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IMPORTANCE N-glycan branching modulates cell surface receptor availability, and its
deficiency in mice promotes inflammatory demyelination, reduced myelination, and
neurodegeneration. N-acetylglucosamine (GlcNAc) is a rate-limiting substrate for N-glycan
branching, but, to our knowledge, endogenous serum levels in patients with multiple
sclerosis (MS) are unknown.

OBJECTIVE To investigate a marker of endogenous serum GlcNAc levels in patients with MS.

DESIGN, SETTING, AND PARTICIPANTS A cross-sectional discovery study and cross-sectional
confirmatory study were conducted at 2 academic MS centers in the US and Germany. The
discovery study recruited 54 patients with MS from an outpatient clinic as well as 66 healthy
controls between April 20, 2010, and June 21, 2013. The confirmatory study recruited
180 patients with MS from screening visits at an academic MS study center between April 9,
2007, and February 29, 2016. Serum samples were analyzed from December 2, 2013, to
March 2, 2015. Statistical analysis was performed from February 23, 2020, to March 18, 2021.

MAIN OUTCOMES AND MEASURES Serum levels of GlcNAc plus its stereoisomers, termed
N-acetylhexosamine (HexNAc), were assessed using targeted tandem mass spectroscopy.
Secondary outcomes (confirmatory study) comprised imaging and clinical disease markers.

RESULTS The discovery cohort included 66 healthy controls (38 women; mean [SD] age,
42 [20] years), 33 patients with relapsing-remitting MS (RRMS; 25 women; mean [SD] age,
50 [11] years), and 21 patients with progressive MS (PMS; 14 women; mean [SD] age, 55 [7]
years). The confirmatory cohort included 125 patients with RRMS (83 women; mean [SD] age,
40 [9] years) and 55 patients with PMS (22 women; mean [SD] age, 49 [80] years). In the
discovery cohort, the mean (SD) serum level of GlcNAc plus its stereoisomers (HexNAc) was
710 (174) nM in healthy controls and marginally reduced in patients with RRMS (mean [SD]
level, 682 [173] nM; P = .04), whereas patients with PMS displayed markedly reduced levels
compared with healthy controls (mean [SD] level, 548 [101] nM; P = 9.55 × 10−9) and patients
with RRMS (P = 1.83 × 10−4). The difference between patients with RRMS (mean [SD] level,
709 [193] nM) and those with PMS (mean [SD] level, 405 [161] nM; P = 7.6 × 10−18) was
confirmed in the independent confirmatory cohort. Lower HexNAc serum levels correlated
with worse expanded disability status scale scores (ρ = –0.485; P = 4.73 × 10−12), lower
thalamic volume (t = 1.7; P = .04), and thinner retinal nerve fiber layer (B = 0.012
[SE = 7.5 × 10−11]; P = .008). Low baseline serum HexNAc levels correlated with a greater
percentage of brain volume loss at 18 months (t = 1.8; P = .04).

CONCLUSIONS AND RELEVANCE This study suggests that deficiency of GlcNAc plus its
stereoisomers (HexNAc) may be a biomarker for PMS. Previous preclinical, human genetic,
and ex vivo human mechanistic studies revealed that N-glycan branching and/or GlcNAc may
reduce proinflammatory responses, promote myelin repair, and decrease neurodegeneration.
Combined, the data suggest that GlcNAc deficiency may be associated with progressive
disease and neurodegeneration in patients with MS.
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M ultiple sclerosis (MS) is characterized by recurrent
episodes of neurologic dysfunction resulting from
acute inflammatory demyelination.1 Progressive MS

(PMS) is distinguished by continuous inflammation, failure
to remyelinate, and progressive neurodegeneration, causing
accrual of irreversible neurologic disability. After approxi-
mately 20 years, relapsing-remitting MS (RRMS) converts to
secondary-progressive MS (SPMS) for many patients, while ap-
proximately 10% of patients have a primary progressive dis-
ease course from onset (PPMS).2 However, disease progres-
sion outside relapses is not limited to the progressive forms
of the disease; instead, it is an inherent feature from the early
stages and throughout all disease courses.3

Previous studies have indicated the potential relevance of
N-glycosylation in MS.4-14 Proteins are posttranslationally
modified by the addition of complex sugars (glycans), thereby
creating glycoproteins. Modification of cell surface receptors
and transporters with branched N-glycans via N-glycosyla-
tion coordinates cell growth and differentiation by control-
ling glycoprotein clustering, signaling, and endocytosis.4-14

A critical metabolic precursor in N-glycosylation and branch-
ing is N-acetylglucosamine (GlcNAc), a common amino sugar
that is part of the regular human diet.6,7,11,15,16 Extracellular
GlcNAc enters cells through macropinocytosis and supple-
ments the de novo hexosamine biosynthesis pathway to uri-
dine diphosphate (UDP)–GlcNAc, the donor substrate for
branching N-acetylglucosaminyltransferases, encoded by
the MGAT gene family (Figure 1A).

Reduction in N-glycan branching in mice promotes
T-cell–mediated and B-cell–mediated inflammatory
demyelination,4,13,15-18 as well as independently blocking my-
elin repair via inhibition of remyelination from oligodendro-
cyte precursor cells.19 Human sequence variants and environ-
mental factors associated with MS alter N-glycan branching,
including interleukin 7 receptor α, interleukin 2 receptor α,
MGAT1 (OMIM 160995), MGAT5 (OMIM 601774), and vitamin
D3.20-23 In PL/J mice, branching deficiency induces a sponta-
neous and slowly progressive demyelinating disease that mim-
ics PMS, characterized by axonal damage and neuronal death
in otherwise normal-appearing white and gray matter along
with inflammatory demyelination.17 Neuron-specific dele-
tion of Mgat1 leads to spontaneous neuron apoptosis and a se-
vere neurologic clinical syndrome in adult mice.24 Oral GlcNAc
supplementation in murine models of MS inhibits pro-
autoimmune T-cell and B-cell responses, drives myelin re-
pair, and ameliorates clinical disease by enhancing N-glycan
branching via increased UDP-GlcNAc supply to Golgi branch-
ing enzymes.6,11,15,16 In mice, oral GlcNAc is taken up and found
in serum at a rate comparable to that of glucose.25 In addi-
tion, humans with loss-of-function variants in PGM3 (OMIM
172100), a gene required to generate UDP-GlcNAc de novo or
from GlcNAc, display reduced N-glycan branching, severe cen-
tral nervous system hypomyelination, and autoimmunity.26,27

Despite this converging evidence from environmental fac-
tors, genetic sequence variants, and animal models of MS, en-
dogenous serum GlcNAc levels have not been established in
humans or investigated in association with MS, to our knowl-
edge. Here, we used a unique targeted liquid chromatography–

tandem mass spectroscopy (LC-MS/MS) approach with ion pair-
ing to assess serum levels of GlcNAc plus its stereoisomers
(N-acetylhexosamine [HexNAc]) in healthy controls and pa-
tients with MS. Furthermore, we investigate whether serum
levels of HexNAc correlate with a progressive disease course,
severity, and neurodegeneration in MS.

Methods
Discovery Cohort
A total of 54 non-Latino White patients with MS and 66 healthy
controls (HC) were recruited between April 20, 2010, and June
21, 2013, from the MS outpatient clinic at the Institute for Clini-
cal and Translational Sciences at University of California,
Irvine, as well as from the 90+ Study Cohort of people aged
90 years or older from Laguna Woods, California (eTable 1 in
the Supplement), originally as part of either genetic and/or
immune aging studies. Inclusion criteria for patients with MS
in this analysis were RRMS according to the 2010 revised
McDonald criteria28 and progressive disease course based on
the 1996 criteria by Lublin et al.29 Exclusion criteria were types
1 and 2 diabetes, kidney disease (elevated creatinine level), use
of an oral glucosamine or GlcNAc supplement, and relapse
within the last 3 months. Disease course was derived from clini-
cal information. Blood samples were obtained randomly in re-
gard to food intake. Written informed consent was obtained
from all participants as part of a protocol reviewed and ap-
proved by the University of California, Irvine institutional
review board.

Confirmatory Cohort
A total of 180 patients with MS were recruited from the neu-
roimmunology clinical trial unit at the NeuroCure Clinical
Research Center, Charité–Universitätsmedizin Berlin in Ber-
lin, Germany, between April 9, 2007, and February 29, 2016,
from screening or baseline visits from 2 interventional trials
(eTable 2 in the Supplement). Inclusion criteria were MS based
on the 2005 revised McDonald criteria,30 stable immuno-
modulatory therapy with glatiramer acetate (for RRMS), or no
treatment (for PPMS and SPMS). Exclusion criteria were acute
relapse and/or use of corticosteroids within 6 months prior to
inclusion. Disease course was determined under strict adher-
ence to the 1996 criteria by Lublin et al.29 Blood samples were

Key Points
Question Is the serum concentration of N-acetylglucosamine
(GlcNAc) altered in patients with multiple sclerosis?

Findings This cross-sectional study found that patients with
a progressive multiple sclerosis subtype and more severe disease
have reduced serum levels of a marker of GlcNAc. In addition,
GlcNAc is a rate-limiting substrate for N-glycan branching, which
has been shown to regulate immunoactivity and myelination.

Meaning This study suggests that GlcNAc and N-glycan branching
are associated with multiple sclerosis in general and progressive
multiple sclerosis in particular.
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obtained while participants were fasting. All study partici-
pants gave written informed consent on protocols reviewed
and approved by the local Berlin ethics committee.

Clinical Scoring
Clinical examination was performed according to the
Expanded Disability Status Scale (EDSS) in Kurtzke.31 In addi-
tion, disability was assessed using a MS functional composite
(MSFC), comprising the Timed 25-Foot Walk Test, the 9-Hole
Peg Test, and the 3-second Paced Auditory Serial Additions
Test32; MSFC z scores were calculated according to the MSFC
Administration and Scoring Manual.33 Multiple Sclerosis Sever-
ity Scores were calculated from disease duration and the EDSS.34

Magnetic Resonance Imaging
Magnetic resonance imaging (MRI) was performed at 1.5 T using
3-dimensional T1-weighted magnetization prepared rapid ac-

quisition and multiple gradient echo sequences (MPRAGEs) and
axial T2-weighted sequences. Images were either acquired on
a Sonata MRI (Siemens Medical Systems) or on an Avanto MRI
(Siemens Medical Systems) (eMethods in the Supplement).

Thalamic volume was determined as the summary vol-
ume from both hemispheres using FIRST (FSL, version 5.0;
FMRIB Software Library)35 on MPRAGE scans and normal-
ized using a brain-size normalization factor output from FSL
SIENAX (FSL, version 5.0, FMRIB Software Library)36 for each
brain. Brain volumes were determined using MPRAGE scans
with the FSL, version 5.0 pipeline SIENAX (eMethods in the
Supplement). SIENAX computes global brain volume (normal-
ized brain volume) as well as normalized gray matter volume
and normalized white matter volume estimates normalized
with respect to the individual’s head size, accounting for in-
terindividual variability. A 2-point percentage change in brain
volume was estimated with SIENA, part of FSL,36 in patients

Figure 1. Analysis of Serum N-Acetylglucosamine (GlcNAc) by Liquid Chromatography–Tandem Mass Spectroscopy
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and confirms linearity to this concentration.
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for whom 18-month follow-up data were available. A patho-
logic percentage change in brain volume in patients was
determined by an established cutoff of 0.52% annual loss
(95% specificity).37

Optical Coherence Tomography
Retinal nerve fiber layer thickness (RNFL) from both eyes was
measured with a Stratus optical coherence tomography (OCT)
device, software version 4.0 (Carl Zeiss Meditec) using the fast
RNFL 3.4 protocol as previously described.38 Patients were ex-
amined without pupil dilation. Only images with acceptable
quality were included in the analysis, defined as a visually even
signal distribution, a reflectance signal strong enough to iden-
tify the RNFL layer borders, correct centration, and a signal
strength of 7 or more of 10. Images with erroneous RNFL
segmentation were excluded from analysis.

Targeted LC-MS/MS
All serum samples were analyzed from December 2, 2013, to
March 2, 2015, in a blinded fashion by the central mass spec-
troscopy laboratory in Toronto, Ontario, Canada. The opera-
tor performing the measurements (J.P.) was not involved in
study design or informed about the scientific objectives. Re-
sults were then sent to the main investigators, who per-
formed statistical analysis. Serum samples for metabolomics
analysis were prepared as described previously (eMethods in
the Supplement).39 Analysts were blinded in regard to sample
origin (control or patient).

Statistical Analysis
Statistical analysis was performed from February 23, 2020, to
March 18, 2021, with R, version 3.5.3 (R Group for Statistical
Computing). Sample sizes were based on convenience samples.
Correlation between age or sex and serum HexNAc levels were
analyzed with linear regression models for age and the Welch
t test for sex in HC. Group differences between HC, patients
with RRMS, and patients with PMS were analyzed using lin-
ear models with age as a covariate. To combine results of group
comparisons in the discovery and confirmatory cohorts, we
used the Fisher combined probability test, which combines
P values using their logarithmic transformation. The associa-
tion between treatment status and serum HexNAc level was
assessed by use of the Kruskal-Wallis test. For boxplots, the
solid middle line represents the median. The lower and up-
per hinges correspond to the 25th and 75th percentiles, re-
spectively. The upper and lower whiskers extend from the
hinge to the distant value no further than 1.5 × the interquar-
tile range from the hinge. Receiver operating characteristic
(ROC) curves were used to quantify the ability of serum
HexNAc to discriminate between RRMS and PMS. Correla-
tions between serum HexNAc level and clinical scores or
imaging parameters were analyzed using linear regression
models with HexNAc serum level as an independent param-
eter, except for EDSS and lesion measurements, which were
analyzed using nonparametric Spearman ρ analyses (EDSS
because of the measure’s ordinality and lesion measure-
ments because of their nonnormal or skewed distributions
[ie, as count variables]). Retinal nerve fiber layer correlations

were analyzed with generalized estimating equation models
accounting for intereye within-patient effects and using se-
rum HexNAc level as an independent parameter. All correla-
tion analyses based on parametric models were corrected for
age and sex. Partial R2 was calculated to include only serum
HexNAc-attributable variance in these models. Percentage
change in brain volume between month 18 and baseline was
compared using linear models with baseline normalized brain
volume, age, and sex as covariates. Serum HexNAc concen-
trations before and during oral treatment with GlcNAc were
compared using 1-sided paired Wilcoxon signed rank tests,
comparing the mean of the weeks before treatment to the mean
of the weeks receiving treatment. Data from the discovery and
confirmatory cohorts were examined for nonnormal distribu-
tions by visual inspection of histograms and calculation of
skewness and kurtosis. In case data were missing, data were
not amended (sample size is indicated in each figure). Signifi-
cance in all tests was established at P < .05. After initial 2-sided
testing of HexNAc serum concentrations in HC and in pa-
tients with RRMS vs patients with PMS, all further tests were
1-sided, testing an association of serum HexNAc levels with
worse disease outcomes.

Results
Detection of GlcNAc and Its Stereoisomers in HCs
Although GlcNAc is ingested daily by humans through nor-
mal dietary consumption, the availability of GlcNAc in hu-
man blood is poorly characterized, in part because levels are
below detection in standard colorimetric assays. Therefore, to
explore GlcNAc levels in human serum, we used LC-MS/MS
with ion pairing.39 Mass detection via this method does not
separate GlcNAc from its stereoisomers N-acetylgalactos-
amine (GalNAc) and N-acetylmannosamine (ManNAc); there-
fore, results are reported as HexNAc levels to reflect this.
Detection of HexNAc by LC-MS/MS accurately tracks GlcNAc
levels when added to human serum (Figure 1B and C).

In HCs from the discovery cohort (n = 66; 38 women and
28 men; mean [SD] age, 42 [20] years) (eTable 1 in the Supple-
ment), HexNAc was readily detected, with a mean (SD)
concentration of 710 (174) nM (range, 452nM-1374nM). The
HexNAc concentration increased with age, with a mean
increase of 4.8nM per year (t = 3.0; P < .001). There was no
difference in serum concentration between male and female
HCs (t = −0.7; P = .47).

Detection of GlcNAc and Its Stereoisomers
in Patients With PMS
To investigate a potential role for endogenous GlcNAc in both
RRMS and PMS, we compared HC data with data on sera from
33 patients with RRMS (25 women and 8 men; mean [SD] age,
50 [11] years) and 21 patients with PMS (14 women and 7 men;
mean [SD] age, 55 [7] years) (eTable 1 in the Supplement). With
age as a covariate, patients with RRMS displayed slightly re-
duced HexNAc serum levels (mean [SD] level, 682 [173] nM)
compared with HCs (P = .04), whereas patients with PMS
had markedly reduced HexNAc serum levels (mean [SD] level,
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548 [101] nM) compared with both HCs (P = 9.55 × 10−9) and
patients with RRMS (P = 1.83 × 10−4) (Figure 2A). In a sensi-
tivity analysis including only patients younger than 60 years,
these associations were confirmed for patients with PMS
(n = 17) vs HCs (n = 57) (B = –235.6 [SE = 43.9]; P = 9.7 × 10−7)
or patients with RRMS (n = 27) (B = 182.4 [SE = 43.4]; P < .001),

as well as patients with RRMS vs HCs (B = –76.8 [SE = 37.0];
P = .04). HexNAc levels were not associated with treatment sta-
tus among patients with MS (n = 54; Kruskal-Wallis χ2 = 3.4;
P = .34). In a ROC curve analysis, HexNAc levels discrimi-
nated between patients with RRMS and patients with PMS, with
an area under the curve (AUC) of 0.736 (Figure 2B). In con-

Figure 2. Reduction in Serum N-Acetylhexosamine (HexNAc) Level in Progressive Multiple Sclerosis

900

600

1.0

0.8

0.6

0.4

0.2

0
1.0 00.2

Se
ns

iti
vi

ty

Specificity
0.40.60.8

ROC curve analysisB

1500

1200

300
Se

ru
m

 H
ex

N
Ac

, n
M

Calibrated HexNAc concentration from
the discovery cohort

A

HC
(n=66)

RRMS
(n=33)

PMS
(n=21)

1.0

0.8

0.6

0.4

0.2

0
1.0 00.2

Se
ns

iti
vi

ty

Specificity
0.40.60.8

ROC curve analysisF

1250

1000

750

500

250

0

Se
ru

m
 H

ex
N

Ac
, n

M

Calibrated HexNAc concentration from
the confirmatory cohort

E

RRMS
(n=125)

PMS
(n=55)

0.5

0.4

0.3

0.2

0.1

0

Si
al

ic
 a

ci
d,

 a
re

a 
ra

tio

Sialic acid concentrationsC

RRMS PMS

4.5

4.0

3.5

3.0

2.5

2.0

1.5

Xy
lo

se
, a

re
a 

ra
tio

Xylose concentrationsD

RRMS PMS

AUC=0.905

AUC=0.736

n=54, t=–0.6, P=.57

n=54, t=–0.3, P=.74

t=–9.6, P=7.6×10–18

t=–6.4, P=9.55×10–9

t=–2.1, P=4.0
t=–4.0,

P=1.83×10–4

A, Comparison of calibrated HexNAc
concentration in serum samples from
the discovery cohort. B, Receiver
operating characteristic (ROC) curve
analysis corresponding to panel A.
C, Comparison of uncalibrated serum
concentrations (area ratio [area of
analyte/area of internal standard]) for
control monosaccharide sialic acid in
the discovery cohort. D, Comparison
of uncalibrated serum concentrations
for control monosaccharide xylose in
the discovery cohort. E, Comparison
of calibrated HexNAc concentration
in serum samples from the
confirmatory cohort. F, ROC curve
analysis corresponding to panel E.
The t values and P values are from
linear regression models correcting
for age. The area under the curve
(AUC) is from ROC curve analysis.
HC indicates healthy controls;
PMS, progressive multiple sclerosis;
and RRMS, relapsing-remitting
multiple sclerosis.

Research Original Investigation Association of a Marker of N-Acetylglucosamine With Progressive MS and Neurodegeneration

846 JAMA Neurology July 2021 Volume 78, Number 7 (Reprinted) jamaneurology.com

Downloaded From: https://jamanetwork.com/ on 08/26/2022

http://www.jamaneurology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2021.1116


trast to HexNAc, no differences in serum levels were ob-
served between the groups for the monosaccharides sialic acid
(mean [SD] level [AUC], 0.173 [0.066] in patients with RRMS
vs 0.185 [0.089] in patients with PMS; P = .57) and xylose (mean
[SD] level, 2.45 [0.51] in patients with RRMS vs 2.41 [0.36]
in patients with PMS; P = .74), with the latter not involved in
N-glycosylation (Figure 2C and D).

To confirm these findings, we analyzed an independent
cohort of 180 patients with MS (125 RRMS; mean [SD] age, 40
[9] years; 83 women; and 55 PMS; mean [SD] age, 49 [8] years;
22 women) (eTable 2 in the Supplement). Based on our find-
ings in the discovery cohort, a sample size of 50 would have
been sufficient to confirm the observed difference in GlcNAc
level between patients with RRMS and patients with PMS (95%
power and α = 0.05, G × Power t test for detecting differences
between 2 independent means). As in the initial cohort,
HexNAc serum levels were greatly reduced in patients with PMS
(mean [SD] level, 405 [161] nM; n = 55) vs those with RRMS
(mean [SD] level, 709 [193] nM; n = 125; P = 7.6 × 10−18)
(Figure 2E) and were readily discriminative between patients
with RRMS and those with PMS (ROC AUC = 0.905; Figure 2F).
HexNAc levels between patients with PPMS (mean [SD] level,

439 [219] nM; n = 23) and those with SPMS (mean [SD] level,
381 [99] nM; n = 32) were similar (P = .20). The serum
HexNAc levels among patients with RRMS and those with PMS
in the confirmatory cohort were similar to those in the initial
cohort, despite the former being fasting and the latter being
nonfasting. Combining P values from the initial and confir-
matory cohort using the Fisher combined probability test
results in P = 1.96 × 10−20 for PMS vs RRMS.

Correlation of Serum GlcNAc and Its Stereoisomers
With Disability and Imaging Markers of Neurodegeneration
We further investigated the confirmatory cohort for the asso-
ciation of HexNAc levels with established clinical measures of
disease severity and disability (namely, the EDSS and the MSFC
scores). Lower HexNAc serum levels were associated with
greater clinical disability displayed by higher EDSS scores
(Figure 3A; P = 4.73 × 10−12) and lower MSFC scores (Figure 3B;
P = 8.2 × 10−5). In linear models correcting for age and sex,
serum HexNAc levels were associated with scores on the Timed
25-Foot Walk Test (t = −4; P = 5.8 × 10−5) and mean 9HPT scores
(t = −2.6; P < .001) but not scores on the 3-second Paced
Auditory Serial Additions Test (t = 0.973; P = .33). There was

Figure 3. Correlation of Serum N-Acetylhexosamine (HexNAc) Level With Clinical Severity Markers
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no correlation between lower HexNAc serum levels and time
since diagnosis (Figure 3C; P = .114); however, the Multiple
Sclerosis Severity Score, a disease severity parameter that
combines EDSS and disease duration, was correlated in-
versely with serum HexNAc levels (Figure 3D, P = 1.41 × 10−7).

To evaluate whether HexNAc is associated with neuroaxo-
nal damage in MS, we used MRI scans of the brain and OCT

scans of the retina in the confirmatory cohort. Atrophy of the
thalamus is an early and sensitive measure of neurodegenera-
tion in MS,40 and lower serum HexNAc concentrations were
associated with reduced thalamic volume, with age and sex
as covariates (P = .04; Figure 4A and B). Likewise, reduced
white matter volume (normalized white matter volume) was
associated with lower serum HexNAc concentrations (P = .03),

Figure 4. Correlation of Serum N-Acetylhexosamine (HexNAc) Level With Imaging Markers of Neurodegeneration
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while whole-brain volume (normalized brain volume; P = .06)
and gray matter volume (normalized gray matter volume;
P = .163) were not significantly associated with lower serum
HexNAc concentrations (Figure 4C-E). In contrast to brain vol-
ume, RNFL thickness provides a more stable measure of neu-
roaxonal damage in MS over a broad age range because it re-
mains relatively constant in healthy adults until the age of
approximately 50 years.41 Lower HexNAc serum levels were
associated with more severe retinal axonal degeneration as
measured by peripapillary RNFL (B = 0.012, P = .008; Figure 4F
and G), with age and sex as covariates. Analysis by MS
subtype revealed no association within the RRMS or PMS
subtypes; however, this finding may be limited by lack of power
and/or covariance.

To examine whether HexNAc levels are associated with
brain atrophy over time, patients displaying pathologic brain
volume loss detected on repeated brain MRI scans at 18 months
(ie, percentage change in brain volume, ≥0.52%)37 were split
into 2 groups based on the median HexNAc level. Patients with
low HexNAc levels at baseline showed a greater decrease in
brain volume than those with high HexNAc levels at baseline,
with age, sex, and baseline normalized brain volume as co-
variates (n = 33, t = 1.8, P = .04; Figure 4H and I). Together,
these data are consistent and reveal the association of low se-
rum HexNAc levels with both clinical disability and multiple
measures of neurodegeneration in MS.

Discussion
Here we report that GlcNAc plus its stereoisomers are mark-
edly reduced in PMS in 2 independent cohorts and that se-
rum HexNAc levels are correlated with clinical disability and
neuroimaging markers of neurodegeneration. Understand-
ing immune mechanisms in RRMS has led to the develop-
ment of multiple drugs that are successfully used clinically.42

In contrast, immunomodulatory drugs shown to be effective
in RRMS are rarely effective in PMS.43 There is a significant de-
ficiency in our knowledge of the mechanisms associated with
PMS or, more broadly, of relapse-independent disease pro-
gression, which is observable throughout the disease
course.3,44 Mechanisms associated with progressive disease in
MS may include direct immune-mediated damage, failure of
remyelination, and/or immune-independent neuroaxonal toxic
effects.45 Ocrelizumab and siponimod, drugs recently ap-
proved for PPMS46 and active SPMS,47 mainly target residual
neuroinflammation, whereas chronic demyelination and pro-
gressive neurodegeneration lack effective therapies.48 How-
ever, there are few data on biomarkers that allow detection of
PMS, and diagnosis depends largely on clinical observation and,
more recently, on potential imaging biomarker candidates.49,50

In contrast, molecular biomarkers are scarce and comprise com-
plex type 2 biomarkers, which are difficult to interpret regard-
ing their pathogenic relevance.51,52 Identifying simple mo-
lecular biomarkers for PMS that may facilitate early diagnosis,
assess treatment effectiveness, and/or promote clinical devel-
opment of novel treatment approaches is an unmet clinical
need.53 Our data suggest that serum HexNAc levels should be

further investigated as a potential biomarker for assessing MS
patients at risk of disease progression. The clinical utility of
biomarkers is often based on the AUC from ROC curves. The
AUC for HexNAc (0.74-0.91) compares favorably with other
well-established biomarkers, such as blood pressure, smok-
ing, and cholesterol level for cardiovascular disease risk (AUC,
0.72-0.74).54 However, additional prospective clinical stud-
ies are required to substantiate the clinical utility as a bio-
marker and further clarify the potential physiological factors,
such as diet, ethnicity, fasting status, and physical activity.

Mechanisms associated with neurodegeneration in MS may
include direct immune-mediated damage, failure of remyelin-
ation, and/or immune-independent neuroaxonal toxic effect.45

N-glycan branching is a primary molecular mechanism that
regulates cell surface protein activity in many diverse cells,
thereby being involved in pleiotropic effects in multiple cell
types relevant to MS. In both mice and human ex vivo stud-
ies, GlcNAc and/or N-glycan branching display significant im-
munomodulatory activity, suppressing mouse models of
inflammatory demyelination by independently inhibiting
both proinflammatory type 1 and type 17 helper T-cell
responses4,6,11,15-17,55 as well as proinflammatory innate
B-cell activity.13 N-glycan branching also acts as the ligand for
galectins,56 which have been implicated in regulating microg-
lial activity in animal models of MS.57 Human genetic se-
quence variants associated with N-glycan branching in T cells,
including interleukin 7 receptor α, interleukin 2 receptor α,
MGAT1, MGAT5, and vitamin D3, have been identified as MS
risk factors.20-23 A recent study in mouse models observed that
N-glycan branching directly drives new myelin formation from
oligodendrocyte precursor cells and that oral GlcNAc pre-
vents neuroaxonal damage to demyelinated axons by cross-
ing the blood-brain barrier and promoting myelin repair.19 In
humans, severe central nervous system hypomyelination re-
sults from loss-of-function variants in PGM3, a gene required
to generate branched N-glycans from GlcNAc.27 N-glycan
branching deficiency in PL/J mice promotes a spontaneous
clinical syndrome that mimics PMS, characterized by inflam-
matory demyelination as well as axonal damage and neuro-
nal death.17 Finally, neuronal survival in mice is directly regu-
lated by N-glycan branching, as neuron-specific deficiency of
the Mgat1 N-glycan branching enzyme results in spontane-
ous neuronal apoptosis in vivo and neurologic deficits.24 Thus,
GlcNAc deficiency has the potential to be autonomously as-
sociated with multiple cellular mechanisms in diverse cell types
critical to MS pathologic characteristics and neurodegenera-
tion (namely, T cells, B cells, microglia, oligodendrocytes, and
neurons). Although this broad mode of action is counterintui-
tive for a disease-specific mechanism, it is intriguing to pos-
tulate that GlcNAc deficiency may be associated with disease
progression in MS through a combination of these mecha-
nisms. However, additional clinical studies are necessary to
pursue this hypothesis and better define the potential role of
GlcNAc and N-glycan branching in clinical MS.

It is unclear why patients with PMS may have HexNAc
deficiency. Sources of endogenous serum HexNAc include
turnover of glycoconjugates as well as food, with the latter
comprising glycan chains that may be hydrolyzed and/or
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catabolized in the intestine by microbiota. Interindividual vari-
ance in diet and gut microbiota may be significantly associ-
ated with HexNAc serum levels.58 Tissue damage may also be
associated with serum levels. For example, GlcNAc is associ-
ated with the architecture of extracellular matrices, particu-
larly hyaluronan, which accumulates in demyelinated le-
sions of patients with MS.59 Hyaluronan chains are large glycan
polymers with a molecular weight of approximately 1.0 × 106

Da in chronic demyelinated lesions. Because GlcNAc repre-
sents approximately half the mass of hyaluronan, chronic
excessive hyaluronan synthesis in demyelinated lesions may
lower the availability of GlcNAc locally and in serum.

Strengths and Limitations
Our study has several strengths. Molecular biomarker studies
in MS have led to several high-profile failures, in which the ini-
tial findings could not be independently verified, often with
biomarkers of unclear mechanistic relevance to MS. In con-
trast, GlcNAc and N-glycan branching have been intensely stud-
ied as already summarized, and multiple cellular pathways im-
portant to progression and neurodegeneration in MS have been
identified with different levels of evidence. Moreover, we used
multiple methods to minimize potential bias as a source of
error in our investigations. The LC-MS/MS analysis of serum
HexNAc was performed in a blinded fashion by an indepen-
dent investigator who was not involved in the study design and
objective. We confirmed our main finding in a second cohort,
which was managed in a different MS center in a different coun-
try by a different team of clinician-scientists. Third, all of the
investigators of diagnostic, clinical disability, and neuroimag-
ing measures in the confirmatory cohort were blinded to se-
rum HexNAc levels.

This study also has some limitations. One potential source
of bias is that both cohorts were derived from academic ter-
tiary referral centers, and thus the data may not reflect a real-
world distribution. In line with this, our cohorts lack racial/
ethnic diversity. We therefore abstain from making further
sensitivity or specificity analyses investigating HexNAc as a po-
tential biomarker, which needs to be addressed in future stud-
ies. An additional limitation of the study is identifying

HexNAc as opposed to GlcNAc in serum. Because the tar-
geted LC-MS/MS method used in this study does not separate
stereoisomers of N-acetylhexosamines (GlcNAc, GalNAc, and
ManNAc), alterations of 1 or more of the stereoisomers may be
associated with the observations reported herein. However,
unlike GlcNAc, the GalNAc and ManNAc isomers lack mouse
or human data implicating a role in MS. Additional ap-
proaches to distinguish GlcNAc from its stereoisomers within
serum are required to clarify these issues and better define the
specific role for GlcNAc in MS. As another limitation, associa-
tions in the main analyses comparing HexNAc serum concen-
trations between patients with RRMS and those with PMS were
large, but subgroup analyses (eg, comparing patients with PPMS
and those with SPMS) may have been underpowered. This is
equally the case in the correlation analyses with clinical and
imaging parameters of disease, for which strong covariance and
clinical and imaging markers typically demand larger sample
sizes. Furthermore, we did not investigate HexNAc in asso-
ciation with advanced MRI parameters (myelination and
microstructural damage) or macular OCT parameters, which
were not available because of the older MRI and OCT tech-
nologies used. The mostly cross-sectional design also pre-
vents definitive conclusions about the predictive power of
serum HexNAc for MS disease development.

Conclusions
Our study identifies reduced serum HexNAc levels as a poten-
tial molecular biomarker of PMS. These new clinical data build
on preclinical, human ex vivo, and genetic research establish-
ing a role of N-glycan branching and its metabolite GlcNAc in
MS-relevant disease processes, including inflammation but,
importantly, also myelination and neurodegeneration. It also
suggests that a fundamental molecular process, N-glycan
branching, may be altered in PMS, separating it from RRMS.
Further studies are required to develop our understanding
of the relevance of N-glycan branching and GlcNAc in PMS
and of the clinical research and/or clinical management of
disease progression in MS.
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