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IMPORTANCE Deviation from normal adolescent brain development precedes manifestations

of manymajor psychiatric symptoms. Such altered developmental trajectories in adolescents

may be linked to genetic risk for psychopathology.

OBJECTIVE To identify genetic variants associated with adolescent brain structure and

explore psychopathologic relevance of such associations.

DESIGN, SETTING, AND PARTICIPANTS Voxelwise genome-wide association study in a cohort of

healthy adolescents aged 14 years and validation of the findings using 4 independent samples

across the life span with allele-specific expression analysis of top hits. Group comparison of

the identified gene-brain association among patients with schizophrenia, unaffected siblings,

and healthy control individuals. This was a population-based, multicenter study combined

with a clinical sample that included participants from the IMAGEN cohort, Saguenay Youth

Study, Three-City Study, and Lieber Institute for Brain Development sample cohorts and UK

biobank whowere assessed for both brain imaging and genetic sequencing. Clinical samples

included patients with schizophrenia and unaffected siblings of patients from the Lieber

Institute for Brain Development study. Data were analyzed between October 2015 and

April 2018.

MAIN OUTCOMES ANDMEASURES Graymatter volumewas assessed by neuroimaging and

genetic variants were genotyped by Illumina BeadChip.

RESULTS The discovery sample included 1721 adolescents (873 girls [50.7%]), with a mean

(SD) age of 14.44 (0.41) years. The replication samples consisted of 8690 healthy adults

(4497 women [51.8%]) from 4 independent studies across the life span. A nonsynonymous

genetic variant (minor T allele of rs13107325 in SLC39A8, a gene implicated in schizophrenia)

was associated with greater gray matter volume of the putamen (variance explained of 4.21%

in the left hemisphere; 8.66; 95% CI, 6.59-10.81; P = 5.35 × 10−18; and 4.44% in the right

hemisphere; t = 8.90; 95% CI, 6.75-11.19; P = 6.80 × 10−19) and also with a lower gene

expression of SLC39A8 specifically in the putamen (t127 = −3.87; P = 1.70 × 10−4). The

identified association was validated in samples across the life span but was significantly

weakened in both patients with schizophrenia (z = −3.05; P = .002; n = 157) and unaffected

siblings (z = −2.08; P = .04; n = 149).

CONCLUSIONS AND RELEVANCE Our results show that amissensemutation in gene SLC39A8

is associated with larger gray matter volume in the putamen and that this association is

significantly weakened in schizophrenia. These results may suggest a role for aberrant ion

transport in the etiology of psychosis and provide a target for preemptive developmental

interventions aimed at restoring the functional effect of this mutation.
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T
he adolescent brain undergoes substantial structural

change, and deviations from the normal trajectory of

brain development are thought to underlie many psy-

chiatric symptoms.1 Growth patterns of adolescent brain

development have been identified using longitudinal neuro-

imaging studies: decrease (eg, cortical regions, caudate, and

putamen), increase (eg, hippocampus), and inverted

U-shaped (eg, amygdala and thalamus).2-5 Twin studies have

demonstrated regionally specific changes in heritability dur-

ing different phases of brain development,6 and significant

age-by-heritability interactions have been reported for gray

matter volumes (GMV) in cortical and subcortical structures.7

Common genetic associations with both adolescent brain

structures and risks for psychiatric disorders remain to be

uncovered.

Large-scale meta-analysis of genome-wide association

study (GWAS) is the state-of-the-art approach to detect novel

genetic variants associatedwith brain structure.However, of-

ten these studies are carried out in samples from heteroge-

neous age groups to maximize the overall sample size,8 and

large-scaleGWASonadolescentbrain isnotavailableyet.Thus,

much less is known about genetic factors to provide us with

information about normal trajectories of brain development,

and deviations from normal trajectories have been impli-

cated in the pathophysiology of mental disorders.9-11 To in-

crease the statistical power to detect genetic associations in

the developing adolescent brain, it is important to investi-

gate a samplewith anarrowage range.10Thishas alreadybeen

demonstrated in a 2014 twin study,12 in which the heritabil-

ity estimated from89 twinpairs at the sameage resembledes-

timatesgivenby largemeta-analysis,withmore than1250twin

pairs fromdifferent age groups.13Additional limitations inde-

tecting genetic associationsmight have been caused by using

atlas-basedbrain segmentationbecausebrain regions suchde-

fined can be genetically heterogeneous,14 thus potentially re-

sulting in false-negative observations. To address these limi-

tations, we investigated a cohort of more than 2000 healthy

adolescents aged 14 years (IMAGEN15) and combined voxel-

wise brain imaging with genome-wide association study

(vGWAS16).

Genetic associations on brain structures can emerge in a

particular developmental period or can present across the

life span.6,7 Thus, genetic factors might cause pervasive neu-

roanatomical aberrations that are linked to psychopathology

during a defined developmental period or across the life

span.9-11 To validate our findings and extend them to a wider

age range, we used 4 additional cohorts of healthy partici-

pants to characterize patterns of the identified associations

across the life span including the Saguenay Youth Study

(SYS17), Lieber Institute for Brain Development sample

(LIBD18), UK Biobank (UKB19), and Three-City Study (3C20).

For the identified genetic variants, we tested their cisregula-

tions on the expressions of nearby genes in brain tissues. To

test whether genetic associations of adolescent brain are dis-

rupted by psychopathology, we compared the identified

associations among patients with psychiatric disorder, unaf-

fected siblings, and healthy control individuals in clinical

sample.

Method

Participants

Discovery Sample and Samples Across the Life Span

The IMAGENstudy,15apopulation-based longitudinal imaging

genetics cohort, recruited 2087 healthy adolescents aged 14

years, of which 1721 entered the vGWAS (eMethods 1 and 2 in

the Supplement). We also investigated 971 healthy partici-

pants from the adolescent SYS sample,17 272 healthy partici-

pants from the clinical LIBD sample,186932participants from

thepopulation-basedUKBcohort,19and515healthyelderlypar-

ticipants fromthe3Csample,21apopulation-basedcohortstudy

(eMethods 3-6 in the Supplement).

Clinical Sample

In the LIBD study of schizophrenia,18 we investigated 157

treated patients with chronic schizophrenia and 149 unaf-

fectedsiblingsofpatients (eMethods4 in theSupplement).The

IMAGENprojecthadobtainedethical approvalby the local eth-

ics committees, including King’s College London, University

of Nottingham, Trinity College Dublin, University of Heidel-

berg,TechnischeUniversitätDresden,Commissariatà l'Energie

Atomique et aux Energies Alternatives, and University Medi-

calCenter,UniversityofHamburg,Hamburg,Germany.ForSYS,

the institutional review boards of all participating institu-

tions approvedall studies reportedherein. Theparticipants of

the LIBD study were recruited as part the Clinical Brain Dis-

orders Branch Sibling Study of schizophrenia at the National

Institute ofMentalHealth (Daniel R.Weinberger, principal in-

vestigator). The study was approved by the institutional re-

view board of the Intramural Program of the National Insti-

tuteofMentalHealth.The3Cstudywasapprovedby theEthics

Committeeof theHôpital deBicêtre.All adultparticipantspro-

vided written informed consent after information on the re-

search procedures by each cohort study. For adolescent par-

ticipants in IMAGENandSYS,allparticipants’parentsprovided

written informedconsentafter informationontheresearchpro-

cedures and adolescents provided their assent after written

information.

Key Points

Question Is there any genetic variant associated with adolescent

brain development that can inform psychopathology of

schizophrenia?

Findings In this imaging genetics study of brain structure, a

significant association between amissensemutation in SLC39A8

(a gene previously associated with schizophrenia) and gray matter

volume in putamenwas discovered and replicated using 10 411

healthy participants from 5 independent studies. Compared with

healthy control individuals, such association was significantly

weakened in both patients with schizophrenia and unaffected

siblings.

Meaning Common genetic variant indicates an involvement of

neuronal ion transport in both pathophysiology of schizophrenia

and structural development of putamen.
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Measures

Genome-Wide Genotype Data

The IMAGEN blood samples were genotyped using either

Illumina Human610-Quad Beadchip or Illumina Human660-

Quad Beadchip. After quality control, 466 114 single-

nucleotidepolymorphisms (SNPs)entered the followinganaly-

sis. Details of the genotyping andquality control are available

in a publication22 and in eMethods 1 in the Supplement.

Structural Image Data

Structuralmagnetic resonance imaging (MRI)was performed

on3-Tscanners from3manufacturers (Siemens:5sites;Philips:

2 sites; and General Electric: 2 sites) following the Alzhei-

mer’s Disease Neuroimaging Initiative protocol modified for

the IMAGEN study. All data were preprocessed in Statistical

Parametric Mapping, version 8 using the Voxel-Based Mor-

phometry, version 8 toolbox, including segmentation, nor-

malization, modulation, and smoothing (eMethods 2 in the

Supplement).

Brain Expression Quantitative Trait Loci Database

In the UK Brain Expression Consortium (UKBEC23) database,

gene expression data are available for 10 brain regions from

134 neuropathologically free participants. For any vGWAS-

identified mutation on a gene, we first tested whether this

SNP was associated with expression of this gene. Second, we

went on to test whether such an association was tissue spe-

cific andwhether this SNP also had cisregulations on expres-

sions of nearby (±1Mb) genes. For this extended exploration,

we corrected for multiple comparisons between the number

of nearby genes and the number of brain areas (eMethods 7 in

the Supplement).

Statistical Analysis

Voxelwise and Genome-Wide Association Study

Onthediscoverysample,weperformedaGWASonGMVofeach

voxel in thebrain (ie,438145voxels labeledasper theAutomati-

callyAnatomicalLabeling template24).Asignificantassociation

was identified if a cluster had more than 217 (approximately

4/3 × π × [3.3970 × 1.645]3/1.53voxels falling into the90%con-

fidence interval of the smoothing kernel) voxels with 2-sided

P values surviving a Bonferroni correction (P < 2.4483 × 10−13,

calculated by0.05/438 145/466 114; eMethods 8 in the Supple-

ment).Regionsof interestwere thenestablished fromthe iden-

tifiedclusters,andGMVofeachregionof interestwascalculated

byadding thevolumesof all voxelswithin this region.Replica-

tions weremainly conducted for the significant clusters using

eachreplicationsample(eMethods9intheSupplementformeta-

analysis).Weestablishedthe95%confidence intervalof thesta-

tistics by 3000 bootstraps.

Summary-DatabasedMendelian Randomization

For the identified brain structure, we conducted summary-

databasedMendelian randomization (SMR) analysis by aweb-

based application (MR-Base25; eMethods 10 in the Supple-

ment). Using Psychiatric Genomics Consortium 2014 GWAS

results for schizophrenia26 as theoutcome,we testedwhether

the association between the identified brain structure and

schizophrenia was significant and free of nongenetic

confounders.27A significant SMR resultmay suggest an asso-

ciation between the exposure (brain volume) and the out-

come (schizophrenia) using the exposure-associated genetic

variant as an instrument because the random nature of ge-

netic variation mimics the design of randomized clinical

trials.25Although significant SMR results require further bio-

logical validation,nonsignificant results at least indicate a lack

of association.28

Comparison Among Patients, Unaffected Siblings,

and Healthy Control Individuals

We first conducted power analysis to test whether we had

enough sample size to detect the previously identified ge-

netic associations in our clinical sample (eMethods 11 in the

Supplement). To compare the identified association in pa-

tients with schizophrenia or unaffected siblings with that in

healthy control individuals, we estimated its effect size using

correlationcoefficient.Partial correlationsbetweenGMVof the

regionsof interest andSNPswereestimatedcontrolling forage,

age × age, sex, IQ, total intracranial volume, and ratio of gray

and white matter volume over total intracranial volume. Be-

tween independentsamples,wecomparedeffectssizes (ie,par-

tial correlation coefficient) after transforming them into z sta-

tistics. The95%1-sidedupper boundwas establishedby3000

bootstraps for the difference between2partial correlations in

patients and their paired unaffected siblings, respectively.

Results

Demographics

In thediscovery sample of 1721 healthy adolescents (ofwhom

873were girls [50.7%]), the participantswere amean (SD) age

of 14.44 (0.41) years, while the replication samples of 8690

healthy participants (of whom 4497 were girls [51.8%]) had a

larger age range between 12 and 92 years. The clinical sample

used in this study had 157 patients with schizophrenia (of

whom 35were female [22.2%], with amean [SD] age of 34.82

[9.91] years) and 149 unaffected siblings of patients (ofwhom

85 were female [57.1%], with a mean [SD] age of 36.60 [9.44]

years). Further demographics and clinical features are listed

in eTable 1 in the Supplement.

Association of Schizophrenia Risk SNP rs13107325

With Putamen Volume

Applying voxelwise and GWAS (vGWAS) to the discovery

sample, we found that the minor T allele (a missense muta-

tion in gene SLC39A8) of SNP rs13107325was associatedwith

larger volumes in bilateral putamen (left hemisphere:

t1705 = 8.66;P = 5.35 × 10−18; varianceexplained [VE] = 4.21%;

right hemisphere: t1705 = 8.90; P = 6.80 × 10−19; VE = 4.44%

right hemisphere), and these clusters were asymmetric be-

tween left and right hemispheres (Figure 1A-C). In addition,

we foundanassociationof theminorGallele of SNP rs7182018

(an intronvariant on lncRNARP11-624L4.1)with greaterGMV

of 2 clusters in bilateral central sulcus (left hemisphere:

t1705 = 9.86; P = 1.25 × 10−22; VE = 5.39%; right hemisphere:
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t1705 = 9.96; P = 4.54 × 10−23; VE = 5.50%; Figure 1D and E;

Table; eTables 2-4 in the Supplement; eFigure 1 for Manhat-

tan plots and QQ plots in the Supplement; eFigure 2 for dis-

tributions and bootstraps in the Supplement).

rs13107325 has been associated with schizophrenia in a

2014PsychiatricGenomicsConsortium(phase2)GWAS.26The

SMR using Psychiatric Genomics Consortium (phase 2) re-

sults as outcome identified the associations betweenGMVsof

the putamen clusters and schizophrenia (left putamen clus-

ter: b = 0.9388; SE = 0.1329; P = 1.61 × 10−12; right putamen

cluster: b = 3.444; SE = 0.4875;P = 1.607 × 10−12; eFigure 3 in

the Supplement). Considering that the SMR analysis identi-

fiednoassociationbetween thecentral sulcusandschizophre-

nia using any SNP within the neighboring region (±1 Mb) of

rs7182018asan instrumental variable (eFigure4 in theSupple-

ment), we concluded that rs7182018 is not associated with

schizophrenia.Analysesonrs7182018are found ineTables2-12

and eFigures 5-13 in the Supplement.

Independent Replications Across the Life Span

In the SYS sample of 971 healthy adolescentswith amean (SD)

age of 15.03 (1.84) years, we replicated the positive associa-

tion of SNP rs13107325 in the left putamen (t964 = 3.70;

P = 1.16 × 10−4) but found no such association in the right pu-

tamen (t964 = −1.73;P = .08).The rightputamenclusterwasaf-

fectedbyagreater variationof the insula in theSYS samplebe-

cause a part of the insula was mapped into this cluster

(eFigure 14 in the Supplement).

Using the UKB sample (mean [SD] age, 62.64 [7.41]

years; n = 6932), we replicated the positive associations of

rs13107325 with GMV of the putamen clusters (left hemi-

sphere: t6885 = 4.80; P = 8.16 × 10-7; VE = 0.33%; right hemi-

sphere: t6885 = 4.80; P = 8.16 × 10-7; VE = 0.60%). Given the

large sample size of this cohort, we further confirmed the

significance of the identified clusters using a SNP to whole-

brain approach with 10000 permutations at a cluster level

(eTable 11 in the Supplement). In another 2 independent

Figure 1. Significant Associations Identified by Voxelwise and Genome-Wide Association Study

Association with putamenA

Brainwide association of rs13107325B Significant clustersC Brainwide association of rs7182018D

Association with central sulcusE

–17

0 5 10 15 20 0 6

0 6 12 18 24

12 18 24

–9 0 13

0 5 10 15

–log10(P)

–log10(P)

20

8 23 28 38

The significance level of the

association (-log10 P) between the

gray matter volume of each voxel of

the brain and the SNPs rs13107325

(A and C) or rs7182018 (D and E).

Red represents stronger association,

while blue represents weaker

association. B, Four clusters of voxels

survived the Bonferroni correction

(P < 2.45 × 10−13, calculated by 0.05 /

466 114 [number of SNPs] / 438 145

[number of voxels]). Two clusters

around the left and right central

sulcus are marked in red and orange,

respectively. Two clusters in the left

and right putamen are marked by

yellow and green, respectively.
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samples with mean (SD) ages of 31.92 (9.50) years (LIBD

sample, n = 272) and 77.48 (5.12) years (3C sample, n = 515),

we again confirmed the identified positive associations

(LIBD sample, left putamen: t264 = 4.93; P = 7.22 × 10−7;

VE = 8.38%; right putamen: t264 = 5.33; P = 1.05 × 10−7;

VE = 9.65% ; 3C sample, left putamen: t507 = 2.34; P = .01;

VE = 1.07%; right putamen: t507 = 2.28; P = .01; VE = 1.02%;

Table; eTables 9 and 10 in the Supplement; and eFigures 7-12

and 15-17 in the Supplement).

Association of rs13107325With Lower Expression Level

of SLC39A8 in Putamen

Using the expression quantitative trait loci (eQTL) database

from theUKBEC (n = 134,with 112 CC genotypes, 22 CT geno-

types, and0TTat the SNP rs13107325),we found that the car-

riers of the risk allele (T) at rs13107325 showed lower expres-

sionofSLC39A8 (t127 = −3.87;95%CI,−6.51 to−1.73;P = .0002)

in theputamen (Figure2AandB). Furthermore,we found that

despitebrainwideexpressionofSLC39A8 (Figure2C), thiseQTL

association was specific for the putamen and was not de-

tected in any of the other brain regions (P < .0008, Bonfer-

roni correction for 10 types of brain tissues and6neighboring

genes) (Figure2D). Inaddition togeneSLC39A8 (eTables 13and

14 in theSupplement),wealso foundassociationsof rs13107325

with lower gene expressions of NF-κB1 in the hippocampus

(t120 = −3.62;95%CI,−6.31 to−1.28;P = .0004),MANBA in the

frontal cortex (t125 =−3.73; 95%CI, −5.93 to −1.84;P = .0003),

and higher expression of CENPE in the occipital cortex

(t127 = 3.69; 95% CI 1.72 to 6.10; P = .0003).

Gene-Brain AssociationWeakened by Genetic Risk

for Schizophrenia

Despite inconsistent structuralneuroimaging resultsof thepu-

tamen in schizophrenia (no difference,29,30 reduction,31 or

enlargement32-36ofstructurehavebeenreported), thisstructure

has longbeenassociatedwithbothelevateddopaminesynthe-

sis capacity37,38 and frontostriatal dysconnectivity39 in schizo-

phreniaand iskey to theeffectsof antipsychotic treatment40-43

byvariousmethodologicapproaches.38,39,44,45Toreducethecon-

foundingeffects,weusedunaffectedsiblings (carryingahigher

geneticriskforschizophrenia46butfreeoftheclinicalphenotype

andtreatmenteffects18)ofpatientswithschizophreniatofurther

validatetheinvolvementofthers13107325-putamenassociation

inschizophrenia.Wehypothesizedthatthers13107325-putamen

associationwassignificantlyweakened inbothpatientsandun-

affected siblings compared with healthy control individuals.

Givena large effect size (r = 0.3117; n = 272) in thehealthy con-

trol individuals,poweranalysis (eMethods11 intheSupplement)

estimatedasamplesizeof 102for95%powerassuminga5%sig-

nificance level anda 1-sided test.Therefore,wehadenoughpa-

tients(n = 157)andunaffectedsiblings(n = 149) intheLIBDstudy

to detect such an association. We found that the rs13107325-

putamenassociation in the righthemispherebecame insignifi-

cant in both patients and unaffected siblings (Table). This dis-

rupting effect might be specific because the rs7182018-CEN

association remained significant in all 3 groups (eTable 5 in the

Supplement). Comparedwith healthy control individuals, pa-

tientshada significantlyweakened rs13107325-putamenasso-

ciation (z = −3.05; P = .002). Next, we confirmed that such as-

Table. Associations of a Schizophrenia-Risk SNP rs13107325With the GrayMatter Volumes

of 2 Putamen Clusters inMultiple Cohortsa

Sample and Cluster
Volume,
mean (SD), mL t (95% CI) P Value

Variance
Explained, %

IMAGENb

Left PUT 1.93 (0.35) 8.66 (6.59 to 10.81) 5.35 × 10−18 4.21

Right PUT 0.75 (0.09) 8.90 (6.75 to 11.19) 6.80 × 10−19 4.44

SYSc

Left PUT 1.60 (0.22) 3.70 (1.85 to 5.60) 1.16 × 10−4 1.40

Right PUT 0.81 (0.11) −1.73 (−3.54 to −0.04) .08d 0.31

LIBD HCe

Left PUT 1.59 (0.22) 4.93 (2.86 to 7.11) 7.22 × 10−7 8.38

Right PUT 0.65 (0.06) 5.33 (3.29 to 7.48) 1.05 × 10−7 9.65

UKBf

Left PUT 1.37 (0.28) 4.80 (2.97 to 6.72) 8.16 × 10−7 0.33

Right PUT 0.53 (0.09) 6.46 (4.48 to 8.41) 5.44 × 10−11 0.60

3Cg

Left PUT 1.11 (0.14) 2.34 (0.62 to 4.45) .01 1.07

Right PUT 0.48 (0.06) 2.28 (0.45 to 4.31) .01 1.02

LIBD SZh

Left PUT 1.57 (0.28) 2.01 (0.60 to 3.55) .02 2.00

Right PUT 0.65 (0.09) 0.17 (−1.46 to 1.78) .43 0.02

LIBD SBi

Left PUT 1.53 (0.21) 2.27 (0.23 to 4.09) .01 3.47

Right PUT 0.63 (0.06) 1.30 (−0.93 to 3.11) .10 1.16

Abbreviations: 3C, Three-City Study;

HC, healthy control individuals;

LIBD; Lieber Institute for Brain

Development; PUT, putamen;

SYS, Saguenay Youth Study;

SZ, patients with schizophrenia;

SB, unaffected siblings of patients;

SNP, single-nucleotide

polymorphism; UKB, UK biobank.

a Validations of positive associations

in different age groups. P values

were given by 1-tailed test. The

associations were estimated for the

volumes of the significant clusters

identified by our voxelwise

genome-wide association study.

The volume of a cluster was

calculated by adding up the volume

of each voxel within that cluster.

bn = 1721; Mean age, 14 years.

c n = 971; Mean age, 15 years.

dTwo-tailed P value test because the

association went to an opposite

direction compared with the

hypothesis.

e n = 272; Mean age, 32 years.

f n = 6932; Mean age, 62 years.

g n = 515; Mean age, 77 years.

hn = 157; Mean age, 35 years.

i n = 149; Mean age, 37 years.
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sociationwasweaker in theunaffected siblings comparedwith

the healthy control individuals (z = −2.08;P = .04). In patient-

siblingpairs (n = 49),wefoundthat theSNP-volumeassociation

wasweakerinpatientscomparedwithunaffectedsiblings(rpatient-

rsibling = −0.25; 95%upper 1-sided bound; −0.0143; P = .04).

Discussion

In this vGWAS, we discovered an rs13107325-putamen asso-

ciation in adolescent brains and confirmed this association

across the life span. Mendelian randomization analysis dem-

onstrated a significant association between putamen volume

and schizophrenia free of nongenetic confounders. Unaf-

fected siblings of patients showed a significant weakening of

the rs13107325-putamenassociation thatmaybeowing to the

genetic risk for schizophrenia. Together, these findings pro-

vide a new and testable hypothesis of an interaction between

thepathologyof schizophrenia and themechanismdetermin-

ing the putamen volume.

Single-nucleotidepolymorphismrs13107325 (located inan

exon of SLC39A8, chromosome 4) encodes a solute carrier

Figure 2. Gene Expression of SLC39A8 at Putamen and GrayMatter Volume at Putamen Shared CommonGenetic Controls
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A, Significance level of associations between single-nucleotide polymorphism

(SNP) rs13107325 and gene expression levels of nearby genes of SLC39A8

(the probes used by Affymetrix were organized according to locations of their

starting base at chromosome 4). B, Comparison between gene expression

levels of SLC39A8 at putamenwith different genotypes at SNP rs13107325.

C, Comparison on gene expression levels (mean value and 95% confidence

interval) of SLC39A8 across 10 brain regions, including inferior olivary nucleus

(MEDU; subdissected from themedulla), putamen (PUTM; at the level of the

anterior commissure), substantia nigra (SNIG), cerebellar cortex (CRBL),

thalamus (THAL; at the level of the lateral geniculate nucleus), temporal cortex

(TCTX), intralobular white matter (WHMT), occipital cortex (OCTX), frontal

cortex (FCTX), and hippocampus (HIPP). D, Association patterns between SNP

rs13107325 and gene expressions in 10 brain regions. Genes with significant

associations (P < .0008, calculated by 0.05/10/6 by Bonferroni correction)

were labeled with gene names. bp Indicates base pairs.
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transporter ZIP8 expressed in the plasmamembrane andmi-

tochondria. SLC39A8 has been associated with schizophre-

nia by both large-scale GWAS47,48 and genetic genome-wide

DNAmethylation analysis (brain tissues collected from24pa-

tients along with 24 healthy control individuals49). The pos-

sible involvement of this gene in the psychopathology of

schizophrenia has been discussed since 201248 and has been

shown to involve immunologic processes, glutamatergic neu-

rotransmission, and homeostasis of essential metals in the

brain.50-53 In the literature,50 it hasbeenhypothesized that the

association between SLC39A8 and schizophrenia may be as-

sociatedwith its involvement inproinflammatory immune re-

sponse during brain development. Our findings highlight a

negative regulation of SLC39A8 on the nuclear factor-κ B

(NFκB) pathway54 as a putative causalmechanism. TheNFκB

pathway induces theexpressionofproinflammatorygenes (eg,

cytokines),55which have been associatedwith schizophrenic

symptoms.56 Inhealthypopulations, thestrongassociationbe-

tween SLC39A8 andputamenvolumemaybe associatedwith

the regulatory role ofNFκB in the growth andmorphology of

neuronsduring braindevelopment.57 In patientswith schizo-

phrenia, theweakened associationmay be owing to dysregu-

lationofNFκB in termsof gene andprotein levels, andnuclear

activation in brain tissues of patients.58 rs13107325 is a mis-

sense mutation substituting alanine (apolar) with thyronine

(polar) (Ala391Thy), resulting inZIP8-Thy391 transporting sig-

nificantly lessmetal ion into thecell.59Therefore, after thedis-

covery of SNP rs13107325 associated with schizophrenia risk

by large-scale GWAS,47,48,50,51 our findings indicate that mo-

lecular pathologies of schizophrenia may disrupt neuronal

ion-mediated regulations in the development of putamen

volume.53

The IMAGEN sample of 1721 homogenous 14-year-old

healthy adolescents gave us an effect size (r = 0.21 between

rs13107325 and the left putamen clusters; r = 0.21 between

rs13107325 and the right putamenclusters) 3 times larger than

that of the UKB sample of 6932 adults heterogeneously aged

between 46 and 79 years (r = 0.06 for the left putamen clus-

ters; r = 0.07 for the right putamen clusters). The genetic fac-

torscouldexplainupto80%oftheheritabilityofbrainanatomy

(ie,GMV),ofwhichupto54%couldbecapturedbya largenum-

ber of SNPs.60However, percentage of variance explained by

asinglegeneticvariantwasonly0.52%according to literature.8

In this study, the identifiedgeneticvariantexplainedmore than

4%of the variance in the observed volumes. Such a large uni-

variate genetic influence on the adolescent brain may be ow-

ing to less cumulative environmental impact (eg, exercises,61

stresses,62 and illnesses63,64) at a younger age. Perhaps the

analysis of adolescents could also help explainwhy this novel

association failed tobe identifiedbyprevious large-scalemeta-

analyses with heterogeneous age groups.65,66

Limitations

A limitation of this study is that we adopted a conservative

strategy in termsof Bonferroni correction for thediscovery of

significant vGWAS signal. We acknowledge that this conser-

vativeproceduremaygive false-negative findingsowing to the

sample size of the discovery study. However, if we used

the meta-analysis for the discovery by combining both the

IMAGEN samplewith the replication samples,wemight have

missed those associations that were significant in adoles-

cents only. Given that the IMAGEN participants were of simi-

lar age, future imaging genetic cohorts of healthy adolescents

may help us to identify more gene-brain associations with

smaller effect sizes. Second, the identified brain associations

of the other SNP rs7182018 were more stable across the life

span, but there is no evidence to our knowledge to date that it

is involved in thepathologyof schizophrenia. Third, the iden-

tified gene-level eQTL result didnot reachagenome-wide sig-

nificance level in theUKBECdatabase, and rs13107325wasnot

associated with expression of SLC39A8 in the GTEx (http://

www.gtexportal.org).Thismaybepartiallyowingtodifferences

in the sex ratio and racial/ethnic composition between these

2 databases. Furthermore, other levels (expression of exon,

junction, and transcripts) of eQTL analyses should also be

conducted in the future. Animal studies to test these possible

molecular mechanisms are also warranted.

Conclusions

In summary,usingan innovativemethod,we identified agene

thatpoints toapotential newmechanismassociatedwithboth

ion transporter and immune reaction for development of psy-

chopathology, inparticularassociatedwithschizophrenia.Given

thatthemajorfunctionoftheSLC39A8geneisaccessibletophar-

macologicmanipulation,67-69webelieve that these results are

crucial for discovering novel treatment for schizophrenia.
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