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Abstract To make advances in rice breeding it

is important to understand the relatedness and

ancestry of introduced rice accessions, and iden-

tify SSR markers associated with agronomically

important phenotypic traits, for example yield.

Ninety-two rice germplasm accessions recently

introduced from seven geographic regions of

Africa, Asia, and Latin America, and eleven US

cultivars, included as checks, were evaluated for

yield and kernel characteristics, and genotyped

with 123 SSR markers. The SSR markers were

highly polymorphic across all accessions. Popu-

lation structure analysis identified eight main

clusters for the accessions which corresponded to

the major geographic regions, indicating agree-

ment between genetic and predefined popula-

tions. Linkage disequilibrium (LD) patterns and

distributions are of fundamental importance for

genome-wide mapping association. LD between

linked markers decreased with distance and with

a substantial drop in LD decay values between

20 and 30 cM, suggesting it should be possible to

achieve resolution down to the 25 cM level. For

the 103 cultivars, the complex traits yield, kernel

width, kernel length, kernel width/length ratio,

and 1000-kernel weight, were estimated by

analysis of variety trial data. The mixed linear

model method was used to disclose marker-trait

associations. Many of the associated markers

were located in regions where QTL had previ-

ously been identified. In conclusion, association

mapping in rice is a viable alternative to QTL

mapping based on crosses between different

lines.

Keywords Linkage disequilibrium � Unified

mixed-model method � Population structure �
Kinship coefficient � Relatedness

Abbreviations
SSR Simple sequence repeat

QTL Quantitative trait loci

cM CentiMorgan

Introduction

Rice (Oryza sativa L.) genetic mapping often

involves the development, genotyping, and phe-

notyping of doubled haploid (Li et al. 2003;
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Hittalmani et al. 2002), recombinant inbred (Ge

et al. 2005; Guo et al. 2005), or advanced

backcross (Li et al. 2004; Jing et al. 2005) lines

derived from an F1 cross between different

cultivars. For these mapping populations there is

extreme disequilibrium between linked loci

(Mather et al. 2004) and there should be no

population structure, because of the random

sampling, or disequilibrium between non-linked

loci favoring the detection and approximate

mapping of quantitative trait loci (QTL). In

contrast, genetic mapping in humans relies on

analysis of genotypic and phenotypic data sam-

pled non-randomly from existing populations of

complex but often unknown structure. In these

populations, linkage disequilibrium (LD) may

decline over relatively short or long distances in

the genome, making fine mapping possible. In

sugar beet (Beta vulgaris L.), LD extended to

3 cM (Kraft et al. 2000) and LD in some

Arabidopsis populations exceeded 50 cM (Nord-

borg et al. 2002). LD as a function of genetic

distance is very common for distances <10 cM

(Kraakman et al. 2004) in barley (Hordeum

vulgare L.), in contrast with maize (Zea mays

L.), for which the LD diminished after 2000 bp

(Remington et al. 2001). LD decay between all

pairs of SNP (single nucleotide polymorphism)

loci in the region around the rice xa5 locus

approached 0.1 after only 100 kb (Garris et al.

2003) and in Arabidopsis the pattern of polymor-

phism LD decayed rapidly, within 50 kb (Nord-

borg et al. 2005), in contrast with one human

population for which the LD extended over 3 cM

(Eaves et al. 1998). Most studies of species

variation begin by sampling from populations

defined on the basis of culture or geography and

might not reflect underlying genetic relationships

(Rosenberg et al. 2002; Foster and Sharp 2002). If

a whole-genome scan is to be undertaken, trait

mapping by allele association requires high

marker density (Lander and Schork 1994; Jorde

1995; Jorde 2000; Risch 2000). SSRs are particu-

larly useful for studying the population structure

and demographic history of domesticated species

such as rice (Garris et al. 2005), and are being

extensively used to genotype rice germplasm

collections (Yang et al. 1994; McCouch et al.

1997; Ishii and McCouch 2000; Ishii et al. 2001; Ni

et al. 2002; Lu et al. 2005). Use of SSR markers to

interpret population structure results in much

greater resolution than use of other types of

marker, because of the high level of polymor-

phism at SSR loci (Akkaya et al. 1992; Cho et al.

2000). In rice the highly polymorphic nature of

SSR motifs is coupled with a low level of

homoplasy observed in O. sativa cultivars (Chen

et al. 2002), providing an appropriate tool for

population genetic studies. Although polymor-

phic SSRs are excellent molecular markers,

because of their multi-allelism and the resulting

high informativeness (Weber and May 1989), they

may not be frequent enough for association

studies (Ching et al. 2002). Size homoplasy of

SSR alleles and allele reversion could also be a

problem in some populations (Estoup et al. 1995;

Viard et al. 1998). Rice has the smallest genome

size (estimated as approx. 430 Mb) among cereal

crops, which makes it most manageable at the

whole-genome level.

The potential of LD and regression methods to

identify and characterize loci/genes associated with

different complex traits in true breeding lines has

been demonstrated in barley and maize (Kraakman

et al. 2004; Wilson et al. 2004). In contrast with

calculating associations between pairs of loci or

genes by the traditional LD technique, or using a

single marker-trait regression scheme, a multivar-

iate approach, known as discriminant analysis, has

been used for whole-genome scans of microsatellite

markers associated with economic traits in unre-

lated inbred lines of rice (Zhang et al. 2005). Of

particular interest to rice breeders is the possibility

of using existing germplasm resources for gene and

allele discovery on the basis of association mapping

strategies (Kruglyak 1999; Jorde 2000; Farnir et al.

2000). Understanding population structure is

important to avoid identifying spurious associa-

tions between phenotype and genotype in associ-

ation mapping (Pritchard and Rosenberg 1999;

Pritchard et al. 2000; Pritchard and Donnelly 2001).

Detection of marker-trait associations in

breeding germplasm has potential advantages

over classical linkage analysis and QTL mapping

(Jannink and Walsh 2002). For example, broader

genetic variation in a more representative genetic

background can be included in the analysis, LD

mapping may achieve higher resolution, and
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multi-trait phenotypic data stored in databases

can be linked to marker characterizations of the

cultivars involved. The last advantage is espe-

cially important when evaluation of the trait is

time-consuming and expensive, as it is for yield,

adaptability, and stability (Kraakman et al. 2004).

This approach may, however, be limited by the

structure of the population, eventually leading to

spurious, inappropriate levels of LD for QTL

mapping, and insufficient phenotypic or genetic

diversity available within the gene pool (Condon

and Smith 2005). The number of markers needed

for genome-wide LD scanning depends on the

level of LD, however; to be effective, LD-map-

ping requires a marker density compatible with

the distances across which LD extends in the

population of interest. Association mapping could

complement and enhance previous QTL infor-

mation for marker-assisted selection in wheat

(Breseghello and Sorrells, 2006), barley (Kraak-

man et al. 2006), and maize (Yu and Buckler

2006). Within different sets of barley germplasm

there was frequent disequilibrium among non-

linked SSR markers, suggesting that association

mapping without consideration of population

structure would result in a high rate of false

positive Type I errors (Mather et al. 2004). Use of

aunified mixed-model approach to account for

multiple levels of relatedness simultaneously, as

detected by use of genetic markers, has improved

control of both type I and type II error rates (Yu

et al. 2006).

Multi-allelic markers, for example SSRs, have

been used to characterize population structure in

maize (Flint-Garcia et al. 2005; Remington et al.

2001) and rice (Garris et al. 2003); and LD-based

associations in wheat, (Kruger et al. 2004), barley

(Maccaferri et al. 2005), and Lolium (Skøt et al.

2005). The objective of this research was to use a

large collection of blast (Magnaporthe oryzae B.

Couch) resistant rice accessions to determine the

utility of population structure analysis, linkage

disequilibrium (LD), and association mapping of

yield traits in evaluating rice germplasm accessions.

Materials and methods

Included in this study were 92 blast-resistant rice

germplasm accessions from seven different

regions of Africa, Asia, and Latin America

(Table 1). The 91 accessions were recently added

to the USDA-ARS National Plant Germplasm

System. The eleven US cultivars were Bengal

(PI561535), Cocodrie (PI606331), Drew

(PI596758), Katy (PI527707), Kaybonnet

(PI583278), LaGrue (PI568891), Lemont

(PI475833), Newbonnet (PI474580), Wells (Mold-

enhauer et al. 2000), Saber (PI633624), and

Zenith (CIor7787). TeQing (PI536047) is an older

cultivar from Guangdong, China. Further infor-

mation on the accessions and cultivars is available

from the USDA-ARS National Plant Germplasm

System (http://www.ars-grin.gov/npgs/).

The test was seeded in April 2000 and April

2001 in a split-block design (group as main

block) with four replications at the University of

Arkansas Rice Research and Extension Center

in Stuttgart, AR, USA. The plots were 4.5 m

long and six rows wide with 20 cm spacing

between rows. At maturity, 3.6 m from the

center, two rows in each plot were harvested

for grain yield (GY). Other aspects of field

management and measures of grain quality were

as described by Dilday et al. (2001) and Yan

et al. (2003). Seed (30 g) of each accession was

dehulled to determine the kernel length (KL),

kernel width (KW) and kernel length/width ratio

(LWR) with the GrainCheck 312 video image

system (FOSS Food Technology). Thousand

kernel weight (TKW) was determined by weigh-

ing 1000 rice kernels.

Genomic DNA was extracted from leaf tissue

by the methods described in Eizenga et al. (2006).

One-hundred and twenty-three microsatellite

markers located on the twelve chromosomes were

selected from the core set developed and mapped

by McCouch et al. (2002). The forward primers

were labeled with FAM, TET, NED, or HEX

fluorescent dyes and the reverse primers were

unlabeled. DNA amplification was performed

using an MJ Research PTC-100 96 Plus thermal

cycler. PCRs were conducted in a 10-lL reaction

mix containing 37.5 ng template DNA, 1· PCR

buffer, 0.025 units Taq DNA polymerase (Qia-

gen, Valencia, CA, USA), 0.2 mmol dNTPs, and

0.8 pmol forward and reverse primers. Informa-

tion on primer sequences and PCR amplification

conditions for each set of primers are available at
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Table 1 Rice germplasm accessions included in this study
and their country of origina

No. Accession name Country of originb

1 Bhujon Kolpo Bangladesh
2 Bogra Bangladesh
3 Khoia Bangladesh
4 Iac 47 Brazil
5 IRGA409 Brazil
6 Guang-6ai-4 China
7 02428 China-CD
8 Chunzhi No. 11 China-CD
9 Fu No83 China-CD
10 Kechengnuo No. 4 China-CD
11 Sheng 10 China-CD
12 Shufeng 117 China-CD
13 Shufeng 122 China-CD
14 Tie 90-1 China-CD
15 Tiejing No. 4 China-CD
16 Zhang 32 China-CD
17 Xiangzaoxian No. 1 China-HN
18 71198 China-HZ
19 Aijiaonante China-HZ
20 Zanuo No. 1 China-HZ
21 Zhongyu No. 1 China-HZ
22 Zhongyu No. 6 China-HZ
23 Zhongzao No. 1 China-HZ
24 460 China-JT
25 2410 China-JT
26 4484 China-JT
27 4593 China-JT
28 4594 China-JT
29 4596 China-JT
30 4597 China-JT
31 4607 China-JT
32 4611 China-JT
33 4612 China-JT
34 4632 China-JT
35 4633 China-JT
36 4642 China-JT
37 4641(1) China-JT
38 GP-2 China-JT
39 Gui 99 China-JT
40 R 147 China-JT
41 R 312 China-JT
42 Dian No. 1 China-KM
43 Egyptian Jasmine Egypt
44 GZ-1368-5-4 Egypt
45 GZ-5578-2-1-2 Egypt
46 GZ-5594-23-1-2 Egypt
47 GZ-5830-48-2-2 Egypt
48 Ad 9246 Ivory Coast
49 Fkr 19 (Tox728-8) Ivory Coast
50 Fkr 48 Ivory Coast
51 32 Xan Sc Ivory Coast
52 Ita 406 Ivory Coast
53 Ita 416 Ivory Coast

Table 1 Continued

No. Accession name Country of originb

54 Let 3137 Ivory Coast
55 S 992-F4-2-5-1-B Ivory Coast
56 Tnau 7893 Ivory Coast
57 Tox 3093-35-2-3-3-1 Ivory Coast
58 Tox 3211-49-1-1-3-2 Ivory Coast
59 Tox 3241-21-2-2-3-2 Ivory Coast
60 Tox 3241-22-3-3-3 Ivory Coast
61 Tox 3241-31-2-1-3-1 Ivory Coast
62 Tox 3441-123-2-3-2-2-2 Ivory Coast
63 Tox 3553-34-3-2-3-2-2 Ivory Coast
64 Tox 3706-60-3-3-3 Ivory Coast
65 Tox 3706-6-3-3-2 Ivory Coast
66 Tox 3716-4-3-2-2-2-2 Ivory Coast
67 Tox 3717-25-3-1-3 Ivory Coast
68 Tox 3717-25-3-3-1 Ivory Coast
69 Tox 3717-25-3-3-2 Ivory Coast
70 Tox 3717-76-2-2-3 Ivory Coast
71 Tox 3717-81-1-1-3 Ivory Coast
72 Tox 3770-17-2-2-1 Ivory Coast
73 Tox 3771-144-2-1-1 Ivory Coast
74 Tox 3772-38-2-2-3 Ivory Coast
75 Tox 3772-40-3-2-2 Ivory Coast
76 Tox 3772-94-1-1-1 Ivory Coast
77 Tox 3779-51-2-2-2 Ivory Coast
78 Tox 3867-19-1-1-3-1-1-1 Ivory Coast
79 Tox 3869-34-1-3-1-1-3-3 Ivory Coast
80 Tox 3872-61-3-3-3-2-1 Ivory Coast
81 Tox 3894-41-2-3-1 Ivory Coast
82 Tox 4136-38-2 Ivory Coast
83 Tox 4251-313-3 Ivory Coast
84 Tox 3749-71-1-1-3-2-2 Ivory Coast
85 Wab450-24-3-2-P18-hb Ivory Coast
86 Wab450-I-B-P-62-hb Ivory Coast
87 Pyongyang 23 Korea, N.
88 IR56450-28-2-2 1 Philippines
89 Nj70507 17578 Philippines
90 RP2199-16-2-2-1 Philippines
91 S972B-22-1-3-1-1 Philippines
92 Bengal USA
93 Cocodrie USA
94 Drew USA
95 Katy USA
96 Kaybonnet USA
97 LaGrue USA
98 Lemont USA
99 Newbonnet USA
100 Saber USA
101 Te Qing China/USA
102 Wells USA
103 Zenith USA

a Adapted from Eizenga et al. (2006)
b Source of Chinese germplasm: CD - Chengdu, HN -
Hunan, HZ - Hangzhou, KM - Kunming, JT - Joshua Tao
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http://www.gramene.org/ (verified 3 July 2006).

PCR products were separated by size using an

ABI 3700 DNA analyzer (Applied Biosystems

(ABI), Foster City, CA, USA). SSR fragment

sizing was performed with Gene Scan software

(ABI) using the local Southern method and

default analysis settings after which alleles were

identified with Genotyper software (ABI) and

binned manually. For most markers fractional

numbers were rounded to the nearest integer and

alleles differing by 1 bp were declared different.

SSR data, obtained from genotyping US cultivars

with the same ABI 3700 DNA analyzer (Lu et al.

2005), was included for comparison. The map

position of most of the SSR loci was inferred from

McCouch et al. (2002).

The model-based software Structure (Pritchard

et al. 2000) was used to infer population structure

using a burn-in of 10,000, run length of 100,000,

and a model allowing for admixture and corre-

lated allele frequencies. Ten independent runs

yielded consistent results. A model-based cluster-

ing algorithm was applied that identified sub-

groups with distinctive allele frequencies. This

procedure, implemented in computer structure,

places individuals into K clusters, where K is

chosen in advance but can be varied for indepen-

dent runs of the algorithm. The degree of admix-

ture, alpha, was inferred from the data. When

alpha is close to zero, most individuals are

essentially from one population or another

whereas alpha >1 means that most individuals

are admixed (Falush et al. 2003). The range of

possible tested Ks was from 2 to 10.

Distance-based analysis of the accessions using

Euclidean inferred ancestry for each accession

and the key for identifying the accessions was

shown in the neighbor-joining tree using the

unweighted pair group method using arithmetic

averages (UPGMA). This is a hierarchical algo-

rithm for clustering accessions into similar groups.

The output of this clustering procedure is a

dendrogram or tree with distance along the

horizontal (top) axis and the accessions lines

listed vertically down the side. Levels of genetic

variation within and among populations identified

by the cluster analysis were estimated from allelic

frequencies using analysis of molecular variance,

AMOVA (Weir and Cockreham 1984; Weir

1996). The software Arlequin 3.0 (Excoffier

et al. 2005) performs the AMOVA procedure

using SSR and standard multi-locus frequency

data. Wright’s F-statistics are a hierarchical series

of fixation indices where FIS represents the

deviation from Hardy–Weinberg expectation

within populations (approximately equal to the

mean F across populations), FST measures the

fixation of different alleles in different popula-

tions, and FIT measures deviations from Hardy–

Weinberg expectation across the population sys-

tem as a whole.

Decay of LD with distance in cM between SSR

loci within the genome was evaluated using

PowerMarker 3.23 (Liu and Muse 2004). The

LD decay was calculated using the statistical

coefficient of determination (R2) which is a

measurement of correlation between a pair of

variables (Hill and Robertson 1968). All associ-

ation tests were run with the mixed linear model

(MLM) method as described by Yu et al. (2006)

in TASSEL 1.9.4 (http://www.maizegenetics.net/),

a recently developed unified mixed-model meth-

od simultaneously taking into account multiple

levels of both gross level population structure (Q)

and finer scale relative kinship (K). The popula-

tion structure matrix (Q) was identified by run-

ning Structure at K = 7. The relative kinship

matrix (K matrix) was obtained by running

SPAGeDi (Hardy and Vekemans 2002). Output

from SPAGeDi was formatted to a text file

readable by TASSEL. The P-value determines

whether a QTL is associated with the marker and

the R2-marker evaluates the magnitude of the

QTL effects (personal communication, Zhiwu

Zhang, Cornell University).

Results

The 103 accessions had a mean grain yield (GY)

of 7,301 kg ha–1, a mean kernel length (KL) of

6.7 mm, a mean kernel width (KW) of 2.3 mm, a

mean kernel length/width ratio (LWR) of 2.9, and

a mean 1000-kernel weight (TKW) of 21.2 g

(Table 2). Correlations of TKW with GY and

with KW, and of KL with LWR were very

significant (P < 0.0001). Correlation of KL with

TKW was significant (P < 0.001) as was the
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correlation of GY with KW (P < 0.01). There was

a positive correlation between GY and KL but it

was not significant. Significant negative correla-

tions of LWR with KW (P < 0.0001) and GY

(P < 0.01) were found. This indicates that increas-

ing KW and KL results in increase kernel weight

and, to a lesser extent, improves GY. The

correlations also suggest that increased KW has

more effect on GY than increased KL. The

negative correlation between KW and KL

(P < 0.001) indicates that as KW increases KL

decreases.

All 123 SSR markers were polymorphic and

produced a total of 1009 alleles among the 103

accessions assayed. The average number of alleles

per locus was 8.2, ranging from 2 (RM338 on

chromosome 3) to 21 (RM206 on chromosome

11). The average genetic diversity over all SSR

loci was 0.635, ranging from 0.115 (RM512 on

chromosome 12) to 0.881 (RM304 on chromo-

some 10).

Analysis of genetic distance and population

structure provided evidence of significant popu-

lation structure in these rice accessions and

identified the highest likelihood value at K = 7

for all ten replicates (Fig. 1). Analysis of these

data identified the major substructure groups

when the number of populations was set at

three, however, which was consistent with

clustering based on genetic distance. In this

worldwide sample, accessions from the same

predefined population nearly always shared

similar membership coefficients in inferred clus-

ters (Fig. 2). At K = 3, most accessions were

classified into one of the three groups, which

corresponded to the traditional rice sub-species

indica (29 accessions), temperate japonica (32),

and tropical japonica (17) separated by relatively

large genetic distance. In addition to these 78

accessions that were clearly assigned to a single

population, where more than 85% of their

inferred ancestry is derived from one of the

model-based populations, 25 accessions in the

sample were categorized as having a mixed

ancestry, defined as an ‘‘admix’’ (Fig. 2).

Although most of these were identified as admix-

ture between indica and temperate japonica

groups, other admixture combinations were also

present.

Divergence among the accessions was found

using all measures of population structure. The

Structure model-based analysis for several theo-

retical population sizes (defined in this study as

ancestral backgrounds) with the highest posterior

probability was for a model with seven different

backgrounds (Fig. 3, center). For these ancestral

backgrounds, a burn of 10,000 runs followed by

data collection on 100,000 runs seemed to be

sufficient, giving reasonably consistent values of

ln prop data (X|K) across replicates. At K = 7, the

backgrounds largely corresponded to major geo-

graphic regions with one background being US

accessions. Several accessions, for example

‘‘Tox3717-25-3-3-2’’ and ‘‘Shufeng-122’’, had par-

-26000
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-23000

-22000

-21000
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K
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K

)

Fig. 1 Log probability of data, L(K), averaged over the
replicates

Table 2 Descriptive statistics for yield (GY), dehulled
kernel length (KL), kernel width (KW), kernel length/
width ratio (LWR), and 1000-kernel weight (TKW)

GY (kg
ha–1)

KL
(mm)

KW
(mm)

LWR TKW
(g)

Average 7301 6.7 2.3 2.9 21.2
Range 8822 2.4 1.1 3.0 11.2
Minimum 2897 5.4 1.8 1.0 16.2
Maximum 11719 7.8 2.9 4.0 27.4
Std. Dev. 1950 0.6 0.2 0.5 2.1
Correlations
GY
KL 0.019
KW 0.186* –0.481**
LWR –0.162* 0.846*** –0.748***
TKW 0.348*** 0.395** 0.496*** –0.064

*P < 0.01, **P < 0.001, ***P < 0.0001
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tial membership in multiple backgrounds. At

K = 7, the cluster that included tropical japonica

populations split into two clusters, of which one

includes all US genotypes (Fig. 3).

Distance-based analysis of the 103 accessions

with Euclidean distance detected eight major

clusters (Fig. 3, left and right sides). The acces-

sions were classified into eight clusters by the

UPGMA and algorithm neighbor joining tree

based on the genetic similarity matrix. These

clusters usually agreed with the origin of the

accessions and the clustering previously defined

by Eizenga et al. (2006). All US accessions were

grouped in cluster 1; cluster 3 contained Chinese

lines from J. Tao, cluster 4 contained the breeding

lines obtained from the Africa Rice Center

(WARDA), Bouake, Ivory Coast, cluster 7

mainly included Chinese lines from Chengdu,

and cluster 8 contained the Chinese lines from

Hangzhou (Fig. 3). Clusters 2, 5, and 6 had more

than one ancestral background, defined as an

admixture, and these clusters included accessions

from Bangladesh, Brazil, Egypt, North Korea, the

Philippines, and China.

The distribution of molecular genetic variation

among and within the eight clusters of accessions

was estimated by AMOVA, which revealed 41%

of total variation was among the clusters whereas

51% of the variation was within the clusters

(Table 3). Calculation of Wright’s F statistics for

all SSR loci revealed FIS was 0.66, suggesting

there was deviation from Hardy–Weinberg expec-

tation for molecular variation within the clusters,

FIT was 0.71, signifying non-equilibrium condi-

tions across clusters and a deficiency of heterozy-

gous SSR loci, and FST was 0.312 indicating 31.2%

of the total genetic variation was among the

clusters.

Determination of FST for the polymorphic SSR

loci across all accessions revealed FST ranged

from 0.06 for RM120 on chromosome 11 to 0.94

for RM124 on chromosome 4 with an average of

0.381, indicating 38.1% of the total variation in

allele frequency of the 103 accessions was because

of genetic differences among clusters. Determi-

nation of the pair-wise FST values between the

eight clusters (Table 4) indicated that genetic

differentiation among clusters was highest for the

combination of clusters 1 and 3 (FST = 0.719).

The FST values for cluster 1 paired with clusters 4,

5, 6, 7, and 8 ranged from 0.649 to 0.533 and

FST = 0.381 for clusters 1 and 2. These values

confirm that the US accessions were quite differ-

ent from most other accessions except those in

cluster 2. The combination of clusters 7 and 8 had

the lowest FST value (0.110), because of the

shared ancestry of these clusters. The average FST

value for all eight cluster combinations was 0.391.

The distribution of data points in the plot of LD

(R2) decay against distance (cM) within the twelve

chromosomes (Fig. 4) showed that LD was not a

simple monotonic function of the distance between

markers. LD was very common for distances

<30 cM and occasionally, LD occurred between

SSR loci that were further apart. The R2 between

unlinked markers on different chromosomes was

mainly <0.4. Some unlinked SSR markers associ-

ated with blast resistance were identified using

these accessions by Eizenga et al. (2006) and had

higher R2. For example, R2 values were 1.0 (RM206

on chromosome 11, OSM89 on chromosome 12),

0.96 (RM208 on chromosome 2, RM5963 on

chromosome 6), and 0.91 (RM3431-ch 6, RM144-

ch 11). In contrast with a-priori expectation, some

marker pairs that were close together on the

Gramene map were not correlated across the

genotypes and so were in linkage equilibrium.

Association analysis (Table 5) identified mar-

ker-trait associations (P < 0.05) for all the traits

evaluated, these included GY, KW, and LWR,

associated five markers each, KL, with six mark-

ers, and TKW, with four markers. A total of 25

marker-trait associations were identified with 21

different SSR markers. Four markers were asso-

ciated with two traits: RM85 on chromosome 3

was associated with KW and TKW, RM122 on

chromosome 5 was associated with KL and TKW,

RM459 also on chromosome 5 was associated

with KL and TKW, and RM228 on chromosome

10 was associated with GY and LWR. Seventeen

of the 25 associations were in regions where QTL

associated with the given trait had previously

Fig. 2 Estimated population structure (K = 3) for the 103
accessions as rice subgroups tropical japonica (TRJ),
temperate japonica (TEJ), and indica (IND). Each
accession is represented by row, which is partitioned into
K colored segments according to the individual’s esti-
mated membership fractions in each of the K clusters

b
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been identified (http://www.gramene.org/). Of the

25 marker-trait associations, seven were identified

as explaining 20% or more of the total variation

(R2, Table 5) for GY (RM261, RM228), KL

(RM284), LWR (RM7, RM228), and TKW

(RM440, RM122). Only RM284 associated with

KL was not in the region of a previously identified

QTL for the associated trait.

Discussion

The genetic structure of rice has previously been

documented (Glaszmann 1987; Parsons et al.

1999; Ni et al. 2002; Garris et al. 2005) but this

analysis uses accessions recently introduced into

the USA that have blast resistance (Eizenga et al.

2006). By use of Structure software with K = 3,

the O. sativa rice accessions were significantly

differentiated into three subgroups, temperate

japonica, tropical japonica, and indica. The anal-

ysis revealed that several accessions had partial

ancestry in more than one backgrounds. These

accessions probably had a complex breeding

history involving intercrossing and introgression

between germplasm from diverse backgrounds,

overlaid with strong selection pressure for agro-

nomic and quality characteristics (Mather et al.

2004). Population structure analysis identified

eight main clusters for the accessions that corre-

sponded to major geographic regions. General

agreement between the genetic and predefined

clusters suggests that knowledge of the ancestral

background can facilitate choices of parental lines

in rice-breeding programs (Rosenberg et al.

2002). Although both rice-breeding efforts and

domestication have had large effects on structur-

ing the diversity of rice, the independent popula-

tion histories of the groups have also shaped the

gene pools (Garris et al. 2005).

Values of FST were high when the eight clusters

were considered, thus identifying large differ-

ences between the accessions. It has been dem-

onstrated that markers with higher FST values

have greater resolving power and produce more

consistent genetic distance estimates (Watkins

et al. 2003). The significant FST among the

clusters suggests a real difference between these

clusters, and heterosis might be observed for

crosses between the accessions made to improve

yield (N’Goran et al. 2000).

Linkage disequilibrium (LD) studies have now

been conducted for more than a dozen plant

systems, both at the individual gene level and at

the level of whole genome. In individual species,

these studies included:

Fig. 3 Population structure and distance-based analysis of
the 103 rice accessions using Euclidean-inferred ancestry
for each accession. Initially, the accessions were divided
into clusters based on UPGMA and neighbor joining (left
and right sides). Next, the accessions were divided into
seven ancestral backgrounds defined as K (center) based
on analysis in Structure. Accessions were assigned to a
single background or to two or more backgrounds if the
genotype indicated the accession was admixed with
membership in two or more different backgrounds and
estimated on a scale from 1.0 (accession is from one K
only) to 0.0 (accession is not from this K)

b

Table 3 Analysis of
molecular variance
(AMOVA) for the eight
clusters of rice accessions
identified in Fig. 3

Fixation indices:
FIS = 0.663, FST = 0.312,
FIT = 0.710

Source of variation d.f. Sum of
squares

Variance
components

Percentage
variation

P-
value

Among clusters 7 1193.29 6.14 41.37 <0.001
Among accessions within

clusters
95 1707.25 8.32 50.71 <0.001

Within accessions 103 136.50 1.32 7.92 <0.001
Total 205 3037.04 15.79

Table 4 Pair-wise FST values between eight clusters as
identified using Euclidean distance in Fig. 3

Popu-
lation

1 2 3 4 5 6 7 8

1 –
2 0.381 –
3 0.719 0.601 –
4 0.609 0.485 0.496 –
5 0.561 0.418 0.392 0.169 –
6 0.649 0.467 0.479 0.362 0.198 –
7 0.589 0.412 0.360 0.291 0.168 0.142 –
8 0.533 0.400 0.301 0.291 0.157 0.208 0.110 –
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(i) estimation of the extent of LD in different

plant genomes or in different parts of the

genome of an individual species,

(ii) measure of nucleotide diversity/haplotype

structure,

(iii) assessment of the effect of selection/domes-

tication,

(iv) identification of marker-trait associations,

Gupta et al. (2005).
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Fig. 4 Scatterplot of the
LD (R2) of marker pairs
as a function of the
intermarker distance in
cM. A genetic distance of
250 cM was chosen to
represent unlinked loci on
different chromosomes.
LD analysis was
performed on the entire
population (103
accessions)

Table 5 Association (R2) of SSR markers with yield (GY), dehulled kernel length (KL) and width (KW), length/width ratio
(LWR), and 1000 dehulled kernels weight (TKW), as described in Table 2

Trait SSR Markera Chromosome no. Position (cM) P R2 b

GY RM416 3 191.6c 0.0515 0.1244
GY RM261 4 35.4c 0.0016 0.2032
GY RM447 8 124.6 0.0370 0.1950
GY RM271 10 59.4c 0.0111 0.1909
GY RM228 10 96.3c 0.0118 0.2542
KL RM259 1 54.2c 0.0237 0.1016
KL RM16 3 131.5c 0.0317 0.1155
KL RM122 5 0.0c 0.0167 0.1226
KL RM284 8 83.7 0.0197 0.3258
KL RM202 11 54.0 0.0105 0.1012
KL RM287 11 68.6 0.0491 0.1994
KW RM468 3 202.3 0.0060 0.1351
KW RM85 3 231.0 0.0103 0.1451
KW RM459 5 93.6c 0.0041 0.1305
KW RM248 7 116.6 0.0106 0.1867
KW RM152 8 9.4c 0.0022 0.1318
LWR RM109 2 0.0 0.0009 0.1287
LWR RM7 3 64.0c 0.0171 0.2359
LWR RM245 9 112.3 0.0006 0.1748
LWR RM228 10 96.3c 0.0203 0.3213
LWR RM147 10 99.8c 0.0139 0.1330
TKW RM449 1 78.4c 0.0118 0.2199
TKW RM85 3 231.0c 0.0429 0.1914
TKW RM122 5 0.0c 0.0039 0.2661
TKW RM459 5 93.6c 0.0509 0.1750

a Only SSR markers with a significant marker-trait association are reported (P < 0.05)
b R2 indicates the percentage of the total variation explained
c QTL for the given trait previously reported in the same region (http://www.gramene.org/)
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The LD between unlinked loci, for example

RM208 and RM224 on chromosomes 2 and 11,

and RM3431 and RM144 on chromosomes 6 and

11, was occasionally significant. These markers

are linked with three blast-resistance (Pi-) genes

located on these chromosomes (Fjellstrom et al.

2004). LD was high among unlinked SSR markers

around Pi that were associated with blast resis-

tance in these accessions. Our results suggest that

mapping strategies exploiting LD around the

region of Pi-loci may be particularly effective in

rice, as it was in exploiting the haplotype diversity

and LD surrounding the xa5 locus (Garris et al.

2003). Further research will be conducted to

describe the diversity and decay of linkage

disequilibrium in this region of the rice genome,

to characterize the extent of LD in resistant

accessions, to determine if it is possible to reduce

the number of candidate genes, and to analyze

haplotype diversity in the context of population

structure to determine the distribution of the

resistance allele among ecotypes and to make

predictions about the allelic diversity underlying

the Pi phenotype. In contrast with the situation in

the human, genome-wide LD mapping of which

may require a marker density two times of

magnitude higher than that required for conven-

tional linkage mapping, the available 150 micro-

satellites could be sufficient for first-pass LD

screening in rice genotypes (Kruglyak 1999). The

corollary of this observation, however, is that the

mapping resolution to be gained from LD is likely

to be limited in these populations also. In this

work we still observed a substantial drop in LD

values between 20 and 30 cM, suggesting it

should, nevertheless, be possible to achieve res-

olution down to the 25 cM level. The same

observation on LD at larger distances was found

in Arabidopsis (Nordborg et al. 2002) and barley

(Kraakman et al. 2004). In sugar beet lines,

however, LD was <3 cM (Kraft et al. 2000), in

Lolium perenne, LD was <3.4 cM (Skøt et al.

2005), and in maize LD diminished over a

distance of 2000 bp (Remington et al. 2001).

Significant LD between pairs of unlinked markers

was observed (McRae et al. 2002; Skøt et al.

2005), emphasizing the advantage of both linkage

and LD testing. Many factors affect LD (Ardlie

et al. 2002), but the most probable cause of the

high level of LD in rice is that it is a self-

pollinated species. Selection can also increase

LD, for instance, by a hitchhiking effect in which

the alleles at flanking loci of a locus under

selection can be rapidly swept to high frequency

or fixation (Kraakman et al. 2004). Further

analyses will be required to evaluate the benefit

of LD mapping at the sub-cM level in these

populations.

For LD between two multi-allelic loci, r2

(statistical coefficient of determination) and D¢
(absolute ratio of deviation of haplotype frequen-

cies from disequilibrium compared with its max-

imum value) are the most widely used measure of

LD for each pair of alleles, or even for overall LD

between all the alleles at two loci (Gupta et al.

2005). Whereas D¢ measures only recombination

differences, r2 summarizes recombination and

mutation history. Also, r2 is indicative of how

markers might be correlated with the QTL of

interest, so r2 is often preferred for association

studies (Abdallah et al. 2003). In the sets of

cultivated rice examined here, linkage disequilib-

rium as r2 is present on a scale that could be

useful for association mapping. Genome-scale

association mapping should be possible, if ade-

quate methods are implemented to control the

effects of population structure. Model-based

analyses of population structure, for example

those conducted here, may be helpful for provid-

ing information that could be incorporated into

association mapping analyses.

Fear of false-positive outcomes arising from

population stratification has virtually dictated

progress in human association study design and

analysis methodology (Cardon and Bell 2001, Yu

et al. 2006). Genome-scale association mapping

should be possible if adequate methods are

implemented to control for the effects of popu-

lation structure. Association mapping without

consideration of population structure would have

a high rate of Type I error (false positive) because

of spurious associations between non-linked loci.

Model-based analysis of population structure

similar to that conducted here has provided

information that has been incorporated into

association mapping analysis.

In the eight clusters identified in this study, FIS

was high, suggesting that most of the populations
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deviated from the Hardy–Weinberg expectation

within populations. The FIT value, indicating

nonequilibrium conditions across populations

and deficiency of heterozygotes, was also high.

Testing for association between the SSR multilo-

cus genotype data associated with quantitative

variation in the presence of population structure

(Thornsberry et al. 2001; Remington et al. 2001)

was applied using the MLM procedure in TAS-

SEL (Yu et al. 2006). The positive results from

these studies should encourage the further testing

of these methods in different genetic systems, in

the same way as we applied these procedures to

rice. Association between markers and grain

yield, dehulled kernel length, and width, length/

width ratio, and 1000-kernel weight was examined

in two ways—significance of marker-trait associ-

ation (P-values) using TASSEL software and

marker-trait associations found in other QTL

studies reported in http://www.gramene.org/. This

indicates that QTL detected in mapping popula-

tions from biparental mapping populations were

widely presented in this set of accessions, and that

they could be detected with LD mapping. Asso-

ciation between traits and marker regions that

had not been implicated before to affect trait

suggest new QTL. The trait markers association

was indicative of a rapid decrease in correlation,

suggesting LD across a short distance. Within

different sets of barley germplasm there was

frequent disequilibrium among non-linked SSR

loci, suggesting that association mapping without

consideration of population structure would have

a high rate of false positive Type I error (Mather

et al. 2004). A unified mixed-model approach to

account for multiple levels of relatedness simul-

taneously, as detected by genetic markers, has

resulted in improved control of both type-I and

type-II error rates (Yu et al. 2006).

Plant genetics has an important and challeng-

ing goal of identifying the genetic variants that

underlie complex traits. Two main approaches are

available for mapping the relevant genes and

identifying the variants that associate with the

traits: linkage mapping in families and popula-

tion-based genetic association studies. Linkage

mapping has been very successful in finding genes

for rare, Mendelian, monogenic disease resis-

tance. For complex traits that involve variants at

several loci, each of which contribute small

amounts to the overall genetic contribution,

linkage studies mainly identify only those loci

with the strongest influence, however. The most

significant finding of this paper is that the LD in

this set of germplasm did not decay until 20–

30 cM. These results could have important impli-

cations for association testing in rice. There are

two previous studies of LD in rice. The first is that

of Garris et al. (2003) who found LD to decay at

100 kb across one region on chromosome 5. In a

second study Olsen et al. (2006) analyzed a 500-

kb region on chromosome 6 and found a 250 kb

selective sweep at the waxy locus that led to

elevated LD in that region. This would indicate

that LD decay at 250 kb was unusually high,

because of selection on the waxy locus. Although

the amount of LD will vary across the genome

(because of recombination rates, selective pres-

sures, etc.), these studies seem indicative of LD

decaying in rice at 1 cM or less (assuming an

average of 250 kb/cM across the genome). This is

in contrast with the LD decaying at 20–30 cM in

the current study. LD in some Arabidopsis

populations exceeds 50 cM (Nordborg et al.

2002), however, and LD as a function of genetic

distance is very common for distances <10 cM

(Kraakman et al. 2004) in barley.

In theory, genetic association mapping has

greater power than linkage studies to identify

variants with weak effects that might contribute

risk for common complex traits (Risch and

Merikangas 1996). Whole-genome association

studies have the advantage of enabling the entire

genome to be assessed for trait-associated vari-

ants, rather than analyzing specific candidate

genes. The disadvantage of such studies, however,

is that a large amount of genotyping is required.

This can be reduced by using a subset of markers

to report on neighboring linked markers within

the genome (Smith and O’Brien 2005). Applica-

tion of association mapping to plant breeding

seems to be a promising means of overcoming the

limitations of conventional linkage mapping

(Stich et al. 2005). Our results have shown that

LD studies are an efficient means of indicating

novel genes for important agronomic characters

that subsequently can be validated in specific

biparental crossing populations, and for confirm-
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ing QTL that have been detected in mapping

populations.
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