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OBJECTIVE—We investigated the effects of 18 confirmed type
2 diabetes risk single nucleotide polymorphisms (SNPs) on
insulin sensitivity, insulin secretion, and conversion of proinsulin
to insulin.

RESEARCH DESIGN AND METHODS—A total of 5,327 non-
diabetic men (age 58 � 7 years, BMI 27.0 � 3.8 kg/m2) from a
large population-based cohort were included. Oral glucose toler-
ance tests and genotyping of SNPs in or near PPARG, KCNJ11,
TCF7L2, SLC30A8, HHEX, LOC387761, CDKN2B, IGF2BP2,
CDKAL1, HNF1B, WFS1, JAZF1, CDC123, TSPAN8, THADA,
ADAMTS9, NOTCH2, KCNQ1, and MTNR1B were performed.
HNF1B rs757210 was excluded because of failure to achieve
Hardy-Weinberg equilibrium.

RESULTS—Six SNPs (TCF7L2, SLC30A8, HHEX, CDKN2B,
CDKAL1, and MTNR1B) were significantly (P � 6.9 � 10�4) and
two SNPs (KCNJ11 and IGF2BP2) were nominally (P � 0.05)
associated with early-phase insulin release (InsAUC0–30/Glu-
AUC0–30), adjusted for age, BMI, and insulin sensitivity (Matsuda
ISI). Combined effects of these eight SNPs reached �32% reduc-
tion in InsAUC0–30/GluAUC0–30 in carriers of �11 vs. �3
weighted risk alleles. Four SNPs (SLC30A8, HHEX, CDKAL1,
and TCF7L2) were significantly or nominally associated with
indexes of proinsulin conversion. Three SNPs (KCNJ11, HHEX,
and TSPAN8) were nominally associated with Matsuda ISI (ad-
justed for age and BMI). The effect of HHEX on Matsuda ISI
became significant after additional adjustment for InsAUC0–30/
GluAUC0–30. Nine SNPs did not show any associations with
examined traits.

CONCLUSIONS—Eight type 2 diabetes–related loci were sig-
nificantly or nominally associated with impaired early-phase
insulin release. Effects of SLC30A8, HHEX, CDKAL1, and
TCF7L2 on insulin release could be partially explained by
impaired proinsulin conversion. HHEX might influence both
insulin release and insulin sensitivity. Diabetes 58:2129–2136,

2009

I
mpaired insulin secretion and insulin resistance, two
main pathophysiological mechanisms leading to
type 2 diabetes, have a significant genetic compo-
nent (1). Recent studies have confirmed 20 genetic

loci reproducibly associated with type 2 diabetes (2–13).
Three were previously known (PPARG, KCNJ11, and
TCF7L2), whereas 17 loci were recently discovered either
by genome-wide association studies (SLC30A8, HHEX-
IDE, LOC387761, CDKN2A/2B, IGF2BP2, CDKAL1,
FTO, JAZF1, CDC123/CAMK1D, TSPAN8/LGR5, THADA,
ADAMTS9, NOTCH2, KCNQ1, and MTNR1B), or candi-
date gene approach (WFS1 and HNF1B). The mechanisms
by which these genes contribute to the development of
type 2 diabetes are not fully understood.

PPARG is the only gene from the 20 confirmed loci
previously associated with insulin sensitivity (14,15). As-
sociation with impaired �-cell function has been reported
for 14 loci (KCNJ11, SLC30A8, HHEX-IDE, CDKN2A/2B,
IGF2BP2, CDKAL1, TCF7L2, WFS1, HNF1B, JAZF1,
CDC123/CAMK1D, TSPAN8/LGR5, KCNQ1, and MTNR1B)
(6,12,13,16–38). Although associations of variants in
HHEX (16–22), CDKAL1 (6,21–26), TCF7L2 (22,27–30),
and MTNR1B (13,31,32) with impaired insulin secretion
seem to be consistent across different studies, information
concerning other genes is limited (12,18–25,27,33–38). The
mechanisms by which variants in these genes affect insulin
secretion are unknown. However, a few recent studies
suggested that variants in TCF7L2 (22,39–42), SLC30A8
(22), CDKAL1 (22), and MTNR1B (31) might influence
insulin secretion by affecting the conversion of proinsulin
to insulin. Variants of FTO have been shown to confer risk
for type 2 diabetes through their association with obesity
(7,16) and therefore were not included in this study.

Large population-based studies can help to elucidate the
underlying mechanisms by which single nucleotide poly-
morphisms (SNPs) of different risk genes predispose to
type 2 diabetes. Therefore, we investigated confirmed type
2 diabetes–related loci for their associations with insulin
sensitivity, insulin secretion, and conversion of proinsulin
to insulin in a population-based sample of 5,327 nondia-
betic Finnish men.

RESEARCH DESIGN AND METHODS

A total of 5,327 nondiabetic men from the ongoing population-based
cross-sectional METSIM (Metabolic Syndrome in Men) study (10,26,43) were
included in the study (age 58 � 7 years, BMI 27.0 � 3.8 kg/m2). Of these, 3,594
(68%) subjects had normal glucose tolerance, 884 (17%) had isolated impaired
fasting glucose, 503 (9%) had isolated impaired glucose tolerance, and 346
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(6%) had both impaired fasting glucose and impaired glucose tolerance.
Subjects with type 2 diabetes (n � 898) were excluded from the analyses.
Subjects aged from 45 to 70 years were randomly selected from the population
register of Kuopio, Eastern Finland (population of 95,000) for the METSIM
study. Every participant had a 1-day outpatient visit to the Clinical Research
Unit at the University of Kuopio. Blood samples were drawn after 12 h
of fasting followed by an oral glucose tolerance test (OGTT). The study
was approved by the Ethics Committee of the University of Kuopio and
Kuopio University Hospital and carried out in accordance with the Helsinki
Declaration.
Clinical measurements. Height and weight were measured to the nearest 0.5
cm and 0.1 kg, respectively. BMI was calculated as weight (killograms) divided
by height (meters) squared.
OGTT. A 2-h OGTT (75 g of glucose) was performed, with samples for plasma
glucose, insulin, and proinsulin drawn at 0, 30, and 120 min. Glucose tolerance
was evaluated according to the World Health Organization criteria (44).
Laboratory measurements. Plasma glucose was measured by enzymatic
hexokinase photometric assay (Konelab Systems Reagents; Thermo Fischer
Scientific, Vantaa, Finland), insulin by immunoassay (ADVIA Centaur Insulin
IRI, No. 02230141; Siemens Medical Solutions Diagnostics, Tarrytown, NY),
and proinsulin by immunoassay (Human Proinsulin Ria kit; Linco Research,
St. Charles, MO). Proinsulin data were available for 2,697 subjects.
Genotyping. Genotyping of 19 SNPs was performed with the TaqMan Allelic
Discrimination Assay (Applied Biosystems) (PPARG rs1801282, KCNJ11

rs5219, TCF7L2 rs7903146, SLC30A8 rs13266634, HHEX rs1111875,
LOC387761 rs7480010, CDKN2B rs10811661, IGF2BP2 rs4402960, CDKAL1

rs7754840, HNF1B rs757210, WFS1 rs10010131, JAZF1 rs864745, CDC123

rs12779790, TSPAN8 rs7961581, THADA rs7578597, ADAMTS9 rs4607103,
NOTCH2 rs10923931, KCNQ1 rs2283228), and Sequenom iPlex gold SBE
(Sequenom) (MTNR1B rs10830963). TaqMan genotyping call rate was 100%
and error rate 0% among 4.5% of DNA samples genotyped in duplicate.
Sequenom iPlex call rate for MTNR1B rs10830963 was 96.8% and error rate 0%
among 4.2% of DNA samples genotyped in duplicate. All SNPs were consistent
with Hardy-Weinberg equilibrium (P � 0.05) except for HNF1B rs757210 (P �
0.0001). This SNP was omitted from all statistical analyses.
Calculations. The trapezoidal method was used to calculate glucose, insulin,
and proinsulin area under the curve (AUC) during OGTT. Early-phase insulin
release (InsAUC0–30/GluAUC0–30) was calculated as the total insulin area
under the curve divided by the total glucose area under the curve during the
first 30 min of an OGTT. Matsuda index of insulin sensitivity (Matsuda ISI) was
calculated as reported previously (45). In our previous validation study,
InsAUC0–30/GluAUC0–30 had the highest correlation (r � 0.666) with the
first-phase insulin secretion in an intravenous glucose tolerance test among 11
different indexes tested, and Matsuda ISI had the highest correlation with lean
body mass adjusted M value from the euglycemic-hyperinsulinemic clamp
(r � 0.776) among six different indexes tested (46). Four indexes of proinsulin
conversion were calculated: proinsulin/insulin ratio in the fasting state
(Proins0/Ins0), an index of proinsulin conversion to insulin during the first 30 min
(ProinsAUC0–30/InsAUC0–30), 30–120 min (ProinsAUC30–120/InsAUC30–120), and
0–120 min (ProinsAUC0–120/InsAUC0–120) of an OGTT. All indexes of proinsulin
conversion were multiplied by 100. All calculations were based on glucose,
insulin, and proinsulin concentrations at 0, 30, and 120 min of an OGTT.
Disposition index was calculated as InsAUC0–30/GluAUC0–30 � Matsuda ISI. To
estimate a combined impact of multiple type 2 diabetes risk alleles (denoted
as the risk allele throughout the text) on InsAUC0–30/GluAUC0–30 we calcu-
lated a genetic risk score as a sum of weighted risk alleles (47) at SNPs
significantly or nominally associated with InsAUC0–30/GluAUC0–30 in initial
analyses. For each subject, the number of risk alleles (0,1,2) per SNP was
weighted for their effect sizes (shown in Table 1; average effect size per allele
among eight SNPs was 1.58, which was considered as one weighted risk
allele), and the sum of weighted alleles for each subject was rounded to
closest integer. Subjects with �3 and �11 weighted risk alleles were pooled
to obtain larger numbers.
Statistical analysis. Effect sizes [B (SE)] per copy of the risk allele were
estimated by linear regression adjusted for age, using untransformed depen-
dent variables, as previously described (13). P values were calculated using
logarithmically transformed variables (all except for age) because of their
skewed distribution and were adjusted for age in the primary analyses. In the
secondary analyses, additional adjustment was performed as follows: effects
of SNPs on InsAUC0–30/GluAUC0–30 and ProinsAUC0–30/InsAUC0–30 were
adjusted for age, BMI, and Matsuda ISI (to examine effects independent of
obesity and insulin sensitivity), and effects of SNPs on Matsuda ISI and
disposition index were adjusted for age and BMI. Effect of genetic risk score
on InsAUC0–30/GluAUC0–30 was analyzed by linear regression adjusted for age,
BMI, and Matsuda ISI because of significant association of genetic risk score
with these covariates. Hardy-Weinberg equilibrium was tested by �2 test.
Statistical analyses were conducted with the SPSS 14 programs (SPSS,

Chicago, IL). P � 0.05 was considered nominally significant, and P � 6.9 �
10�4 calculated using Bonferroni correction for multiple comparisons was
considered statistically significant, given 72 independent tests for 18 SNPs
and four outcomes measured (obesity [BMI], insulin release [InsAUC0–30/Glu-
AUC0–30], insulin sensitivity [Matsuda ISI], and proinsulin conversion [Proins-
AUC0–30/InsAUC0–30]). Power of the current sample was estimated using the
Bioconductor’s GeneticsDesign package version 1.1 (http://www.bioconductor.
org/packages/2.3/bioc/html/GeneticsDesign.html). We had power �80% to detect
changes from 5 to 8% per copy of the risk allele for InsAUC0–30/GluAUC0–30,
Matsuda ISI, and disposition index for SNPs with minor allele frequency
�30%, and power �80% to detect a change of 	15% in ProinsAUC0–30/
InsAUC0–30 for SNPs with minor allele frequency larger than 30%.

RESULTS

Primary analyses. Primary analyses were carried out
under the additive model adjusted for age.
Obesity. None of the 18 SNPs was significantly associated
with BMI, although for 4 SNPs (TCF7L2 rs7903146,
CDC123 rs12779790, TSPAN8 rs7961581, and MTNR1B
rs10830963) the association was nominally significant (P �
0.018, 0.006, 0.031, and 0.035). The effect sizes were ��1%
per type 2 diabetes risk allele. To examine obesity-inde-
pendent effects of all SNPs, we additionally adjusted their
effects for BMI.
Insulin sensitivity. None of the 18 SNPs had significant
effect on Matsuda ISI in a primary analysis. Two SNPs,
HHEX rs1111875 and KCNJ11 rs5219, were nominally
associated with Matsuda ISI, with effect sizes ranging from

2 to 
4% per risk allele (P � 0.010 and 0.005) (Table 1).
Adjustment for BMI did not have a major impact on these
associations but revealed another nominal association
between TSPAN8 rs7961581 and Matsuda ISI (P � 0.008,
effect size �2% per risk allele). However, both KCNJ11
rs5219 and HHEX rs1111875 were also associated with
InsAUC0–30/GluAUC0–30. Adjustment for InsAUC0–30/Glu-
AUC0–30 abolished the effect of KCNJ11 rs5219 (P �
0.906) but strengthened the effect of HHEX rs1111875 on
Matsuda ISI (P � 3.6 � 10�5).
Insulin release. Altogether, eight SNPs (in or near
KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2B, IGF2BP2,
CDKAL1, and MTNR1B) were nominally or significantly
associated with InsAUC0–30/GluAUC0–30. The largest ef-
fects on InsAUC0–30/GluAUC0–30 (from �6 to �9% per risk
allele) were observed for TCF7L2 rs7903146, HHEX
rs1111875, CDKAL1 rs7754840, and MTNR1B rs10830963
and were statistically significant in both primary analyses
and analyses adjusted for age, BMI, and Matsuda ISI
(Table 1). Effect sizes of the SNPs in or near KCNJ11,
SLC30A8, CDKN2B, and IGF2BP2 were ��5% per risk
allele. Adjustment of effects of these SNPs for BMI and
Matsuda ISI in addition to age attenuated the initially
significant effect of KCNJ11 rs5219 (P � 0.024), strength-
ened the associations of SLC30A8 rs13266634 and
CDKN2B rs10811661 to significant level (P � 3.2 � 10�4

and 1.7 � 10�4), and did not change nominal association of
IGF2BP2 rs4402960 with InsAUC0–30/GluAUC0–30 (P �
0.004) (Table 1).
Proinsulin conversion. Four SNPs (in or near HHEX,
SLC30A8, TCF7L2, and CDKAL1) were associated with
ProinsAUC0–30/InsAUC0–30, with effect sizes ranging from

3 to 
6% per risk allele (Tables 1 and 2). For HHEX
rs1111875 and SLC30A8 rs13266634 the effects were sig-
nificant regardless of adjustments used (adjusted for age:
P � 9.7 � 10�6 and 1.9 � 10�5; adjusted for age, BMI, and
Matsuda ISI: P � 6.5 � 10�6 and 1.2 � 10�5). In contrast,
adjustment for BMI and Matsuda ISI attenuated the signif-
icant effect of CDKAL1 rs7754840 to nominal level (P �
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0.002), and strengthened nominal effect of TCF7L2

rs7903146 to significant level (P � 6.0 � 10�4). Similar
results, although slightly attenuated, were obtained when
alternative indexes of proinsulin conversion based on
proinsulin and insulin AUCs during 0–120 min or 30–120
min of an OGTT were used (ProinsAUC0–120/InsAUC0–120
and ProinsAUC30–120/InsAUC30–120, Table 2). SLC30A8
rs13266634 and TCF7L2 rs7903146 were also nominally
associated with fasting proinsulin/insulin ratio (Proins0/
Ins0, Table 2). Overall, these results were consistent with
associations of TCF7L2, SLC30A8, HHEX, and CDKAL1
with insulin release, because the risk alleles associated
with lower insulin release were associated with higher
proinsulin/insulin ratio.
Disposition index. Most of the insulin release–related
SNPs (in or near TCF7L2, SLC30A8, HHEX, CDKN2B,
IGF2BP2, CDKAL1, and MTNR1B) were also significantly
or nominally associated with disposition index (Table 1).
The largest effects ranging from �3 to �6% per risk allele
were observed for MTNR1B rs10830963 (P � 6.7 � 10�11),
HHEX rs1111875 (P � 2.5 � 10�9), TCF7L2 rs7903146
(P � 8.3 � 10�5), CDKN2B rs10811661 (P � 4.3 � 10�4),
and CDKAL1 rs7754840 (P � 1.6 � 10�4). Adjustment for
BMI did not attenuate these associations, except for that
of CDKN2B (P � 0.001).

Given the number of tests (18 tests for each variable),
we would expect 0.9 P values �0.05 per variable at
random. The number of associations with P � 0.05 was
larger than expected (nine for InsAUC0–30/GluAUC0–30,
four for ProinsAUC0–30/InsAUC0–30, two for Matsuda ISI,
and seven for disposition index in primary analyses),
suggesting that the associations we found were not likely
to occur by chance. However, it should be mentioned that
despite the large sample size we did not have sufficient
power (�80%) to detect small effects (�6% per risk allele)
on different traits examined for 9 of 18 SNPs investigated.

We repeated all analyses in the subgroup of subjects
with normal glucose tolerance (n � 3,594) (supplemental
Table 1, available in an online appendix at http://diabetes.
diabetesjournals.org/cgi/content/full/db09-0117/DC1). The
effect sizes were mostly similar, although associations
were generally slightly weaker because of a smaller sam-
ple size. In contrast, in analyses including both nondia-
betic subjects and 442 subjects with newly diagnosed type
2 diabetes the associations described above were some-
what more statistically significant with similar effect sizes
and revealed nominal associations of CDC123 rs12779790
and ADAMTS9 rs4607103 with disposition index (P �
0.001 and 0.043, adjusted for age and BMI, effect sizes
	�2% per risk allele, supplemental Table 2).
Combined effect of risk alleles on insulin release. We
combined the risk alleles at eight SNPs significantly or
nominally associated with InsAUC0–30/GluAUC0–30
(KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2B, IGF2BP2,
CDKAL1, and MTNR1B) to evaluate their combined effects
on insulin release. InsAUC0–30/GluAUC0–30 gradually de-
creased with an increasing number of risk alleles (relative
effect size �4% per allele, P � 9.3 � 10�44 adjusted for age,
BMI, and Matsuda ISI). Subjects with �11 weighted risk
alleles (n � 190) had decreased InsAUC0–30/GluAUC0–30
by �32% compared with subjects with �3 weighted risk
alleles (n � 163) (Fig. 1). We also performed similar
analysis using nonweighted risk alleles. The difference in
InsAUC0–30/GluAUC0–30 between subjects with �3 and
�11 risk alleles was �37% (relative effect size �4% per
risk allele, P � 3.8 � 10�28).T
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DISCUSSION

In this large population-based study, we investigated the
effects of confirmed type 2 diabetes risk variants on insulin
secretion, insulin sensitivity, and proinsulin processing.
We showed in 5,327 nondiabetic Finnish men that 8 of 18
type 2 diabetes–related variants were significantly
(TCF7L2, SLC30A8, HHEX, CDKN2B, CDKAL1, and
MTNR1B) or nominally (KCNJ11 and IGF2BP2) associ-
ated with early-phase insulin release (InsAUC0 –30/
GluAUC0–30) after adjustment for age, BMI, and Matsuda
ISI. InsAUC0–30/GluAUC0–30 decreased gradually with in-
creasing number of type 2 diabetes risk alleles in these
SNPs and was �32% less in subjects with �11 than with
�3 risk alleles. Furthermore, four variants (TCF7L2,
SLC30A8, HHEX, and CDKAL1) were also associated
with proinsulin conversion (ProinsAUC0–30/InsAUC0–30).
SNPs in or near KCNJ11, HHEX, and TSPAN8 were
nominally associated with Matsuda ISI (adjusted for age
and BMI).

Insulin secretion has an important genetic component,
as suggested by twin studies reporting heritability esti-
mates �50% (1), and a majority of diabetes susceptibility
genes have been shown to associate with parameters of
insulin secretion (48). Our finding of eight SNPs associated
with insulin secretion, alone or in combination, provides
additional evidence on the importance of the genes regu-
lating insulin secretion as risk genes for type 2 diabetes.
An observation similar to our results was reported in a
study by Pascoe et al. (27), where carriers of nine or more
risk alleles in seven genes exhibited reduced insulin
secretion (assessed by the insulinogenic index) by �21.8%
and reduced glucose sensitivity of �-cells by �26.6%
compared with carriers of four or less risk alleles. In our
study, the largest effects on InsAUC0–30/GluAUC0–30 were
observed for HHEX, MTNR1B, TCF7L2, and CDKAL1
(effect sizes ranging from �6 to �9% per risk allele). This
finding is in agreement with previous studies, which have
also quite consistently reported associations of these
genes with impaired insulin secretion (6,13,17,30–32).
Effects of SNPs in KCNJ11, SLC30A8, IGF2BP2, and
CDKN2B on insulin secretion were �5% in our study.

Previous studies examining these SNPs for an association
with insulin secretion have been inconclusive (6,18–19,22–
25,35), most probably because of insufficient power to
detect modest effects of these SNPs. A few studies have
reported associations of variants of WFS1 (36), TSPAN8
(33), JAZF1 (33), CDC123 (33), LOC387761 (24), and
KCNQ1 (12) with insulin secretion, but our study failed to
confirm such an association.

The mechanisms by which the insulin secretion–related
genes influence insulin release have remained largely
unknown. One of the plausible mechanisms proposed by
previous studies is impaired conversion of proinsulin to
insulin. In our study, four SNPs were significantly
(SLC30A8 rs13266634, HHEX rs1111875, and TCF7L2
rs7903146) or nominally (CDKAL1 rs7754840) associated
with the proinsulin/insulin ratio during the first 30 min of
an OGTT (adjusted for age, BMI, and Matsuda ISI). Vari-
ants in SLC30A8 and TCF7L2 were also nominally asso-
ciated with fasting proinsulin/insulin ratio. Association of
TCF7L2 rs7903146 with proinsulin levels (40,41) or proin-
sulin/insulin ratio (39,42) has been previously reported.
Although the mechanisms behind this association are not
clear, impaired glucagon-like peptide 1 signaling seems to
be involved (49). In a recent study (22), the association of
SLC30A8 rs13266634, CDKAL1 rs7754840, and TCF7L2
rs7903146 with the proinsulin/insulin AUC ratio during
OGTT was also shown. Our finding that HHEX variant is
associated with impaired proinsulin conversion has not
previously been reported. Our results suggest that SNPs in
or near TCF7L2, CDKAL1, SLC30A8, and HHEX may
affect insulin secretion, at least partially, through impaired
proinsulin conversion. Although we had proinsulin data
from almost 2,700 subjects, the power of our study was
limited to detect effect sizes �15% in the ProinsAUC0–30/
InsAUC0–30 ratio. Therefore, even larger studies are
needed to identify SNPs significantly associated with
defects in proinsulin conversion.

PPARG has been the only clear insulin sensitivity–
related gene among 20 diabetes susceptibility loci con-
firmed by genome-wide association studies. We observed
only a small effect (�2% per risk allele) of PPARG
rs1801282 (Pro12Ala) on Matsuda ISI, which was close to
be nominally significant (P � 0.054, adjusted for age and
BMI). Similar small effects (	2% per risk allele) on Mat-
suda ISI were observed for variants in or near KCNJ11,
HHEX, and TSPAN8 in our study, but none of them
reached significant level after adjustment for age and BMI.
In a recent study by Staiger et al. (34), a trend for
association of TSPAN8 rs7961581 with Matsuda ISI and
homeostasis model assessment of insulin resistance in-
dexes of insulin sensitivity or resistance has also been
reported. However, association of HHEX rs1111875 be-
came significant after additional adjustment for InsAUC0–30/
GluAUC0–30 in our study, and the risk allele was associated
with higher Matsuda ISI. Although HHEX is primarily a
candidate gene for impaired insulin secretion, it remains
to be elucidated whether it also affects tissue-specific
insulin sensitivity independently of changes in insulin
secretion.

HHEX rs1111875 was associated with all traits exam-
ined in our study, and particularly its effects on InsAUC0–30/
GluAUC0–30 and ProinsAUC0–30/InsAUC0–30 ratios were the
most significant among all examined SNPs. Although the
association of the HHEX locus with insulin secretion is
well established (16–22), its association with insulin sen-
sitivity and proinsulin conversion has not been previously

FIG. 1. Early-phase insulin release (InsAUC0–30/GluAUC0–30) according
to the number of risk alleles in eight insulin secretion–related SNPs
(KCNJ11 rs5219, TCF7L2 rs7903146, SLC30A8 rs13266634, HHEX

rs1111875, CDKN2B rs10811661, IGF2BP2 rs4402960, CDKAL1

rs7754840, and MTNR1B rs10830963). For each subject, the number of
type 2 diabetes risk alleles (0, 1, 2) per SNP was weighted for their
effect sizes (shown in Table 1; average effect size per risk allele among
eight SNPs was 1.58, which was considered as one weighted risk allele).
Effect of the number of the risk alleles on InsAUC0–30/GluAUC0–30 was
significant (P � 9.3 � 10�44, adjusted for age, BMI, and Matsuda ISI).
Data are shown as means � SE (adjusted for age, BMI, and Matsuda
ISI). Bars show numbers of subjects in each category.
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reported. Further studies are needed to elucidate the
molecular mechanisms of SNPs of the HHEX gene (or
other genes near rs1111875) in regulating glucose
homeostasis.

Our study has limitations. Only Finnish men were in-
cluded in our study, and therefore we cannot be sure
whether our results are applicable to women and to
different ethnic or racial groups. However, no evidence
exists that the sex could modify the effects of diabetes
susceptibility genes on glucose metabolism. We used
surrogate markers of insulin secretion and insulin sensi-
tivity derived from an OGTT, because the application of
more accurate methods (intravenous glucose tolerance
test, euglycemic clamp) is not feasible in a study having
thousands of participants. Finally, despite the large sample
size we did not have sufficient power (�80%) to detect
small effects (�6% per allele) of examined SNPs on
Matsuda ISI and InsAUC0–30/GluAUC0–30, which may ex-
plain negative findings for 9 of 18 SNPs in PPARG,
LOC387761, WFS1, JAZF1, CDC123, THADA, ADAMTS9,
NOTCH2, and KCNQ1.

In summary, we showed in a large cohort of nondiabetic
Finnish men that 8 of 18 type 2 diabetes–related loci were
significantly (TCF7L2, SLC30A8, HHEX, CDKN2B, CD-
KAL1, and MTNR1B) or nominally (KCNJ11 and
IGF2BP2) associated with impaired early-phase insulin
release, which decreased by �32% in carriers of �11 vs.
�3 weighted type 2 diabetes risk alleles at these loci.
Effects of TCF7L2, SLC30A8, HHEX, and CDKAL1 on
insulin secretion could be explained, at least in part, by
impaired conversion of proinsulin to insulin. HHEX might
influence both insulin release and insulin sensitivity.
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