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Summary 

BET (Bromodomain and Extra Terminal domain) family proteins are unique among 

bromodomain-containing proteins in that they, not only associate to acetylated 

chromatin in interphase, but also remain attached to chromosomes during mitosis. 

Although the two tandem bromodomains are essential to display this behavior they do 

not suffice. In this work we report that a small conserved domain, the motif B, is also 

required for that. A deletion mutant of this domain dissociates from mitotic 

chromosomes. However, inhibition of histone deacetylases alleviates dissociation. We 

also show that motif B-dependent association to chromosomes is not restricted to 

mitosis. Interestingly, our results indicate that the motif B constitutes a surface for 

homo- and hetero-dimerization between BET proteins. Finally, linked to the prominent 

role BET proteins play in cell proliferation, we report that ectopic expression of the 

family member Brd2 interferes with neuronal differentiation in P19 cells and in the 

vertebrate neural tube, probably due to preservation of adequate levels of cyclins A2 

and D1. By contrast, a deletion mutant of the motif B fails to perform in this way, 

highlighting the relevance of this domain for Brd2 function. 
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Introduction 

Acetylation and other histone modifications control essential transcriptional regulatory 

processes in the cell. Combinatorial display of these modifications modulates the 

docking characteristics of chromatin to recruit a huge variety of effector proteins that 

induce changes in its structure and thereby in gene transcription (Jenuwein and Allis, 

2001). Precise recognition of these modifications by specialized modules in effector 

proteins is critical for accurate transcriptional control. Recognition of histone 

acetylation by the bromodomain illustrates this scenario. Bromodomains are present in a 

number of chromatin-associated proteins, which include histone acetyltransferases 

(HATs), ATP-dependent chromatin remodeling factors and proteins of the BET 

(Bromodomain and Extra Terminal domain) family (Jeanmougin et al., 1997; Yang, 

2004). 

 The BET family of proteins in mammals comprises Brd2, Brd3, Brd4 and Brdt. 

Except this last, which is restricted to the male germ line, rest of the members are 

widely expressed in all tissues. Vertebrate BET proteins are characterized by the 

presence of two tandem bromodomains at the N-terminus and an exclusive Extra 

Terminal (ET) domain at the C-terminus. The ET region includes the NET (N-terminal 

Extra Terminal) domain, and the C-terminal SEED motif (Florence and Faller, 2001). 

While function of bromodomains has been well characterized, function of other 

domains has been poorly investigated (Denis et al., 2000; Rahman et al., 2011). It is 

well established that bromodomains of BET proteins bind to acetylated chromatin. 

While Brd2 seems to preferentially bind histone H4 at the mono-acetylated state 

(acetyl-K12), Brd4 and Brdt more efficiently recognize di-acetylated histone H4, at 

K5/K12 and K5/K8 positions, respectively (Dey et al., 2003; Ito et al., 2011; Kanno et 

al., 2004; LeRoy et al., 2008; Moriniere et al., 2009; Sasaki et al., 2009). In addition, 

binding of BET members to acetylated proteins, others than histones, has also been 

reported (Gamsjaeger et al., 2011; Huang et al., 2009; Lamonica et al., 2011). 

Acetylation of histones correlates with gene activation (Hebbes et al., 1988), and in this 

respect, BET proteins have been described as transcriptional activators with a prominent 

role in the control of cell cycle-associated genes. Brd2 has been implicated in 

controlling the expression of cyclins A2 and D1 (LeRoy et al., 2008; Sinha et al., 2005). 

Brd4 has been involved in controlling expression of cyclin D1 and other G1-associated 

genes required for progression to the S phase (Mochizuki et al., 2008; Yang et al., 

2008). A major determinant of Brd4 function is its association with the positive 
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transcription elongation complex P-TEFb (Yang et al., 2005). In contrast to Brd2 and 

Brd3, Brd4 presents an additional C-Terminal Domain (CTD) that is essential for this 

function (Bisgrove et al., 2007). Analysis of knock out mice has revealed that Brd2 and 

Brd4 are essential for embryonic development. Fibroblasts derived from both Brd2- and 

Brd4-deficient animals proliferate more slowly than control ones (Houzelstein et al., 

2002; Shang et al., 2009). Brd4 heterozygous mice display pre- and postnatal growth 

defects associated with a reduced proliferation rate, while nullizygous embryos die 

shortly after implantation (Houzelstein et al., 2002). On the other hand, most Brd2-

deficient embryos die by embryonic day 11.5 (Gyuris et al., 2009; Shang et al., 2009).  

 A striking characteristic of BET proteins is that they remain attached to 

chromosomes during mitosis, suggesting they play a role in the transmission of 

transcriptional memory across cell division (Dey et al., 2003; Kanno et al., 2004). It has 

been reported that integrity of the bromodomains is required for this ability (Dey et al., 

2003; Kanno et al., 2004). However, other bromodomain-containing proteins do not 

associate to mitotic chromosomes (Kruhlak et al., 2001), suggesting that special and/or 

additional structural features in BET proteins should be involved in displaying this 

behavior. Supporting this hypothesis, we found that a conserved region of 47 amino 

acids located between the second bromodomain and the ET region of BET proteins, and 

previously designated as the motif B (Paillisson et al., 2007), is required for attachment 

to mitotic chromosomes. Our results demonstrate that the motif B constitutes a 

dimerization domain, and that function of Brd2 is compromised in its absence. 

 

Results 

A small conserved motif in BET proteins is involved in association to mitotic 

chromosomes 

Bromodomain-containing proteins associate to the chromatin through acetylated 

histones. During mitosis, most proteins, including many bromodomain-containing 

proteins, dissociate from chromatin (Kruhlak et al., 2001). However, proteins from the 

BET family remain attached to mitotic chromosomes (Dey et al., 2003; Kanno et al., 

2004). Then, it is reasonable to speculate that additional structures, others than the 

bromodomains, are implicated in BET-attachment to mitotic chromosomes. To 

investigate this hypothesis we have analyzed the localization of different flag-tagged 

constructions derived from the mouse BET protein Brd2 on mitotic chromosomes of 

P19 cells (Fig. 1A). As occurs for Brd4 (Dey et al., 2003), deletion of bromodomain 1 
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(BD1) displaces Brd2 from mitotic chromosomes (Fig. 1B), indicating that integrity of 

the bromodomains is essential for this function. Similarly, a double Brd2 mutant with 

point mutations Y152K and N428A in BD1 and BD2, respectively, previously shown to 

affect Brd2 functionality (Huang et al., 2007; Nakamura et al., 2007), did not associate 

to mitotic chromosomes (Fig. 1B). However, both bromodomains are not sufficient to 

promote association to mitotic chromosomes, as a construction encompassing both 

intact bromodomains also failed to attach to them (Fig. 1B). Serial deletions from the C-

terminus of Brd2 indicated that a truncated Brd2 protein lacking from amino acid 612 

remained attached to mitotic chromosomes (Fig. 1C). However, deletion from amino 

acid 473 made the protein to appear dissociated (Fig. 1C). The region between amino 

acids 473 and 612 contains an uncharacterized motif of 47 amino acids, designated as 

the motif B (mB), and highly conserved among BET proteins (Paillisson et al., 2007). 

To investigate more precisely the involvement of the motif B in mitotic 

chromosomes attachment we tested a Brd2 construction lacking this domain (∆mB). As 

shown in Fig. 1C, this construction appeared dissociated from chromosomes. By 

contrast, deletions of similar length, N- or C-terminal to the motif B, resulted in no 

alteration of Brd2 localization (Fig. 1C). Finally, we analyzed the effect of motif B 

deletion in the ability of Brd3 and Brd4 to associate to mitotic chromosomes. Similarly 

to Brd2 mutant, Brd3 and Brd4 mutants were also affected in chromosome localization 

(supplementary material Fig. S1A). 

Taken together, our results strongly indicate that the conserved motif B, together 

with the integrity of the bromodomains, is required for attachment of BET proteins to 

mitotic chromosomes. 

 

Efficient recognition of acetylated chromatin by Brd2 requires the motif B 

A detailed analysis of the Brd2 ∆mB construction through the mitosis revealed that 

while this mutant was completely dissociated from chromosomes at prophase and 

metaphase, significant reassociation was observed at late mitosis, as anaphase proceeds 

(Fig. 2A). This dual behavior of the ∆mB construction indicates that mitosis progresses 

in a biphasic manner in relation to the recognition of mitotic chromosomes by Brd2. In 

this respect, it has been reported that significant deacetylation of the chromatin takes 

place at the onset of mitosis (Kruhlak et al., 2001). Indeed, real-time imaging 

experiments have indicated that acetylation of K5/K8 on histone H4 decreases in 

mitosis (Sasaki et al., 2009). However, not all acetylation marks are lost, since 
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acetylation of K12 on histone H4 is maintained (Ito et al., 2011). To investigate how 

acetylation affects association of the ∆mB construction to chromosomes we made use of 

trichostatin A (TSA), which promotes hyperacetylation of chromatin by inhibiting 

histone deacetylases (HDACs). As shown in Fig. 2B, we observed chromosome 

association of the ∆mB protein under these conditions. The same result was obtained 

with ∆mB constructions of Brd3 and Brd4 (supplementary material Fig. S1B). As a 

control, the ∆BD1 construction remained dissociated in the presence of TSA (Fig. 2B). 

Titration of TSA indicated significant Brd2 reassociation at 75 ng/ml and almost 

complete reassociation at 150 ng/ml (supplementary material Fig. S1C). 

 Next, we asked whether relevance of the motif B in Brd2 association to the 

chromatin was restricted to mitosis. In order to elucidate that, we decided to compare 

extraction of transfected WT and mutant Brd2 with increasing salt concentrations from 

exponentially growing cell cultures, which normally contains 94±3% (n= 602) cells in 

interphase. While WT Brd2 required high salt concentrations (520 mM) to be 

completely extracted, most ∆mB was extracted at 100 mM NaCl, comparable to the 

control bromodomain mutant Y152KN428A (Fig. 2C), indicating that requirement of 

the motif B for association to the chromatin is not restricted to mitosis. 

 We next investigated the direct involvement of the motif B in acetyl-histone 

recognition by in vitro pull-down experiments with protein extracts from cells 

transfected with different Brd2 constructions. It has been previously reported that Brd2 

precipitates acetyl-K14 histone H3 (LeRoy et al., 2008). Thus, for pull-down 

experiments we used of a di-acetylated histone H3 peptide that includes this mark. As 

observed in Fig. 2D, the ∆mB construction failed to bind to the acetylated peptide in 

comparison with the wild type although it retained some binding capacity compared to 

the negative control Y152KN428A (Fig. 2D). 

 These results indicate that efficient recognition of the chromatin by Brd2 

requires the motif B, and that this is particularly appreciable under hypoacetylation 

conditions, as it occurs during early mitosis.  

 

The conserved motif B constitutes a dimerization domain 

To get insights into the role of the motif B we performed a yeast two-hybrid screening 

with a bait construction encompassing the motif B of Brd2. We screened an 11-days old 

mouse embryo cDNA library and analyzed about 2·106 transformants. Among them, 

150 showed positive growth on selective medium, and interestingly, 141 corresponded 
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to a prey construction encompassing the motif B of Brd3 (Fig. 3A). As prey and bait 

constructions included additional sequences besides the motif B, we precisely mapped 

the interaction surfaces and found that motif B of Brd2 interacted with motif B of Brd3 

(Fig. 3B). Self-interaction of the Brd2 motif B and other combinations of the different 

BET motives B also resulted positive in the yeast assay (Fig. 3B and supplementary 

material Fig. S2A), suggesting that the motif B constitutes a domain for homo- and 

hetero-dimerization between BET proteins. Direct evidence of the interaction was 

obtained by pull-down assays with purified recombinant proteins, which showed that a 

GST-mB construction efficiently retained flag-mB but not a flag-NET peptide (Fig. 

3C). 

 We next analyzed the relevance of the motif B in Brd2 self-interaction by 

immunoprecipitation assays. We included in our analysis a full Brd2 protein with point 

mutation Y152K, previously shown to affect dimerization of truncated BD1 (Nakamura 

et al., 2007). As shown in Fig. 3D, flag-tagged Brd2 was efficient in precipitating HA-

tagged Brd2, less efficient in precipitating the Y152K and ∆mB proteins, and almost 

ineffective in precipitating the double Y152K∆mB mutant, indicating that the motif B 

was as necessary as the BD1 for Brd2 dimerization. Our analysis revealed that Brd2 

precipitated Brd3 and Brd4 as well (Fig. 3E). Other BET protein combinations also 

showed homo- and hetero-dimerization between BET proteins (supplementary material 

Fig. S2B). We next confirmed the relevance of the motif B for Brd2-Brd3 interaction by 

immunoprecipitation (Fig. 3F). To investigate motif B-mediated dimerization of 

endogenous Brd2 we generated rabbit antibodies against amino acids 698 to 780 at the 

C-terminus of Brd2 (Fig. 3G). Using these antibodies we analyzed precipitated 

endogenous Brd2 in immunoprecipitation experiments with two Brd2 constructions 

lacking the C-terminus, one of them also lacking the motif B. Results revealed that only 

the construction harboring the motif B was efficient in precipitating endogenous Brd2 

(Fig. 3H). Finally, to get evidence of BET homo- and hetero-dimerization in the cell we 

analyzed interaction of Brd2 with itself and with Brd3 by FRET, and significant FRET 

signal was observed for GFP-Brd2/Brd2-RFP and GFP-Brd3/Brd2-RFP combinations, 

compared with the negative control Y152K∆mB (Fig. 4A, B), indicative of protein 

interaction. Interestingly, deletion of just the motif B was sufficient to abrogate the 

positive FRET signal for Brd2 self-interaction (Fig. 4A, B). 

 Our results suggest that dimerization of BET proteins is required for efficient 

recognition of chromatin. Then, we reasoned that overexpression of a truncated 
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construction containing just the Brd2 motif B should interfere with chromatin 

recognition by wild type Brd2. Hence, we analyze attachment to mitotic chromosomes 

of wild type Brd2 in the presence of a GFP-motif B construction, and interestingly we 

found dissociated Brd2 in prophase/metaphase (Fig. 4C). 

 Together, our results indicate that homo- or hetero-dimerization of BET proteins 

through the conserved motif B permits efficient recognition of acetylated chromatin. 

 

Deletion of the motif B impairs Brd2-mediated stimulation of the cell cycle 

It has been previously reported that ectopic Brd2 stimulates progression of the cell cycle 

through cyclin A2 activation (Sinha et al., 2005). Since cyclin D1 has also been reported 

as regulated by Brd2 (LeRoy et al., 2008), we have investigated how transfection of WT 

and ∆mB constructions affects expression levels of cyclin A2 and D1. We found that 

while WT or ∆NmB Brd2 have a positive effect in cyclins expression, the ∆mB protein 

has no effect, similar to the Y152KN428A mutant (Fig. 5A). These results correlated 

with those from chromatin immunoprecipitation (ChIP) experiments involving cyclins 

A2 and D1 promoters (Fig. 5B). Thus, ChIP experiments showed a similar presence of 

WT or ∆NmB protein in the promoters, while ∆mB or Y152KN428A were absent. 

Addition of retinoic acid (RA) to P19 cells induces cell cycle arrest (Pao et al.). In 

agreement with results described in Fig. 5A, B, we have observed that, while adding RA 

to control P19 cells or to cells transfected with the ∆mB or the Y152KN428A 

construction leads to downregulation of cyclins A2 and D1, transfection of the WT or 

the ∆NmB construction prevents downregulation (Fig. 5C). By analyzing cell cycle 

profiles we remarked an increase of cells in the G1 phase upon RA treatment, 

irrespective of the presence of the ∆mB protein or the Y152KN428A control (Fig. 5D, 

E). Thus, ratio of cells in G1 respect to cells in the S, G2 and M phases increased from 

about 0.7 to near 1.5, indicating that cells in G1 increased from 40% to 60%. By 

contrast, the presence of the WT or the ∆NmB protein impaired these RA effects, 

resulting in a profile similar to that of non-treated cells (Fig. 5D, E). These results 

indicate that the ∆mB protein fails to stimulate the cell cycle and to interfere with RA-

induced arrest of the cell cycle, as WT Brd2 does. 

 Based in our results, it is tempting to speculate that Brd2 overexpression, by 

stimulating the cell cycle, might impair cell differentiation. To investigate this 

hypothesis we choose a neuronal differentiation model. A standard approach to study 

neuronal differentiation consists in transfecting P19 cells with E12 and NeuroD2 
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expression constructs to evaluate the presence of the neuronal marker ßIII-tubulin in 

transfected cells (Farah et al., 2000; Seo et al., 2005).  Results indicated that transfection 

of the ∆mB construction had little effect in neuronal differentiation, compared with the 

significant reduction (42% decrease) mediated by WT Brd2 (Fig. 6A, C). Finally, we 

decided to confirm these results in an animal model, and without forcing differentiation. 

Thus, we turned to the chick embryo and used the technique of electroporation to 

transfect half of the neural tube with WT and ∆mB constructions of Brd2. As Fig. 6B, C 

indicates, 30 h after electroporation, about 35% of transfected proliferating neuroblasts 

in the ventricular zone (VZ), which express a GFP control construct, have naturally 

exited the cell cycle and migrated to the neural tube margin, or mantle layer (ML), 

where they install to differentiate into neurons. While electroporation of WT Brd2 

severely interfered with ML migration of transfected neuroblasts, indicative of neuronal 

differentiation impairment, the ∆mB construction had no effect (Fig. 6B, C). Thus, 

these results indicate that the conserved motif B is required for Brd2-mediated 

interference of neuronal differentiation. 

 

Discussion 

Since many bromodomain containing proteins dissociate from chromatin during 

mitosis, association of BET proteins to mitotic chromosomes constitutes an intriguing 

feature. The presence of two tandem bromodomains might explain this ability. 

However, other factors with tandem bromodomains dissociate from mitotic 

chromosomes (for instance TAFII250, (Kruhlak et al., 2001)), suggesting that additional 

structural features in BET proteins might account for this behavior. In this regard, we 

have identified the motif B as a dimerization domain involved in association to mitotic 

chromosomes and proper recognition of acetylated chromatin by BET proteins. 

 

Role of the motif B in chromatin recognition 

While single bromodomains from Brd2 have been shown to attach to histone peptides in 

vitro (Huang et al., 2007; Nakamura et al., 2007; Umehara et al., 2010a; Umehara et al., 

2010b), we have observed chromosome dissociation of a construction encompassing 

both intact bromodomains in the cell, highlighting the relevance of other structural 

characteristics in the context of the full-length protein for chromatin association in vivo. 

In this regard, the motif B seems to be specifically required for chromosome 

association, since deletions of similar extent, N-terminal or C-terminal to the motif B, 
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do not affect Brd2 behavior or function. It is surprising that the ∆mB protein dissociates 

from chromosomes at early mitosis but significantly reassociates at the end. 

Interestingly, previous reports have shown a generalized deacetylation of the chromatin 

at the onset of mitosis and a progressive reacetylation at late mitosis (Kruhlak et al., 

2001; Sasaki et al., 2009). Altogether, this suggests that the requirement of the motif B 

might rely on the acetylation status of the chromatin. TSA-mediated reassociation 

observed at early mitosis supports this idea and highlights the relevance of the motif B 

under hypoacetylation conditions, as it occurs during mitosis. However, despite 

chromosome reassociation of the ∆mB construct observed at late mitosis our data 

indicate that the motif B is required for efficient recognition of the chromatin 

independently of the cell cycle phase. The easy extraction of the protein from non-

synchronous cells at low salt concentrations, the lost of ChIP of cyclins A2 and D1 

promoters, the impaired association to acetylated histone peptides in vitro and the lack 

of activity of the ∆mB construct in functional analysis support this notion. Apparent 

discrepancy between chromosome association of this construct at late mitosis or in the 

presence of TSA at early mitosis and impaired binding to full-acetylated histone 

peptides may be explained by the different experimental approaches. Then, we have set 

up in vitro pull down conditions (mainly salt concentration) to discriminate small 

differences in binding capacities of wild type and mutant Brd2. More important, 

although we observe reassociation of the ∆mB protein to chromosomes in 

immunofluorescence experiments, affinity or architecture of associated ∆mB might 

quite differ from that of the wild type protein, as suggest ChIP and differential salt 

extraction experiments in non-synchronous cells. As our data suggest, improper 

reassociation of Brd2 lacking the motif B to the chromatin might have a detrimental 

impact in transcriptional memory. Thus, motif B should be relevant for right functional 

conformation of BET proteins rather than just for physical recognition of acetylated 

chromatin. 

In contrast to Brd4 and Brdt, which preferentially bind histone H4 at the di-

acetylated state (Dey et al., 2003; Moriniere et al., 2009; Sasaki et al., 2009), Brd2 

seems to more efficiently bind mono-acetylated histone H4 at K12 (Ito et al., 2011; 

Kanno et al., 2004). However, additional acetylation marks have been reported to be 

recognized by Brd2, for instance acetyl-K5 and acetyl-K8 on histone H4 (Kanno et al., 

2004; Umehara et al., 2010b). It is worth noting that these marks decrease during 

mitosis (Kruhlak et al., 2001; Sasaki et al., 2009). In addition, here we show binding of 
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Brd2 to a histone H3 peptide acetylated at K9/14. Although several reports suggest 

binding specificities of BET proteins for different acetylation marks, some 

discrepancies are observed in the literature, probably due to different experimental 

approaches (Dey et al., 2003; Ito et al., 2011; Kanno et al., 2004; LeRoy et al., 2008; 

Moriniere et al., 2009; Sasaki et al., 2009; Umehara et al., 2010b). Thus, binding 

specificities have been determined either by in vitro pull-down experiments, SPR 

binding assays or real-time imaging in living cells, and using overexpressed proteins, 

either full-length fusion constructs, chimeric proteins or truncated fragments including 

just the bromodomains (Dey et al., 2003; Huang et al., 2007; Ito et al., 2011; Kanno et 

al., 2004; Moriniere et al., 2009; Nakamura et al., 2007; Sasaki et al., 2009; Umehara et 

al., 2010a; Umehara et al., 2010b). Moreover, as discussed below, our data suggest that 

BET proteins heterodimerize, raising the question about the real binding specificities of 

the endogenous proteins. 

 

Motif B-mediated dimerization of BET proteins 

Several pieces of evidence support a role of the motif B in Brd2 dimerization: i) self-

interaction of the motif B by two-hybrid assay, ii) pull-down of recombinant motif B by 

a GST-motif B fusion protein, iii) motif B-dependent immunoprecipitation of wild type 

Brd2, and iv) significant FRET signal in self-interaction experiments. Function of many 

transcription factors relies on a dimer structure (Amoutzias et al., 2008). It has been 

previously reported that the N-terminal bromodomain (BD1) of Brd2 is involved in 

Brd2 dimerization (Nakamura et al., 2007). However, our results indicate that the motif 

B is as necessary as the BD1 for Brd2 self-interaction. In fact, we show that the motif B 

is crucial for FRET signal. Thus, both BD1 and the motif B might cooperate to display 

the appropriate functional configuration of Brd2 for efficient recognition of specific 

acetylation marks on the chromatin by the bromodomains. Moreover, our results 

indicate that the motif B mediates not only homodimerization but also 

heterodimerization between BET proteins. Immunoprecipitation experiments, two-

hybrid assays and FRET analysis substantiate this notion. It is tempting to speculate that 

homo- and hetereodimerization between the different BET proteins might be involved 

in modulating transcriptional activity associated to these proteins. In fact, the absence of 

functional redundancy between BET proteins despite overlapping patterns of expression 

(Gyuris et al., 2009; Houzelstein et al., 2002; LeRoy et al., 2008; Shang et al., 2009), 

should argue in favor of a relevant role for the heterodimerization of BET proteins. 
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 Sequence of the motif B is highly conserved at the amino acid level among 

different vertebrate BET proteins (Fig. 7A). Analysis of the Brd2 motif B sequence with 

the Jpred3 tool at (http://www.compbio.dundee.ac.uk/www-jpred/) indicates that this 

region is not disordered, and predicts a coiled coil structure. High score for a coiled coil 

structure in this region was confirmed with the COILS tool (Lupas et al., 1991). Thus, a 

score > 96% was obtained for this region with a scanning window of 21 residues, in 

contrast to the low score (< 1%) obtained for surrounding regions or other domains in 

the protein previously shown not to arrange in a coiled coil structure, for instance the 

bromodomains (Huang et al., 2007; Nakamura et al., 2007). Moreover, prediction for 

the motif B was very similar to that for established coiled coils, as the classical leucine 

zipper in the yeast protein GCN4 (> 99%) (O’Shea et al, 1991). COILS analysis and 

alignment of the motif B from vertebrate and non-vertebrate BET proteins indicated the 

conservation of the putative coiled coil through the different species analyzed (Fig. 7B). 

Coiled coils consist of a heptad repeat (abcdefg) with hydrophobic residues at positions 

a and d, and polar solvent-exposed residues at e and g (Grigoryan and Keating, 2008). 

Thus, putative coiled coil in the motif B showed a 3 heptad repeat (Fig. 7B). As coiled 

coils usually mediate dimerization of proteins (Grigoryan and Keating, 2008), this 

finding strongly supports a role of the motif B in dimerization. However, we cannot rule 

out the possibility that other sequences in the motif B, for instance the well-conserved 

basic region C terminal to the coiled coil, could be also relevant for dimer formation 

(Fig. 7B). 

 

Requirement of the motif B for Brd2 function 

Knocking down experiments have demonstrated that BET proteins are necessary for cell 

cycle progression and cyclin D1 expression (LeRoy et al., 2008; Mochizuki et al., 2008; 

Yang et al., 2008). We have shown that ectopic expression of Brd2 is able to sustain 

elevated levels of cyclins A2 and D1 transcripts, which correlates with reduced neuronal 

differentiation and impaired RA-induced arrest of the cell cycle. Similarly, 

overexpression of cyclin D1 in skin keratinocytes has been previously reported to 

interfere with cell differentiation (Burnworth et al., 2006). An essential aspect of our 

results is that all the observed effects associated to the ectopic expression of Brd2 are 

highly impaired in the absence of the motif B, indicating that this domain is essential for 

Brd2 function. The prominent role displayed by BET proteins in cell cycle progression 

tightly links them to tumor development (Crawford et al., 2008; Filippakopoulos et al., 
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2010; French, 2012; French et al., 2003; French et al., 2008; Greenwald et al., 2004; 

Zuber et al., 2011). In fact, it has been very recently shown that interfering with 

association of BET proteins to the chromatin by synthetic drugs mimicking specific 

acetylation marks, efficiently counteract cancer progression in mice models (Dawson et 

al., 2011; Delmore et al., 2011; Filippakopoulos et al., 2010; Mertz et al., 2011; Prinjha 

et al., 2012; Zuber et al., 2011). In this context, a precise knowledge of structural 

features involved in association of BET proteins to the chromatin will contribute to the 

design of more efficient and specific drugs. 

 

Materials and Methods 

Plasmid constructs and yeast two-hybrid 

All transfection constructs except GFP- and RFP-based constructs were derived from 

vector pAdRSV-S (Giudicelli et al., 2003), with flag or HA tags. GFP- and RFP-based 

constructs were derived from pEGFP-C2 and pDsRed-monomer-N1 vectors (Clontech), 

respectively. The GFP-mB construction was designed with amino acids T463 to I565 of 

Brd2. Mouse Brd2, Brd3 and Brd4 cDNAs were obtained by RT-PCR with RNA 

isolated from P19 cells. Deletion constructs of Brd2 were performed by standard PCR 

techniques and were as follows: WT, amino acids M1-G789; ∆SEED, M1-R770; ∆Cter, 

M1-L721; ∆ET, M1-K612; BD1+2, M1-L472; ∆mB, deletion (∆) of amino acids S505 

to K557; ∆NmB, ∆ S475-E513; ∆CmB, ∆ K572-K619; ∆BD1, ∆ L109-T167. Y152K 

and N428A mutations were also performed by standard PCR. Yeast two-hybrid and X-

gal assays were performed in the DUALhybrid Kit (Biotech) system, using the pLexA-

N bait vector and a day 11 p.c. whole mouse embryo cDNA library cloned in the 

pGAD-HA vector (Biotech), according to manufacturer instructions. Bait construct for 

screening encompassed amino acids T463 to G789 of Brd2, while ET and mB 

constructs encompassed amino acids G607-G789 and T463-I565, respectively. Most 

positive Brd3 clones corresponded to amino acids K402 to K501. Brd3 and Brd4 mB 

constructs encompassed amino acids V432 to K501 and P483 to H552, respectively. 

 

Protein production and purification and pull down assays 

Production of proteins was performed in the E. coli BL21 strain and purification as GST 

fusions was achieved by incubation with Glutathione Sepharose 4B matrix (GE 

Healthcare). GST was excised with PreScission protease (GE Healthcare) when 

required. GST-mB and GST-flag-mB constructions encompassed amino acids E482 to 
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A595 of Brd2, while GST-flag-NET encompassed amino acids T620 to G720. Pull-

down experiments with immobilized GST fusion protein or acetylated histone peptides 

were conducted as previously described (Garcia-Dominguez et al., 2008). For peptide 

pull-down we used biotinylated acetylhistone H3 (acetyl-K9/K14, Upstate Millipore) 

and streptavidin-coupled magnetic beads (Dynabeads M-280 Streptavidin, DYNAL, 

Invitrogen). 

 

Cell culture, transfections and flow citometry 

Human 293T and mouse P19 cells were cultured in Dulbecco's modified Eagle's 

medium supplemented with 10% fetal bovine serum and α-modified Eagle's medium 

supplemented with 7.5% calf and 2.5% fetal bovine sera (PAA), respectively. 

Transfections were performed with Lipofectamine 2000 (Invitrogen) 36 h before 

harvesting cells. Except when indicated, trichostatin A (TSA) was used at 500 ng/ml for 

4 h. For cyclin analysis under normal growth conditions, P19 cells were deprived of 

serum for 48h and harvested 18 h after serum re-addition, as previously described 

(Sinha et al., 2005). All trans retinoic acid (RA) was used at 0.5 µM for 18h. For 

transfection monitoring, the green fluorescent protein expression vector pEGFP-N1 

(Clontech) was used. Cell cycle profiles of propidium iodide-treated cells were analyzed 

using a flow citometry FACScalibur apparatus (BD Bioscience). 

 

Differential salt extraction, immunoprecipitation 

For differential salt extraction, P19 cells were first extracted with buffer A (50 mM 

Tris-HCl pH 7.5, 1% Triton X-100, Complete protease inhibitor cocktail (Roche)) 

supplemented with 100 mM NaCl. Then, pellet was extracted with the same buffer 

containing 520 mM NaCl. For immunoprecitation, 9·105 293T cells were extracted with 

250 µl of buffer A containing 150 mM NaCl. Then, NaCl concentration was increased 

to 600 mM dropwise. Supernatant was recovered and 3-fold diluted with buffer B (50 

mM Tris-HCl pH 7.5, Complete protease inhibitor cocktail (Roche)) for over night 

incubation with anti-flag M2 Affinity Gel (SIGMA). After washing, proteins were 

eluted with 20 µl of SDS-containing Laemmli buffer and analyzed by western blot. 

 

Antibody generation and western blot 



 15 

Antibodies against Brd2 were produced in rabbit after immunization with a peptide 

corresponding to amino acids 698 to 780 of the mouse Brd2 protein. Western blot was 

conducted on PVDF membrane (Bio-Rad) according to manufacturer instructions. 

Antibodies: rabbit anti-Brd2 (1:500), mouse anti-flag M2 (1:2000, SIGMA), rat 

monoclonal anti-HA (1:2000, Roche), goat anti-rabbit, anti-rat and anti-mouse HRP-

conjugated antibodies (1:10 000, SIGMA). 

 

Chromatin immunoprecipitation and quantitative PCR 

A total of 107 cells fixed in 1% formaldehyde for 10 min at 37ºC were used in each 

experiment.  The chromatin was immunoprecipitated with the anti-flag M2 Affinity Gel 

(SIGMA). Quantitative PCR was used for analysis of the CcnD1 and CcnA2 promoters 

and determination of gene expression levels. Total RNA was isolated with the RNAsy 

kit (QIAGEN). Retrotranscription of RNA was performed with the Superscript III 

enzyme (Invitrogen). Real time PCR reactions were performed with the SensiMix 

SYBR Low-ROX kit (BIOLINE) in the Applied Biosystems 7500 FAST Real-Time 

PCR System. Endogenous GAPDH and transfected GFP were used for normalization. 

Algorisms for calculation of relative units and normalization of values according to 

primer efficiency have been previously described (Pfaffl, 2001). Sequence of primers 

was as follows: CcnA2-F, 5’-CTTGGCTGCACCAACAGTAA-3’; CcnA2-R, 5’-

AGCAATGAGTGAAGGCAGGT-3’; CcnD1-F, 5’-TCAAGACGGAGGAGACCTGT-

3’; CcnD1-R, 5’-CTCCTCTTCGCACTTCTGCT-3’; GAPDH-F, 5’-

AACTTTGGCATTGTGGAAGG-3’; GAPDH-R, 5’-

GGATGCAGGGATGATGTTCT-3’; GFP-F, 5’-CAAGATCCGCCACAACATCG-3’; 

GFP-R, 5’-GTCCATGCCGAGAGTGATCC-3’; A2prom-F, 5’-

CCAGCGTTTCCCTATGTTGT-3’; A2prom-R, 5’-CTAGGCAGGAGCGTATGGAT-

3’; D1prom-F, 5’-GGAGGACCCTCTTAGGGAAA-3’; D1prom-R, 5’-

CGGACTGCTTCTCTCCAAAC-3’. 

 

In ovo electroporation, immunofluorescence and FRET 

Electroporation, preparation of embryos and immunofluorescence on neural tube 

sections or P19 cells were conducted as described previously (Farah et al., 2000; 

Garcia-Dominguez et al., 2003). For electroporation monitoring, the green fluorescent 

protein expression vector pEGFP-N1 (Clontech) was used at a concentration of 0.3 
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µg/µl. Antibodies: mouse anti-flag M2 (1:250, SIGMA), rabbit anti-neuron specific 

ßIII-tubulin (1:500, abcam), donkey anti-mouse and anti-rabbit DyLight-549 (1:800, 

Jackson Immunoresearch). Cell nuclei were exposed by DAPI staining. Fluorescent 

images were acquired on a Leica confocal microscope TCS SP5. FRET analysis 

conducted in P19 cells was based on green and red fluorescent proteins (GFP, RFP) and 

analyzed with the Leica Application Suite Advanced Flourescence Software. An RFP-

Brd2 construction derived from plasmid pDsRed-monomer-Hyg-N1 (Clontech) was 

assayed together with different GFP based constructions derived from plasmid pEGFP-

C2 (Clontech). A HCX PL APO lambda blue 63x 1.4 OIL objective was used and the 

following wavelengths were recorded: the green channel (donor excitation/donor 

emission= 488 nm/496-526 nm. AOTF 21%), the red channel (acceptor 

excitation/acceptor emission= 543 nm/579-661 nm. AOTF 40%) and the FRET channel 

(donor excitation/acceptor emission= 488 nm/535-577 nm). A ratiometric calculation of 

FRET and donor signals was obtained. 
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Figure legends 

Fig. 1. A small conserved motif is involved in attachment of Brd2 to mitotic 

chromosomes. (A) Diagram of the different constructs of Brd2 analyzed in this work. 

Numbering under the schema indicates position of the relevant domains, while 

numbering on the right indicates amino acids comprised or deleted (∆) in the different 

constructions. (B) Localization of transfected flag-tagged constructs of Brd2 in P19 

cells harboring the indicated deletions or point mutations was visualized by 

immunofluorescence with anti-flag antibodies (red). Images correspond to cells in 

prophase to metaphase. DNA was counterstained by DAPI (blue). (C) Constructions 

with serial deletions of Brd2 from the C-terminus or with deletions around the motif B 

were analyzed as in (B). BD1, bromodomain 1; BD2, bromodomain 2; mB, motif B; 

YKNA, Brd2 Y152KN428A mutant. Images are representative of more than 90% of 14 

to 25 cells analyzed per construction. Scale bar 10 µm. 

 



 22 

Fig. 2. The motif B is required for proper association of Brd2 to the acetylated 

chromatin. (A) Flag-tagged versions of Brd2 WT and ΔmB were transfected and 

visualized in P19 cells as indicated in Fig. 1 during prophase/metaphase (early mitosis) 

or anaphase/telophase (late mitosis). (B) P19 cells were transected with the indicated 

flag-tagged constructs and treated (+) or not (-) with TSA. Localization of the constructs 

was analyzed as in (A). Images are representative of more than 90% of 14 to 25 cells 

analyzed per construction. Scale bar 10 µm. (C) Flag-tagged versions of the indicated 

constructs were expressed in P19 cells. Then, proteins were consecutively extracted 

with the indicated NaCl concentrations. The presence of flag-tagged proteins in the 

different extracts was detected by western blot. (D) Pull-down experiments were carried 

out with immobilized diacetylated histone H3 tail peptide and protein extracts from P19 

cells transfected with flag-tagged versions of the indicated constructs. Precipitated flag-

tagged proteins (retained) were detected by western blot. 20% of input protein is also 

shown. 

 

Fig. 3. BET proteins dimerize through the conserved motif B. (A) Growth on non-

selective and selective media of yeast harboring bait construction used for the two-

hybrid screening with Brd2 (pLexA-N vector, Lex), positive clone corresponding to a 

fragment of Brd3 (pGAD-HA vector, GAD), or empty vectors (-), as indicated. 

Constructs used are depicted in (B) and indicated as a, b, c. (B) Interaction between the 

indicated bait (Lex) and prey (GAD) constructs was visualized by blue color in yeast 

assayed for ß-galactosidase activity. All bait constructs correspond to Brd2, and all prey 

constructs to Brd3, except when indicated. (C) Pull-down experiments were carried out 

with immobilized purified glutathione S-transferase (GST) or a GST-motif B (GST-

mB) fusion and flag-tagged motif B (fl-mB) or flag-tagged NET (fl-NET) peptides 

purified from bacteria. Precipitated flag-tagged proteins (retained) were detected by 

western blot. 20% of flag-tagged input protein detected by western blot and 100% of 

GST-derived input protein revealed by Coomassie Blue stain is also shown. (D) 

Extracts from 293T cells transfected with flag-tagged Brd2 (fl-Brd2) and the indicated 

Haemagglutinin (HA)-tagged Brd2 wild type or mutant constructs were 

immunoprecipitated with anti-flag antibodies and co-immunoprecipitated proteins (IP) 

were visualized by western blot with anti-HA antibodies. YK, Brd2 Y152K mutant. (E) 

Extracts from 293T cells transfected with flag-tagged Brd2 (fl-Brd2) and the indicated 
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Haemagglutinin (HA)-tagged Brd constructs were immunoprecipitated with anti-flag 

antibodies and co-immunoprecipitated proteins (IP) were visualized by western blot 

with anti-HA antibodies. (F) Extracts from 293T cells transfected with flag-tagged WT 

(fl-WT) or ∆mB (fl-∆mB) Brd2 constructs and a Haemagglutinin (HA)-tagged Brd3 

construct were immunoprecipitated with anti-flag antibodies and co-

immunoprecipitated proteins (IP) were visualized by western blot with anti-HA 

antibodies. 10% of flag- or HA-tagged input proteins is also shown in (D-F). (G) 

Esquematic representation of Brd2 constructions analyzed in (H) and peptide (antigen) 

used for generation of anti-Brd2 antibodies. (H) Extracts from P19 cells transfected 

with the indicated flag (fl)-tagged Brd2 deletion constructs were immunoprecipitated 

with anti-flag antibodies. Co-immunoprecipitated endogenous Brd2 was monitored by 

western blot with anti-Brd2 antibodies produced in rabbit. 10% of flag-tagged or 

endogenous Brd2 input proteins is also shown. 

 

Fig. 4. Dimerization of BET proteins in the cell. (A) FRET analysis in P19 cells 

expressing a fusion Red Fluorescent Protein (RFP)-Brd2 and Green Fluorescent Protein 

(GFP) fusions of the indicated constructs. YK, Y152K point mutation in Brd2. (B) 

Quantification of FRET. Data correspond to means ± s.d. from 5 independent 

experiments. Statistical significance was analyzed using the Student’s t-test: p values 

for the differences respect to the control YK∆mB construct: *<0.001, **=0.6. (C) 

Localization of transfected flag-Brd2 (red) in P19 cells expressing GFP (green) or a 

GFP-motif B (mB) fusion protein visualized by immunofluorescence. DNA was 

counterstained by DAPI (blue). Images are representative of 7 out of 8 cells analyzed. 

Scale bar 10 µm. 

 

Fig. 5. Deletion of the motif B impairs effects of ectopic Brd2 on the cell cycle. (A) 

Relative levels of expression of the CcnA2 and CcnD1 genes as determined by real time 

PCR in P19 cells transfected with the indicated constructs and subjected to serum 

stimulation. Levels were normalized to cells transfected with empty vector (-). (B) 

Levels of association of the indicated flag-tagged constructs to the CcnA2 and CcnD1 

promoters in P19 cells determined by chromatin immunoprecipitation (ChIP) with anti-

flag antibodies. Levels were normalized to cells transfected with WT Brd2. (C) Relative 

levels of expression of the CcnA2 and CcnD1 genes determined as in (A) in P19 cells 

transfected with the indicated constructs and treated (+) or not for 18 h with all-trans 
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retinoic acid (RA). Levels were normalized to non-treated cells transfected with empty 

vector (-). (D) Cell cycle profiles determined by flow citometry of P19 cells transfected 

with the indicated constructs or empty vector (-) and treated or not with RA as in (C). 

(E) Ratio of cells in G1 respect to cells in the S, G2 and M phases from cell cycle 

profiles has been represented. Values are means ± s.d. from 3 to 5 independent 

experiments in triplicate (A-C) or means ± s.d. from 4 independent experiments (E). 

YKNA, Brd2 Y152KN428A mutant. Statistical significance was analyzed using the 

Student’s t-test: (A) p value for the differences between control (-) and WT or ∆NmB 

constructs ≤0.01; control vs ∆mB or YKNA ≥0.45. (B) WT vs ∆mB or YKNA <0.001; 

WT vs ∆NmB ≥0.5. (C) RA treated vs non treated control cells <0.005; control vs WT 

or ∆NmB in the presence of RA <0.02; control vs ∆mB or YKNA in the presence of RA 

≥0.4. (D) due to RA treatment of control (-) and ∆mB <0.02; due to RA treatment of 

WT =0.58; for the differences between control, WT and ∆mB before RA treatment 

≥0.3; WT vs control or ∆mB after RA treatment <0.02; control vs ∆mB after RA 

treatment =0.35. (F) Western blot showing expression levels of the different flag-tagged 

constructs used in (A-E) transfected in P19 cells; 10 µg of total protein were loaded per 

lane. 

 

Fig. 6. The motif B is required for Brd2-mediated interference of neuronal 

differentiation. (A) P19 cells were transfected with NeuroD2 and E12 expression 

constructs, together with a GFP reporter and the indicated Brd2 constructs, and were 

tested for expression of the neuronal marker ßIII-tubulin. Neurogenesis was evaluated 

as the percentage of transfected cells (GFP (green) positive), which are ßIII-tubulin 

positive (red). DNA was counterstained by DAPI (blue). Scale bar 50 µm. (B) The 

neural tube of chick embryos at stage HH17 was electroporated on the right side with 

the indicated constructs and neurogenesis was evaluated by immunofluorescence after 

30 h on transversal sections of the spinal cord. In this case, neurogenesis was evaluated 

as the percentage of transfected cells (GFP (green) positive), which have left the 

proliferative or ventricular zone (VZ) and have migrated to the differentiation 

compartment or mantle layer (ML), where the neuronal marker βIII-tubulin (red) is 

expressed. Frontier between VZ and ML is indicated by a dashed line in the 

electroporated side of the GFP control experiment (left hand panel). (C) Representation 

of the percentage of neurogenesis determined as indicated in (A) (P19 cells) and (B) 
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(neural tube). Values are means ± s.d.; 2-3 areas from 4 independent experiments were 

analyzed for P19 cells and 3 to 4 sections from 5 independent experiments for the neural 

tube. Representative images are displayed. Statistical significance was analyzed using 

the Student’s t-test:  p values for the differences with control GFP were *<0.01, 

**=0.37, ***<0.02, ****=0.75. 

 

Fig. 7. The conserved motif B contains a putative coiled coil. (A) Amino acid 

sequence of different BET proteins from vertebrate, corresponding to a region located 

between the bromodomains and the ET domain, were aligned. Amino acids conserved 

in all the sequences have been boxed in black, while amino acids conserved in 6 of the 8 

sequences have been marked in grey. The indicated conserved region constitutes the 

motif B (Paillisson et al., 2007). (B) The motif B of different Brd2 proteins from 

vertebrate, and BET proteins from drosophila and yeast were aligned. A putative coiled 

coil structure with a 3 heptad repeat (I, II, III) has been marked. Black boxes indicate 

relevant non-polar residues in the heptad repeat, while grey boxes indicate putative 

solvent-exposed residues in the heptad repeat (Grigoryan and Keating, 2008). The 

conserved basic region at the C terminus of the motif B is also indicated. Alignments 

were performed with the ClustalX 2.0.11 application. Coiled coil prediction was 

performed with the COILS tool at 

(http://www.ch.embnet.org/software/COILS_form.html). Amino acid positions of the 

aligned sequences are indicated at left and right hand of each sequence. Accessions and 

abbreviations are as follows: human Brd2 (hBrd2), NM_001113182; human Brd3 

(hBrd3), NM_007371; human Brd4 (hBrd4), NM_014299; human Brdt (hBrdt), 

NM_001242805; mouse Brd2 (mBrd2), NM_001204973; chicken Brd2 (cBrd2), 

NM_001030674; Xenopus Brd2 (xBrd2), BC084758; Medaka Brd2 (oBrd2), 

AB183488; Drosophila Fsh (dFsh), NM_078523; yeast Bdf1 (yBdf1), NM_001182287; 

yeast Bdf2 (yBdf2), NM_001180129. 

 

Legends to supplementary figures 

Fig. S1. The motif B is required for attachment of BET proteins to mitotic 

chromosomes. (A) Location of the indicated flag-tagged constructs of Brd3 and Brd4 

in P19 cells visualized by immunofluorescence with anti-flag antibodies (red). (B) P19 

cells were transfected with the indicated flag-tagged constructs and treated (+) or not (-) 

with 500 ng/ml TSA. (C) Association of the ∆mB construction to the chromosomes was 
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analyzed as in (A) in the presence of 5, 25, 75 and 150 ng/ml TSA. DNA was 

counterstained by DAPI (blue). Images are representative of more than 90% of 14 to 25 

cells analyzed per experiment. Scale bar 10 µm. 

 

Fig. S2. Dimerization between BET proteins. (A) Interaction between bait (Lex) and 

prey (GAD) constructs corresponding to the indicated motives B was visualized by blue 

color in yeast assayed for ß-galactosidase activity. (B) Protein extracts from 293T cells 

transfected with the indicated flag (fl)-Brd2 and Haemagglutinin (HA)-tagged 

constructs were immunoprecipitated with anti-flag antibodies and co-

immunoprecipitated proteins (IP) were visualized by western blot with anti-HA 

antibodies. 10% of flag- or HA-tagged input proteins is also shown. 
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A             motif B 

 
hBrd2  503 EEEESESSDSEEERAHRLAELQEQLRAVHEQLAALSQGPISKPKRKREKKEKKKKRKAEKHRG 565 
hBrd3  446 SSSDSGSSDSEEERATRLAELQEQLKAVHEQLAALSQAPVNKPKKKKEKKEKEKKKKDKEKEK 508 

hBrd4  494 SDSDSSTDDSEEERAQRLAELQEQLKAVHEQLAALSQPQQNKPKKK-EKDKKEKKKEKHKRKE 555 
hBrdt  406 SSEGNSSDDSEDERVKRLAKLQEQLKAVHQQLQVLSQVPFRKLNKKKEKSKKEKKKEKVNNSN 468 

mBrd2  501 DEEESESSDSEEERAHRLAELQEQLRAVHEQLAALSQGPISKPKRKREKKEKKKKRKAEKHRG 563 
cBrd2  452 SSDSEESSDSEEERANRLAELQEQLRAVHEQLAALSQGPVSKPKKKREKKKKKKSEKHKGRGG 514 
xBrd2  483 SDDSESSDDSEEERANRLAELQEQLRAVHEQLAALSQGPISKPKKKREKKEKKKKKSDKKKKK 545 

oBrd2  517 ESESSPSSDSEEERANRLAELQEQLKAVHEQLTALSQGPIVKPKKKKEKKDKKKKKRVEKERH 579 

 

B            coiled coil 

 
hBrd2  511 DSEEERAHRLAELQEQLRAVHEQLAALSQGPISKPKRKREKKEKKKK 557 
mBrd2  509 DSEEERAHRLAELQEQLRAVHEQLAALSQGPISKPKRKREKKEKKKK 555 
cBrd2  460 DSEEERANRLAELQEQLRAVHEQLAALSQGPVSKPKKKREKKKKKKS 506 

xBrd2  491 DSEEERANRLAELQEQLRAVHEQLAALSQGPISKPKKKREKKEKKKK 537 
oBrd2  525 DSEEERANRLAELQEQLKAVHEQLTALSQGPIVKPKKKKEKKDKKKK 571 

dFsh   648 NSDEERSARLKMLESKLLGLQEEIRKLSEEASAKKKAKKKLKEKKKS 694 
yBdf1  452 DETIITNPAIQYLEEQLARMKVELQQLKKQELEKIRKERRLARGSKK 498 
yBdf2  460 NENDITNPAIQYLEQKLKKMEVELQQLKRQELSKLSKERKRKHLGKT 506 

 

         I       II        III       basic 
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