	

• When ω > 0 bigger ratios 

exaggerated and biased in favour 

of the �∃%for pairs of individuals 

more commonly seen!

• When ω < 0 smaller ratios 

exaggerated and biased in favour 

of the �∃%for pairs of individuals 

less commonly seen!

HWI! 1 − �� 1 + ω

1 − �ΘΡ 1 − � + � 2 + 1 − �� 1 + ω �∃%
	

• Unbiased when �� 1 + ω = � + � 2!

• Underestimates �∃% when �� 1 + ω >

� + � 2: effect is more pronounced for 

smaller values of �∃%!

• Overestimates �∃% when �� 1 + ω <

� + � 2: effect is more pronounced for 

smaller values of �∃%!

• No straightforward relationship between 

bias and the frequency with which a and b 

are seen!

1 − �� 1 + ω

1 − �∋Ζ 1 − � + � 2

+ 1 − �� 1 + ω �∋Ζ

1 − �� 1 + ω

1 − �∃% 1 − � + � 2

+ 1 − �� 1 + ω �∃%

	

• Unbiased when �� 1 + ω =

� + � 2!

• Otherwise difficult to predict the 

pattern of bias in the data!

vSRI! 1 − �� 1 + ω

1 − � 1 − � + �∃% � + � − 2�� − ��ω
	

• Unbiased when ω = (� + � − 2��) ��, i.e. 

the ratio of the probability of missing only 

one of a or b to the probability of missing 

both, when a and b are apart.!

1 − �� 1 + ω

1 − � 1 − �

+�∋Ζ � + � − 2�� − ��ω

1 − �� 1 + �

1 − � 1 − �

+�∃% � + � − 2�� − ��ω
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• Underestimates �∃% when ω >

(� + � − 2��) ��!

• Overestimates �∃% when ω <

(� + � − 2AB) �� !

• Unbiased when ω =

(� + � − 2��) ��!

• Otherwise difficult to predict the 

pattern of bias in the data!

GLECI,	

CECI!

1	

• Unbiased for this error model*!

1	

• Unbiased for this error model*!

*Signifies	no	bias	inferred	from	simulations.	
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Table	2	

Biases	in	different	association	measures	arising	from	individual	identification	error	

�∃%	 � �∃% �∃%	 � �∃%/�∋Ζ �∃% �∋Ζ 	

SRI! 1 + � 2 − � 	 1	

HWI! 1 + �	 1	

vSRI,	CECI! 1	 1	

GLECI! 1 + � 2 − � 	 1	
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Table	3	

Summary	of	the	indices	considered	in	this	paper	

Index	name Formula	for	�∃% Standard	

error* 

Effective	sample	size	

(Ne) 

Calibration	

measures	

required 

Simple	ratio	

index			(SRI)!

� �∃ + �% + �∃% + � 	

�∃% 1 − �∃%

�Γ
	

�∃ + �% + �∃% + �	 None!

Half-weight	

index	(HWI)!

�
ο

Α
�∃ + �% + �∃% + � 	 �∃ + �% + �∃% + �	 None!

M-weight	

index	(MRI)!

� � �∃ + �% + �∃% + � 	 �∃ + �% + �∃% + �	 M!

Group	

location	error	

corrected	

index	(GLECI)!

− �ω + �&∋((ω − ��
− (�ω + �&∋((ω − ��)Α + 4ω��

−2ω�
	

�∃ + �% + �∃% + �

+ �&∋((
ω�∃% 1 − �∃%

ω�∃% + 1
Α
	

ω	

Very	simple	

ratio	index	

(vSRI)!

� �∃% + � 	 �∃% + �	 None!

Combined	

error	

corrected	

index	(CECI)!

Not	available	in	closed	form	(see	‘assocInd’	package	for	R	code	to	generate	

this	index	and	standard	error)!

∈,	ω	and	ϕ	

*Standard	errors	presented	assume	sampling	periods	are	sufficiently	spaced	to	be	

considered	approximately	independent,	and	that	any	calibration	measures	are	known	

without	error.	See	Supplementary	Material	for	derivations	of	standard	errors.	
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Figure	1.	(a)	Bias	in	different	association	indices	as	a	function	of	group	location	

error	(ω)	when	applied	to	simulated	data;	(b)	performance	of	95%	Wald	confidence	

intervals	as	a	function	of	ω.	Similar	results	were	obtained	for	a	true	association	

value	of	0.25	and	0.5.	SRI:	simple	ratio	index;	HWI:	half-weight	index;	GLECI:	group	

location	error	corrected	index;	vSRI:	very	simple	ratio	index.	
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Figure	2.	(a)	Bias	in	different	association	indices	as	a	function	of	individual	

identification	error	(�)	when	applied	to	simulated	data;	(b)	performance	of	95%	

Wald	confidence	intervals	as	a	function	of	�.	Similar	results	were	obtained	for	a	true	

association	value	of	0.25	and	0.5.	SRI/GLECI:	simple	ratio	index/group	location	

error	corrected	index;	HWI:	half-weight	index;	vSRI:	very	simple	ratio	index.	
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Figure	3.	Flowchart	with	our	suggested	strategy	for	selecting	an	association	index.	

SRI:	simple	ratio	index;	GLECI:	group	location	error	corrected	index;	MWI:	M-

weighted	index;	vSRI:	very	simple	ratio	index;	CECI:	combined	errors	corrected	

index.	

	

Is	every	animal	reliably	recorded	in	every	sampling	period?

Use	SRI:

unbiased	and	SE	valid*

Yes

Given	a	group	is	found,	is	every	animal	in	that	group	reliably	identified?

i.e.	if	you	record	a in	a	sampling	period	but	not	b, can	you	be	sure a	was	not	with	b?

No

Can	calibration	data	be	obtained?	

Yes

Use	GLECI	or MWI as	

appropriate:

unbiased	and	SE	valid*	

Yes No

Is	every	group	located	in	every	sampling	period?	

Use	SRI	but

consider	the	effect	of	the	

biases	in	Table	1	when	

using	association	

measures	

No Yes

Use	vSRI:	unbiased	and	SE	

valid*.	But	be	aware	that	other	

indexes	are	valid	for	relative	

associations	and	scale-free	

network	and	node	statistics

Is	there	a	theoretical	

justification	for	the	

assumptions	of	a	

specific	index	in	this	

case	(e.g.	HW)?

No

Use	specific	index

and	justify	

assumptions

Yes

No

Can	calibration	data	be	obtained?	

Yes No

Are	observation	errors	

similar	across	individuals	

in	the	population?

Use	CECI:

unbiased	and	SE	

approximately	valid*

Yes

Use	CECI:

unbiased	but	SE	will	be	

too	small

No

Use	SRI	but

consider	the	effect	of	the	

biases	in	Table	1 when	

using	association	

measures

Is	there	a	theoretical	

justification	for	the	

assumptions	of	a	

specific	index	in	this	

case	(e.g.	HW)?

Yes
No

*	Validity	of	SE	assumes	sampling	periods	are	sufficiently	spaced

Use	specific	index

and	justify	

assumptions


