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Abstract

IMPORTANCE Increasing evidence suggests an important role of liver function in the

pathophysiology of Alzheimer disease (AD). The liver is a major metabolic hub; therefore,

investigating the association of liver function with AD, cognition, neuroimaging, and CSF biomarkers

would improve the understanding of the role of metabolic dysfunction in AD.

OBJECTIVE To examine whether liver function markers are associated with cognitive dysfunction

and the “A/T/N” (amyloid, tau, and neurodegeneration) biomarkers for AD.

DESIGN, SETTING, AND PARTICIPANTS In this cohort study, serum-based liver functionmarkers

were measured from September 1, 2005, to August 31, 2013, in 1581 AD Neuroimaging Initiative

participants along with cognitive measures, cerebrospinal fluid (CSF) biomarkers, brain atrophy,

brain glucosemetabolism, and amyloid-β accumulation. Associations of liver functionmarkers with

AD-associated clinical and A/T/N biomarkers were assessed using generalized linear models adjusted

for confounding variables andmultiple comparisons. Statistical analysis was performed from

November 1, 2017, to February 28, 2019.

EXPOSURES Five serum-based liver functionmarkers (total bilirubin, albumin, alkaline

phosphatase, alanine aminotransferase, and aspartate aminotransferase) from ADNeuroimaging

Initiative participants were used as exposure variables.

MAINOUTCOMES ANDMEASURES Primary outcomes included diagnosis of AD, composite scores

for executive functioning andmemory, CSF biomarkers, atrophymeasured bymagnetic resonance

imaging, brain glucose metabolism measured by fludeoxyglucose F 18 (18F) positron emission

tomography, and amyloid-β accumulationmeasured by [18F]florbetapir positron emission

tomography.

RESULTS Participants in the AD Neuroimaging Initiative (n = 1581; 697 women and 884men; mean

[SD] age, 73.4 [7.2] years) included 407 cognitively normal older adults, 20with significantmemory

concern, 298with early mild cognitive impairment, 544 with late mild cognitive impairment, and 312

with AD. An elevated aspartate aminotransferase (AST) to alanine aminotransferase (ALT) ratio and

lower levels of ALT were associated with AD diagnosis (AST to ALT ratio: odds ratio, 7.932 [95% CI,

1.673-37.617]; P = .03; ALT: odds ratio, 0.133 [95% CI, 0.042-0.422]; P = .004) and poor cognitive

performance (AST to ALT ratio: β [SE], −0.465 [0.180]; P = .02 for memory composite score; β [SE],

−0.679 [0.215]; P = .006 for executive function composite score; ALT: β [SE], 0.397 [0.128];
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Abstract (continued)

P = .006 for memory composite score; β [SE], 0.637 [0.152]; P < .001 for executive function

composite score). Increased AST to ALT ratio values were associated with lower CSF amyloid-β 1-42

levels (β [SE], −0.170 [0.061]; P = .04) and increased amyloid-β deposition (amyloid biomarkers),

higher CSF phosphorylated tau181 (β [SE], 0.175 [0.055]; P = .02) (tau biomarkers) and higher CSF

total tau levels (β [SE], 0.160 [0.049]; P = .02) and reduced brain glucosemetabolism (β [SE], −0.123

[0.042]; P = .03) (neurodegeneration biomarkers). Lower levels of ALT were associated with

increased amyloid-β deposition (amyloid biomarkers), and reduced brain glucosemetabolism (β

[SE], 0.096 [0.030]; P = .02) and greater atrophy (neurodegeneration biomarkers).

CONCLUSIONS ANDRELEVANCE Consistent associations of serum-based liver functionmarkers

with cognitive performance and A/T/N biomarkers for AD highlight the involvement of metabolic

disturbances in the pathophysiology of AD. Further studies are needed to determine if these

associations represent a causative or secondary role. Liver enzyme involvement in AD opens avenues

for novel diagnostics and therapeutics.

JAMA Network Open. 2019;2(7):e197978. doi:10.1001/jamanetworkopen.2019.7978

Introduction

Metabolic activities in the liver determine the state of themetabolic readout of peripheral circulation.

Mounting evidence suggests that patients with Alzheimer disease (AD) display metabolic

dysfunction.1 Clinical studies suggest that impaired signaling, energy metabolism, inflammation, and

insulin resistance play a role in AD.2,3 This observation is in line with the observation that many

metabolic disorders (eg, diabetes, hypertension, obesity, and dyslipidemia) are risk factors for AD.4

This evidence highlights the importance of the liver in the pathophysiological characteristics of AD.

Focused investigation to assess the role of liver function in AD and its endophenotypes is required to

bridge the gap between these observations.

Peripheral blood levels of biochemical markers including albumin, alkaline phosphatase, alanine

aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin are used to assess liver

function. Alanine aminotransferase and AST are used in general clinical practice to measure liver

injury5,6 and are factors associated with cardiovascular andmetabolic diseases,7,8 known risk factors

of AD and cognitive decline.9,10Given this fact, it is conceivable that aminotransferases are surrogate

biomarkers of liver metabolic functioning. A systematic search yielded few reports related to

research in humans linking peripheral biomarkers of liver functioning to central biomarkers related to

AD including amyloid-β and tau accumulation, brain glucosemetabolism, and structural atrophy.

We investigated the association of peripheral liver functionmarkers with AD diagnosis,

cognition, and biomarkers of AD pathophysiological characteristics including neuroimaging

(magnetic resonance imaging [MRI] and position emission tomography [PET]) and cerebrospinal

fluid (CSF) from older adults in the AD Neuroimaging Initiative (ADNI) cohort. The AD biomarkers

were selected and defined consistent with the National Institute on Aging–Alzheimer Association

Research Framework (amyloid, tau, and neurodegeneration [A/T/N]) for AD biomarkers that defines

3 general groups of biomarkers based on the nature of pathologic process that eachmeasures.11

Methods

Study Population

Individuals in this study were participants of ADNI. The initial phase (ADNI-1) was launched in 2003

to test whether serial MRI markers, PET markers, other biological markers, and clinical and

neuropsychological assessment could be combined tomeasure the progression of mild cognitive
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impairment (MCI) and early AD. The initial phase was extended to subsequent phases (ADNI-GO,

ADNI-2, and ADNI-3) for follow-up of existing participants and additional new enrollments. Inclusion

and exclusion criteria, clinical and neuroimaging protocols, and other information are reported

elsewhere.12-14Demographic and clinical information, raw data from neuroimaging scans, CSF

biomarkers, information on APOE status, and cognitive scores were downloaded from the ADNI data

repository.12 Baseline data were collected from September 1, 2005, to August 31, 2013. Written

informed consent was obtained at enrollment, which included permission for analysis and data

sharing. This study was approved by each participating site’s institutional review board. This report

followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting

guidelines for cohort studies.

Liver FunctionMarkers

Five laboratory tests were downloaded from the ADNI data repository and used in the study: total

bilirubin, albumin, alkaline phosphatase, ALT, and AST. The liver function markers followed a normal

distribution after log transformation. For eachmarker, participants with values greater or smaller

than 4 SDs from its mean value were considered outliers and were removed. To determine if outliers

had a significant effect on our findings we performed a sensitivity analysis and observed few

differences (or slightly more significant), if any, in results when including outliers (eTable 1 in the

Supplement).

Dementia Diagnosis

Participants in ADNI were classified as cognitively normal controls (CN) or having significant memory

concerns (SMC), MCI, ormild clinical AD. Criteria for classificationwere as follows:Mini-Mental State

Examination score range (range, 0 [worst] to 30 [best]) for CN andMCI was 24 to 30, and for ADwas

20 to 26; and overall Clinical Dementia Rating score (range for each, 0 [best] to 3 [worst]) for CNwas

0, forMCIwas 0.5with amandatory requirement ofmemory box score of 0.5 or greater, and for AD

was 0.5 or 1.15 Cognitively normal controls did not have any significant impairment in cognition or

activities of daily living. Participants with SMC had normal cognition and no significant impairment in

activities of daily living, but had a score of 16 or more on the first 12 items of the self-report version

of the Cognitive Change Index (range, 12 [no change] to 60 [severe change]).16 Participants with MCI

had cognitive impairments in memory and/or other domains but were able to perform activities of

daily living and did not qualify for a diagnosis of dementia.15 Participants with AD had to meet the

National Institute of Neurological and Communicative Disorders and Stroke–AD and Related

Disorders Association criteria for probable AD.17 Participants from the ADNI-1 cohort with MCI were

all classified as late MCI, with a memory impairment approximately 1.5 SD below education-adjusted

norms. In the ADNI-GO and ADNI-2 cohort, participants withMCIwere classified as either earlyMCI,

with a memory impairment approximately 1 SD below education-adjusted norms, or late MCI (same

criteria as in ADNI-1). Both ADNI-1 and ADNI-GO and ADNI-2 participantsmet the criteria for amnestic

MCI, but many in the ADNI-GO and ADNI-2 cohort included the earlier stageMCI designation (ie,

early MCI).18

Cognition

Composite scores were used tomeasure memory and executive functioning. Amemory composite

score was created from the following: memory tasks from the Alzheimer Disease Assessment Scale–

cognitive subscale, the Rey Auditory Verbal Learning Test, memory components of theMini-Mental

State Examination, and the Logical Memory task.19 An executive function composite score included

the following: Wechsler Adult Intelligence Scale–Revised Digit Symbol Substitution task and Digit

Span backward task, Trail Making Test Parts A and B, category fluency (animals and vegetables), and

5 clock drawing items. Composite scores have amean of 0 and an SD of 1.20
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Neuroimaging Processing

MRI Scans

Baseline T1-weighted brain MRI scans were acquired using a sagittal 3-dimensional magnetization

prepared rapid gradient echo scans following the ADNI MRI protocol.21,22 As previously detailed,

FreeSurfer, version 5.1, a widely used automatedMRI analysis approach, was used to process MRI

scans and extract whole-brain and region-of-interest (ROI)–based neuroimaging endophenotypes

including volumes and cortical thickness determined by automated segmentation and

parcellation.23-25 The cortical surface was reconstructed tomeasure thickness at each vertex. The

cortical thickness was calculated by taking the Euclidean distance between the gray and white

boundary and the gray and CSF boundary at each vertex on the surface.26-28

PET Scans

Preprocessed fludeoxyglucose (FDG) F 18 (18F) and [18F]florbetapir PET scans (coregistered,

averaged, standardized image and voxel size, and uniform resolution) were downloaded from the

ADNI Laboratory of Neuro Imaging (LONI) site12 as described in previously reportedmethods for

acquisition and processing of PET scans.23,29 For [18F]FDG-PET, scans were intensity normalized

using a pons ROI to create [18F]FDG standardized uptake value ratio (SUVR) images. For

[18F]florbetapir PET, scans were intensity normalized using a whole cerebellum reference region to

create SUVR images.

CSF Biomarkers

The ADNI generated CSF biomarkers (amyloid-β 1-42, total tau [t-tau], and phosphorylated tau181

[p-tau181]) in pristine aliquots of 2401 ADNI CSF samples using the validated and highly automated

Roche Elecsys electrochemiluminescence immunoassays30,31 and the same reagent lot for each of

these 3 biomarkers. Cerebrospinal fluid biomarker data were downloaded from the ADNI LONI site.12

Statistical Analysis

Statistical analysis was conducted fromNovember 1, 2017, to February 28, 2019. Logistic regression

analysis was performed to explore the diagnostic group differences between AD diagnosis and each

liver functionmarker separately. Age, sex, bodymass index (BMI), and APOE ε4 status were used as

covariates. We performed a linear regression analysis to access the association of liver function

markers with composite scores for memory and executive functioning using age, sex, years of

education, BMI, and APOE ε4 status as covariates. We also performed a linear regression analysis

using age, sex, BMI, and APOE ε4 status as covariates.

ROI-BasedAnalysis of StructuralMRI and PET Scans

Mean hippocampal volumewas used as anMRI-related phenotype. For FDG-PET, a mean SUVR value

was extracted from a global cortical ROI representing regions where patients with AD show

decreased glucosemetabolism relative to CN participants from the full ADNI-1 cohort, normalized to

pons.29 For [18F]florbetapir PET, a mean SUVR value was extracted using MarsBaR from a global

cortical region generated from an independent comparison of ADNI-1 [11C] Pittsburgh Compound B

SUVR scans (regions where AD > CN). We performed a linear regression analysis using age, sex, BMI,

and APOE ε4 status as covariates to evaluate the association of liver function markers with

AD-related endophenotypes fromMRI and PET scans. For hippocampal volume, years of education,

intracranial volume, andmagnetic field strength were added as additional covariates.32

Whole-Brain Imaging Analysis

The SurfStat software package33was used to perform amultivariable analysis of cortical thickness to

examine the association of liver function markers with brain structural changes on a vertex-by-

vertex basis using a general linear model approach.28 General linear models were developed using

age, sex, years of education, intracranial volume, BMI, APOE ε4 status, andmagnetic field strength as
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covariates. The processed FDG-PET and [18F]florbetapir PET images were used to perform a

voxelwise statistical analysis of the association of liver functionmarkers with brain glucose

metabolism and amyloid-β accumulation across the whole brain using SPM8.34We performed a

multivariable regression analysis using age, sex, BMI, and APOE ε4 status as covariates. In the whole-

brain surface-based analysis, the adjustment for multiple comparisons was performed using the

random field theory correctionmethod with P < .05 adjusted as the level for significance.35-37 In the

voxelwise whole-brain analysis, the significant statistical parameters were selected to correspond

to a threshold of P < .05 (false discovery rate [FDR]–corrected).38

Multiple Testing Correction

Results of the analysis of liver functionmarkers with AD diagnosis groups, cognitive composite

measures, and A/T/N biomarkers for AD separately were corrected for multiple testing using the FDR

with the Benjamini-Hochberg procedure (p.adjust command in R [R Project for Statistical

Computing]).

Results

Study Sample

Our analyses included 1581 ADNI participants (407 CN, 20with SMC, 298with early MCI, 544 with

late MCI, and 312 with AD). Demographic information as well as mean and SD of liver function

markers stratified by clinical diagnosis are presented in eTable 2 in the Supplement.

Diagnostic GroupDifference of Liver FunctionMarkersWith ADDiagnosis

Levels of ALT were significantly decreased in AD compared with CN (odds ratio, 0.133; 95% CI,

0.042-0.422; P = .004) (Table 1), while AST to ALT ratio values were significantly increased in AD

(odds ratio, 7.932; 95% CI, 1.673-37.617; P = .03). There was a trend to suggest that ALT levels were

increased and AST to ALT ratio values were decreased in MCI compared with CN, but these became

nonsignificant after adjustment for multiple comparisons (eTable 3 in the Supplement).

Cognition

After adjusting for multiple comparison correction using FDR, we identified significant associations

of liver function markers with cognition (Table 2). Higher levels of alkaline phosphatase and AST to

ALT ratio were associated with lower memory scores (alkaline phosphatase: β [SE], –0.416 [0.162];

P = .02; AST to ALT ratio: β [SE], –0.465 [0.180]; P = .02) and executive functioning scores (alkaline

phosphatase: β [SE], –0.595 [0.193]; P = .006; AST to ALT ratio: β [SE], –0.679 [0.215]; P = .006).

Higher ALT levels were associated with higher memory scores (β [SE], 0.397 [0.128]; P = .006) and

executive functioning scores (β [SE], 0.637 [0.152]; P < .001), whereas higher AST levels were

associated with higher executive functioning scores (β [SE], 0.607 [0.215]; P = .01).

Table 1. Results of Association of Liver Function Biomarkers

With Alzheimer Disease Diagnosisa

Liver Function Marker Odds Ratio (95% CI) Corrected P Value

Albumin, g/dL 5.789 (0.040-843.993) .49

Alkaline phosphatase, U/L 3.620 (0.844-15.529) .12

ALT, U/L 0.133 (0.042-0.422) .004

AST, U/L 0.229 (0.045-1.175) .12

AST to ALT ratio 7.932 (1.673-37.617) .03

Total bilirubin, mg/dL 1.405 (0.585-3.377) .49

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase.

a Cognitively normal vs Alzheimer disease. Analyses were adjusted for age, sex,

bodymass index, and APOE ε4 status.
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Biomarkers of Amyloid-β

We used CSF amyloid-β 1-42 levels and a global cortical amyloid deposition measured from amyloid

PET scans as biomarkers of amyloid-β. The regression coefficient of the AST to ALT ratio showed a

negative association with CSF amyloid-β 1-42 levels (β [SE], –0.170 [0.061]; P = .04), indicating that

higher AST to ALT ratio values were associated with CSF amyloid-β 1-42 positivity (Figure 1).

However, there was no significant correlation between liver functionmarkers and global cortical

amyloid deposition.

In the whole-brain analysis using multivariable regressionmodels to determine the association

of liver functionmarkers with amyloid-β loadmeasured from amyloid PET scans on a voxelwise level,

we identified significant associations for 2 liver functionmarkers. Higher ALT levels were significantly

associated with reduced amyloid-β deposition in the bilateral parietal lobes (Figure 2A). Increased

AST to ALT ratio values were significantly associated with increased amyloid-β deposition in the

bilateral parietal lobes and right temporal lobe (Figure 2C).

Biomarkers of Fibrillary Tau

We used CSF p-tau levels as a biomarker of fibrillary tau. We investigated the association of liver

functionmarkers with CSF p-tau, adjusting for APOE ε4 status as a covariate. Higher AST to ALT ratio

values were associated with higher CSF p-tau values (β [SE], 0.175 [0.055]; P = .02) (Figure 1).

Biomarkers of Neurodegeneration or Neuronal Injury

We used structural atrophymeasured fromMRI scans, brain glucosemetabolism from FDG-PET

scans, and CSF t-tau levels as biomarkers of neurodegeneration or neuronal injury.

Table 2. Results of Association of Liver Function BiomarkersWith Composite Cognitive PerformanceMeasuresa

Liver Function Marker

Memory Composite Score Executive Function Composite Score

β (SE) Corrected P Value β (SE) Corrected P Value

Albumin, g/dL −0.872 (0.576) .17 −0.203 (0.689) .77

Alkaline phosphatase, U/L −0.416 (0.162) .02 −0.595 (0.193) .006

ALT, U/L 0.397 (0.128) .006 0.637 (0.152) <.001

AST, U/L 0.339 (0.180) .09 0.607 (0.215) .01

AST to ALT ratio −0.465 (0.180) .02 −0.679 (0.215) .006

Total bilirubin, mg/dL −0.068 (0.103) .61 −0.066 (0.123) .65

Abbreviations: ALT, alanine aminotransferase; AST,

aspartate aminotransferase.

a Analyses were adjusted for age, sex, educational

level, bodymass index, and APOE ε4 status.

Figure 1. Results ofAssociationof Liver FunctionBiomarkersWithAmyloid, Tau, andNeurodegeneration (A/T/N)

Biomarkers forAlzheimerDisease
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Heat map of q-values of the association between liver

function markers and the A/T/N biomarkers for

Alzheimer disease. P values estimated from linear

regression analyses were corrected for multiple testing

using false discovery rate (q value). White indicates

q > 0.05, red indicates significant positive association,

and green indicates significant negative association.

Aβ indicates amyloid-β; ALT, alanine aminotransferase;

AST, aspartate aminotransferase; CSF, cerebrospinal

fluid; FDG, fludeoxyglucose positron emission

tomography; MRI, magnetic resonance imaging; and

p-tau, phosphorylated tau.
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Brain GlucoseMetabolism

We performed an ROI-based association analysis of liver functionmarkers with a global cortical

glucosemetabolism value measured from FDG-PET scans across 1167 ADNI participants with both

FDG-PET scans andmeasurement of liver functionmarkers. The association analysis including APOE

ε4 status as a covariate identified 2markers as significantly associatedwith brain glucosemetabolism

after controlling formultiple testing using FDR (Figure 1). For ALT, higher levels were associatedwith

increased glucosemetabolism (β [SE], 0.096 [0.030]; P = .02), while for the AST to ALT ratio, higher

ratio values were associated with reduced glucosemetabolism (β [SE], –0.123 [0.042]; P = .03).

In the detailed whole-brain analysis to determine the association of liver functionmarkers with

brain glucosemetabolism on a voxelwise level, increased ALT levels were associatedwith increased

glucosemetabolism in a widespread pattern, especially in the bilateral frontal, parietal, and temporal

lobes (Figure 2B). However, higher AST to ALT ratio valueswere significantly associatedwith reduced

glucosemetabolism in the bilateral frontal, parietal, and temporal lobes (Figure 2D).

Figure 2. DetailedWhole-Brain Voxel-Based Imaging Analysis for Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST) to ALT Ratio Levels Using

Positron Emission Tomography (PET) Scans
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Whole-brain multivariable analysis was performed to visualize the topography of the

association of ALT levels and AST to ALT ratio values with amyloid-β load and glucose

metabolism on a voxelwise level (false discovery rate–corrected P < .05). A, Higher ALT

levels were significantly associated with reduced amyloid-β deposition in the bilateral

parietal lobes. B, Increased ALT levels were significantly associated with increased

glucosemetabolism in a widespreadmanner, especially in the bilateral frontal, parietal,

and temporal lobes. C, Increased AST to ALT ratio values were significantly associated

with increased amyloid-β deposition in the bilateral parietal lobes and the right temporal

lobe. D, Increased AST to ALT ratio values were significantly associated with reduced

brain glucosemetabolism in the bilateral frontal, parietal, and temporal lobes.

JAMANetworkOpen | Geriatrics Altered Liver Enzymes and Alzheimer Disease Diagnosis, Cognition, and Biomarkers

JAMA Network Open. 2019;2(7):e197978. doi:10.1001/jamanetworkopen.2019.7978 (Reprinted) July 31, 2019 7/20

Downloaded From: https://jamanetwork.com/ on 08/27/2022



StructuralMRI (Atrophy)

In the investigation of the association of liver functionmarkers with mean hippocampal volumewith

APOE ε4 status as a covariate, we did not identify any significant association with hippocampal

volume after controlling for multiple testing using FDR (Figure 1). Following the detailed whole-brain

surface-based analysis of liver functionmarkers using multivariable regressionmodels to assess

associations with cortical thickness, higher ALT levels were significantly associated with larger

cortical thickness in the bilateral temporal lobes (Figure 3), which showed consistent patterns in the

associations of brain glucosemetabolism.

CSF t-Tau

Higher AST to ALT ratio values were associated with higher CSF t-tau levels (β [SE], 0.160 [0.049];

P = .02) (Figure 1), which showed consistent patterns in the associations of CSF amyloid-β 1-42 or

p-tau levels and brain glucosemetabolism.

Discussion

We investigated the association between serum-based liver functionmarkers and AD diagnosis,

cognition, and AD pathophysiological characteristics based on the A/T/N framework for AD

biomarkers in the ADNI cohort.39Our findings suggest that the decreased levels of ALT and elevated

AST to ALT ratio that were observed in patients with ADwere associated with poor cognition and

reduced brain glucosemetabolism. We also found that an increased AST to ALT ratio was associated

with lower CSF amyloid-β 1-42 levels, greater amyloid-β deposition, and higher CSF p-tau and t-tau

levels. Furthermore, we observed that decreased levels of ALT were associated with greater

amyloid-β deposition and structural atrophy.

Figure 3. DetailedWhole-Brain Surface-Based Imaging Analysis for Alanine Aminotransferase (ALT) Levels

UsingMagnetic Resonance Imaging (MRI) Scans
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0.025.05

P Value for Cluster P Value for Vertex

Awhole-brain multivariable analysis of cortical

thickness across the brain surface was performed to

visualize the topography of the association of ALT

levels with brain structure. Statistical maps were

thresholded using a random field theory for a multiple

testing adjustment to a corrected significance level of

P < .05. The P value for clusters indicates significant

corrected P values with the lightest blue color. Higher

ALT levels were significantly associated with greater

cortical thickness, especially in bilateral

temporal lobes.
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Decreased levels of ALT and increased AST to ALT ratio values were observed in patients with

AD and were associated with lower scores on measures of memory and executive function. Our

findings are comparablewith those of an earlier study that reported increased AST to ALT ratio values

and lower levels of ALT in patients with AD compared with controls, although in that study, the

association between AD and ALT levels did not reach statistical significance.40 Altered liver enzymes

lead to disturbances in liver-associated metabolites including branched-chain amino acids, ether-

phosphatidylcholines, and lipids,41which we and others show are altered in AD1,42-44 andmay play a

role in disease pathophysiologic characteristics.45Disturbed energy metabolism is one of the

processes that may explain the observed lower levels of ALT and increased enzyme ratio in

individuals with AD and impaired cognition.3,5 This finding is concordant with our observation that

increased AST to ALT ratio values and lower levels of ALT showed a consistent significant association

with reduced brain glucosemetabolism, particularly in the orbitofrontal cortex and temporal lobes,

areas of the brain implicated in memory and executive function. Brain glucose hypometabolism is an

early feature of AD and cognitive impairment during the prodromal stage.46,47Moreover, ALT and

AST are key enzymes in gluconeogenesis in the liver and production of neurotransmitters required in

maintaining synapses.48 Alanine aminotransferase catalyzes a reversible transamination reaction

between alanine and α-ketoglutarate to form pyruvate and glutamate, while AST catalyzes a

reversible reaction between aspartate and α-ketoglutarate to form oxaloacetate and glutamate.49

Although exact mechanisms remain unclear, 2 possible mechanisms may explain altered levels of

enzymes in AD. First, reduced ALT levels lead to reduced pyruvate, which is required for glucose

production via gluconeogenesis in the liver and glucose is distributed in various body tissues as an

energy source,50 thus disturbing energy homeostasis. Second, altered levels of ALT and ASTmay

affect levels of glutamate, an excitatory neurotransmitter of the central nervous system involved in

synaptic transmission, which also plays an important role in memory.51

In the case of low glucosemetabolism in the brain, as observed in our current study, less

α-ketoglutarate is available via the tricarboxylic acid cycle that favors glutamate catabolism vs

glutamate synthesis in reversible reaction (catalyzed by AST and ALT).52 Glutamate acts as a

neurotransmitter in approximately two-thirds of the synapses in neocortical and hippocampal

pyramidal neurons and thus is involved in memory and cognition via long-term potentiation.53 In a

sample of healthy adults, plasma ALT and AST levels were significantly positively correlated with

plasma glutamate levels,5,54which indicates that lower levels of ALT will decrease glutamate levels

in plasma. Based on evidence from earlier studies that peripheral blood levels of glutamate are

positively correlated with levels of glutamate in the CSF55 and studies that reported lower levels of

glutamate in patients with AD compared with controls in both blood56 and brain tissues,36,57-59we

can infer that lower levels of ALT or AST may affect glutamate levels in AD. In older adults, lower

serum ALT levels are associated with mortality60,61 and are thought to be a biomarker for increased

frailty, sarcopenia, and/or reduced levels of pyridoxine (vitamin B6).
62 Pyridoxine phosphate is a

coenzyme for the synthesis of amino acids, neurotransmitters (eg, serotonin and norepinephrine),

and sphingolipids. Alanine aminotransferase decreaseswith age63 andmay be a sign of hepatic aging.

Glutamate levels also decreasewith increasing age.64 Together with the fact that age is the strongest

risk factor for AD,65 decreasing levels of ALT with age may also indicate a possible biological link

between aging and AD. Nevertheless, further research is needed to determine the exact cause of

reducing ALT levels with age and the pathway through which it can influence neurologic disorders,

including AD.

Increased AST to ALT ratios are observed in individuals with nonalcoholic fatty liver disease,

which is the hepatic manifestation of metabolic syndrome.66 In the FraminghamHeart Study,

nonalcoholic fatty liver disease was associated with smaller total cerebral brain volume even after

adjustment for multiple cardiovascular risk factors.67 Liver dysfunction is also associated with the

development of disease including cardiovascular disease and insulin resistance through disruptions

in glucose and lipid metabolism, key physiological functions of the liver.68,69 Thus, using the AST to
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ALT ratio as a marker for overall metabolic disturbance,5 our study provides evidence of an

association between alteredmetabolic status and AD, cognition, and AD endophenotypes.

In addition to ALT levels and the AST to ALT ratio, elevated levels of alkaline phosphatase were

significantly associated with poor cognition. This is in line with results from the Oxford Project to

Investigate Memory and Aging, which reported increased alkaline phosphatase levels in individuals

with AD and an inverse association with cognition.70 Alkaline phosphatase is an enzyme primarily

expressed in the liver and kidneys as well as in endothelial cells in the brain.71,72 The neuronal form of

alkaline phosphatase plays a role in developmental plasticity and activity-dependent cortical

functions via contributing in γ-aminobutyric acid metabolism.73-76 Changes in plasma levels of

alkaline phosphatase may occur as a result of central nervous system injury.77

Limitations

This study has several limitations. The observational design of this ADNI cohort study limits our ability

tomake assumptions about causality. There is need to evaluate the association of liver enzymeswith

AD in prospective manner. Another limitation of our study is that we did not adjust for alcohol

consumption, which was not available in ADNI. Alcohol consumption is associated with altered liver

enzymes. Instead, we used a well-established surrogate marker of alcohol consumption,

γ-glutamyltransferase. Elevations in γ-glutamyltransferase generally indicate long-term heavy

drinking rather than episodic heavy drinking.78Our key findings remained significant after

adjustment for γ-glutamyltransferase and statin use (eTable 4, eTable 5, and eFigure in the

Supplement). However, given the associations with liver function measures and A/T/N biomarkers

for AD, it appears that liver functionmay play a role in the pathogenesis of AD, but limitations should

be taken into account before further extrapolating our findings.

Conclusions

This study’s results suggest that altered liver functionmarkers are associated with AD diagnosis and

impaired memory and executive function as well as amyloid-β, tau, and neurodegenerative

biomarkers of AD pathophysiological characteristics. These results are, to our knowledge, the first to

show an association of peripheral markers of liver functioning with central biomarkers associated

with AD. Although our results suggest an important role of liver functioning in AD pathophysiological

characteristics, the causal pathways remain unknown. The liver-brain biochemical axis of

communication should be further evaluated inmodel systems and longitudinal studies to gain deeper

knowledge of causal pathways.
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