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Single genetic variation may only have a modest effect on risk
of gastric cardia adenocarcinoma (GCA) because this malig-
nancy is believed to result from complex interactions among
multiple genetic and environmental factors. However, it has
been a challenge to characterize multiple interactions using
parametric analytic approaches. This study utilized a multi-
analytic strategy combining logistic regression (LR), multifac-
tor dimensionality reduction (MDR) and classification and
regression tree (CART) approaches to explore high-order in-
teractions among smoking and 12 polymorphisms involved in
different processes of carcinogenesis in 344 GCA patients and
324 controls. LR, MDR and CART analyses consistently sug-
gested MMP-2 C–1306T polymorphism as the strongest indi-
vidual factor for GCA risk. Intriguingly, a high-order
interaction was consistently identified by MDR, LR and CART
analyses. In MDR analysis, the three-factor model including
MMP-2 C–1306T, FASL T–844C and FAS G–1377A yielded
the highest testing accuracy of 0.632. When analysing com-
bined effect of these three polymorphisms by LR, a significant
gene dose effect was observed with the odds ratios (ORs) being
increased with increasing numbers of risk genotypes (Ptrend 5
4.736 3 10212). In CART analysis, individuals carrying the
combined genotypes of MMP-2 –1306CC, FASL–844TT or TC
and FAS –1377AA had the highest risk for GCA (OR 5 4.58;
95% confidence interval, 2.07–10.14) compared with the lowest
risk carriers of the MMP-2 –1306CT or TT genotype. These
results suggest that MMP-2 C–1306T polymorphism is an
important risk factor for GCA and the multifactor interactions
among polymorphisms in MMP-2, FASL and FAS play more
important role in the development of GCA.

Introduction

Gastric cardia adenocarcinoma (GCA) represents the second leading
cause of cancer-related death worldwide, with .700 000 deaths
each year (1). In the last two decades, although incidence rate of
non-cardia gastric cancer has slightly declined, GCA has shown
a significantly increased trend in China (2). Since most patients in
early stage of GCA have no obvious symptoms, the early diagnosis
of GCA is challenging. Therefore, despite the advances in treatment
strategies, GCA still has a dismal prognosis, with much lower 5 years
survival compared with cancer at the pyloric antrum (3). The rapid
increase in incidence and poor prognosis of GCA highlight the im-
portance of prevention against the disease. Epidemiological studies
have suggested several environmental factors that are involved in the
development of GCA, including cigarette smoking, alcohol con-
sumption, pathogenic infections and dietary carcinogen exposure
(4,5). However, only a fraction of exposed individuals actually de-
veloped GCA during their lifespan, suggesting that this malignancy
may result from interactions of multiple environmental and genetic
factors.

The development of GCA, among other cancers, has been thought
to be of multisteps (5). The initiation of carcinogenesis is probably
caused by metabolic activation of carcinogens via phase I enzymes
that convert carcinogens into DNA-damaging metabolites (6). Com-
peting with this is the metabolic detoxification of carcinogens to
harmless excreted products primarily by phase II enzymes (7).
The balance between metabolic activation and detoxification of
carcinogens by various enzymes varies among individuals and has
been shown to modulate cancer susceptibility (5). If cellular DNA
damages can be fixed by repair system, the cell is returned to its
normal state. On the other hand, the cell with permanently damaged
DNA may be arrested by cell cycle control and removed by apopto-
sis or programmed cell death. However, if DNA damages escape
from cellular repair mechanisms and persist, permanent mutation
and malignant transformation may occur to the cell, resulting in
cancer under the circumstance of the loss of normal growth control
(8). Additionally, many studies have shown that aberrant extracel-
lular proteolysis might also be implicated in cancer development.
For example, elevated expression of matrix metalloproteinases
(MMPs) has been recognized as a critical modulator for cancer
initiation and development by regulating various signaling pathways
involved in cell growth, differentiation, apoptosis, angiogenesis and
immune surveillance (9,10). Previous studies have shown that func-
tional variations in genes involved in carcinogen metabolism (e.g.
CYP2E1 and SULT1A1), DNA repair (e.g. XPC and XRCC1), cell
cycle control (e.g. STK15), apoptosis (e.g. P53, FAS and FASL) and
proteolysis (e.g. MMP-2) may be individually associated with sus-
ceptibility to GCA (6,11–17).

Although certain genetic polymorphisms have been associated with
GCA susceptibility, the previous studies, which usually used single
gene- or polymorphism-based design, often yield conflicting results
across different studies. Furthermore, since cancers are complex
diseases involving multiple genetic variations and gene–environment
interactions, not a single locus can fully explain their genetic suscep-
tibility. Some previous studies suggested the possibility of gene–gene
and gene–environment interactions; however, these interactions are
difficult to fully characterize using traditional analytic strategies such
as logistic regression (LR) since sparseness of the data in high dimen-
sions would occur to result in inaccuracy parameter estimates for
identifying interactions. Additionally, statistic power would decrease
and type II errors would increase when detecting interactions by LR in
relatively small sample size (18,19). Recently, two non-parametric
data mining approaches, multifactor dimensionality reduction
(MDR) and classification and regression tree (CART) have been
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cinoma; LR, logistic regression; MDR, multifactor dimensionality reduction;
MMP, matrix metalloproteinase; OR, odds ratio; SNP, single-nucleotide
polymorphism.
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documented to overcome the inaccuracy parameter estimates and low
power of LR for detecting interactions and have good power for
identifying high-order interactions (18,20). Given the statistical
advantages in identifying complex interactions, MDR and CART have
been applied to explore high-order gene–gene and gene–environment
interactions in modulating risk of various types of cancer (21–23).

In this study, we investigated a panel of 12 well-studied polymor-
phisms in nine genes involved in carcinogen metabolism, DNA repair,
cell cycle control, apoptosis and proteolysis (6,11–17) in a case–
control study of 344 GCA patients and 324 cancer-free controls.
We examined the individual and combined effects of these 12 poly-
morphisms by traditional unconditional LR model and high-order
gene–gene and gene–smoking interactions in modulating GCA risk
using MDR and CART analyses.

Patients and methods

Study subjects

This study consisted of 344 patients with newly diagnosed GCA and 324
cancer-free controls. All subjects were unrelated ethnic Han Chinese. Patients
were consecutively recruited between January 1997 and July 2003 at the
Cancer hospital, Chinese Academy of Medical Sciences (Beijing). GCA was
defined as tumor arising at the gastric cardia and/or gastroesophageal junction
with or without involvement of other esophageal and/or gastric subsites. Tu-
mors confined entirely to the esophageal or gastric subsites were excluded. All
patients with histopathologically confirmed GCA were enrolled, yielding a re-
sponse rate of 94%. Controls were cancer-free individuals living in Beijing
region, who were randomly selected from an endoscopic screening campaign
in the same time period as the patients were enrolled, with a response rate of
96%. Controls were frequency matched to patients for age (±5 years) and sex.
At recruitment, informed consent was obtained from each subject and the
information on demographic characteristics, such as sex, age and smoking
habit, was collected by questionnaire. Subjects who had never smoked or
smoked ,1 cigarette per day and ,1 year in their lifetime were defined as
non-smokers; otherwise, they were considered as smokers (including current
smokers and ex smokers). For smokers, the number of pack-years smoked was
calculated to indicate the cumulative smoking dose [pack-years 5 (cigarettes
per day/20) � (years smoked)]. Light and heavy smokers were categorized by
using the median pack-year value of the controls as the cut points. This study
was conducted under the approval of the institutional review board of the
Chinese Academy of Medical Science Cancer Institute.

Genotype determination

On the basis of previous functional and epidemiological studies and common
frequency in the Chinese population (6,11–17), we selected a total of 12
literature-defined functional polymorphisms in nine important genes in-
volved in different processes of carcinogenesis. These included two single-
nucleotide polymorphisms (SNPs) in carcinogen metabolism genes (CYP2E1
G–1293C rs3813867 and SULT1A1 Arg213His rs9282861), five SNPs in the
DNA repair genes (XRCC1 T–77C rs3213245, Arg194Trp rs1799782,
Arg280His rs25489, Arg399Gln rs25487 and XPC PATþ/–), one SNP in cell
cycle control gene (STK15 Phe31Ile rs2273535), three SNPs in apoptotic
genes (P53 Arg72Pro rs1042522, FAS G–1377A rs2234767 and FASL
T–844C rs763110) and one SNP in extracellular proteolytic gene (MMP-2
C–1306T rs243865) (supplementary Table 1 is available at Carcinogenesis
Online). Genomic DNA was extracted from 5 ml blood sample that was
collected from each participant at recruitment. Genotypes of all polymor-
phisms were determined by polymerase chain reaction–restriction fragment
length polymorphism assays except for the XPC poly AT insertion/deletion
polymorphism (PATþ/–) and MMP-2 C–1306T polymorphism, which were
analyzed by polymerase chain reaction–amplified fragment length polymor-
phism and polymerase chain reaction–denatured high performance liquid
chromatography, respectively (24,25). Genotyping was performed without
knowledge of case/control status of the subjects. A 10% masked, random
sample of cases and controls were tested twice by different people and the
reproducibility was 100%.

Statistical analysis

Difference in the distribution of demographic characteristics and genotype
frequencies between cases and controls were evaluated using the v2-test, Fisher’s
exact test and t-test, where appropriate. Hardy–Weinberg equilibrium for
genotypes was tested in controls by a goodness-of-fit v2-test. Unconditional
multivariate LR was used to estimate odds ratios (ORs) and their 95% confi-
dence intervals (CIs) adjusting for age, sex, smoking status or pack-years,
where appropriate. The potential gene–environment interaction between poly-

morphism and cigarette smoking was evaluated by genotype-smoking com-
bined effect and multiplicative interaction term that considered cumulative
smoking dose as discrete variables: non-smokers, light smokers (�27 pack-
years) and heavy smokers (.27 pack-years). For multiple testing, a powerful
bootstrapping method was applied to reduce the potential spurious findings. All
statistical analyses were conducted using SPSS software (version 18.0).

MDR analysis

The MDR software (version 2.0 beta 8) and MDR permutation testing software
(version 1.0 beta 2) were applied to identify possible high-order interactions
associated with GCA risk. The MDR is a non-parametric, genetic model-free
method for overcoming some of the limitations of LR (i.e. sample size limita-
tions) for the detection and characterization of gene–gene and gene–environment
interactions (18). MDR collapses high-dimensional data into a single dimen-
sional variable with two levels (high and low risk) using the ratio of the number
of patients to the number of controls, thereby reducing the high-dimensional
data to a single variable and permitting detection of interactions in relatively
small sample sizes. The one-dimensional multifactor variable was evaluated
for its ability to classify and predict disease status through cross-validation and
permutation testing scheme. MDR was utilized to generate a single model that
maximized the number of individuals with the proper risk assignment. In this
study, the best candidate interaction model was selected across all multilocus
models that maximized testing accuracy and the cross-validation consistency
(CVC). Furthermore, validation of models as effective predictors of disease
status was derived empirically from 1000 permutations, which accounted for
multiple comparison testing as long as the entire model fitting procedure was
repeated for each randomized dataset to provide an opportunity to identify
false positives. The MDR permutation results were considered to be statisti-
cally significant at the 0.05 level. All the variables identified in the best model
were combined and dichotomized according to the MDR software and their
ORs and 95% CIs in relation to GCA risk were calculated. Finally, combined
effect of the variables in the best model by the number of risk genotypes was
evaluated using LR analysis.

CART analysis

CART analysis was performed using the SPSS software to build a decision tree
via recursive partitioning. A CART is constructed by splitting a node into two
child nodes repeatedly, beginning with the root node that contains the whole
learning sample. Before growing a tree, we choose measure for goodness of
split using Gini criteria, by which splits were found that maximize the homoge-
neity of child nodes with respect to the value of the target variable. After the tree
is grown to its full depth, a pruning procedure was performed to avoid overfitting
the model. Subgroups of individuals with differential risk associations with GCA
were identified in the different terminal nodes of the tree, indicating potential
presence of interactions. Finally, the risk of these subgroups was evaluated by
using the LR analysis. ORs and 95% CIs were adjusted for age and sex, with
treating the least percentage of cases as the reference.

Results

Characteristics of study subjects

Age and sex were frequency matched among 344 GCA cases and 324
cancer-free controls. Distributions of smokers and non-smokers in
cases and controls were similar and light or heavy smokers who
had smoked �27 or .27 pack-years were also not significantly dif-
ferent among cases and controls (Table I).

Table I. Distribution of select characteristics among patients and controls

Variable Cases
(n 5 344)

Controls
(n 5 324)

P

N (%) N (%)

Age, years (mean ± SD) 60.25 ± 9.82 59.80 ± 7.83 0.514
Sex

Male 297 (86.3) 268 (82.7) 0.195
Female 47 (13.7) 56 (17.3)

Smoking status
Non-smokers 159 (46.2) 137 (42.3) 0.306
Smokers 185 (53.8) 187 (57.7)

Smoking level, pack-years
Light smokers, �27 84 (45.4) 98 (52.4) 0.177
Heavy smokers, .27 101 (54.6) 89 (47.6)
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Associations of individual or pairwise factors with GCA risk by LR
analysis

Genotype distributions of the selected polymorphisms are shown
in Table II and supplementary Table 2 (available at Carcinogenesis
Online). Genotype distributions of all SNPs in our control subjects
conformed to those expected by Hardy–Weinberg equilibrium
(all P . 0.05) and were similar to those in HapMap CHB database
and reported in the previously published studies in Chinese Han
population (supplementary Table 1 is available at Carcinogenesis
Online). The genotype frequencies of five polymorphisms (SUL-
T1A1 Arg213His, XRCC1 Arg194Trp, XPC PATþ/–, FASL T–844C
and MMP-2 C–1306T) in cases were significantly different from
those in controls (P 5 3.756 � 10�5, P 5 0.033, P 5 0.022, P 5
4.726 � 10�5 and P 5 4.374 � 10�8, respectively). Multivariate
LR analysis showed that after adjustment for sex, age and smoking
status, increased risk of GCA was significantly associated with
the heterozygote (OR 5 1.92; 95% CI, 1.33–2.78) or combined
variant genotypes (OR 5 2.04; 95% CI, 1.41–2.94) of SULT1A1
Arg213His and the variant homozygote of XRCC1 Arg194Trp
(OR 5 2.09; 95% CI, 1.19–3.66) compared with the corresponding
wild-type homozygote. In the recessive model, assuming that only
the variant homozygote had an increased risk for GCA, signifi-
cantly higher risk of GCA was presented in individuals with the
homozygous variant genotype of XPC PAT (OR 5 1.79, 95% CI,
1.13–2.82), FASL T–844C (OR 5 1.93, 95% CI, 1.41–2.63) or P53
Arg72Pro (OR 5 1.44, 95% CI, 1.01–2.06) compared with the
respective wild-type homozygous and heterozygous genotype
carriers. Individuals carrying the wild-type homozygote of
MMP-2 C–1306T showed a significantly increased risk of GCA
(OR 5 3.07, 95% CI, 2.09–4.50) compared with those with the
combined variant genotypes. Furthermore, the ORs calculated by
bootstrapping were all identical to the presented adjusted ORs
(Table II).

We further assessed the combined effect or interaction between
aforementioned six polymorphisms and trichotomized cumulative
smoking dose. As shown in Table III, there was a significant two-
way multiplicative interaction between SULT1A1 Arg213His and
smoking (P 5 0.020), and the interaction was still significant when
adjusting for multiple comparisons by bootstrapping (P 5 0.026).
Analysis of combined effect revealed that heavy smokers carrying
at least one SULT1A1 213His allele had significantly increased
GCA risk (OR 5 2.19, 95% CI, 1.27–3.76) compared with non-
smokers without the SULT1A1 213His allele.

Association of high-order interactions with GCA risk by MDR
analysis

Table IV shows the best interaction model by MDR analysis. The best
one-factor model for predicting GCA risk was MMP-2 C–1306T SNP
(testing accuracy 5 0.595, CVC 5 10/10, permutation P , 0.005).
The best two-factor model of MMP-2 C–1306T and FASLT–844C had
an improved testing accuracy of 0.616 (CVC 5 10/10, permutation
P , 0.005). The best interaction model was the three-factor model
including MMP-2 C–1306T, FASL T–844C and FAS G–1377A SNPs,
which yielded the highest testing accuracy of 0.632 and the maximal
CVC of 10/10 (permutation P , 0.001). The four-factor model con-
sisting of MMP-2 C–1306T, FASL T–844C, FAS G–1377A and SUL-
T1A1 Arg213His and five-factor model consisting of MMP-2
C–1306T, FASL T–844C, FAS G–1377A, SULT1A1 Arg213His and
XRCC1 Arg399Gln also improved testing accuracy compared with
the one-factor model (permutation P 5 0.006 and P , 0.013,
respectively); however, the CVCs were decreased (9/10 and 6/10,
respectively).

For the three SNPs identified in the best interaction model, MMP-2
C–1306T, FASL T–844C and FAS G–1377A were combined and
dichotomized according to the MDR software. Individuals carrying
the combined risk stratum had a 2.99-fold increased risk for GCA

Table II. Association between candidate variants and GCA risk

Genotype Cases Controls Pa ORb (95% CI) ORc (95% CI) P for bootstrap

n (%) n (%)

SULT1A1 Arg213His
Arg/Arg 237 (68.9) 266 (82.1) 3.76 � 10�5 1.00 1.00 0.001
Arg/His þ His/Hisd 107 (31.1) 58 (17.9) 2.04 (1.41–2.94) 2.04 (1.40–2.98)

XRCC1 Arg194Trp
Arg/Arg 155 (45.1) 160 (49.4) 0.033 1.00 1.00
Arg/Trp 145 (42.2) 142 (43.8) 1.06 (0.77–1.47) 1.06 (0.78–1.49) 0.706
Trp/Trp 44 (12.7) 22 (6.8) 2.09 (1.19–3.66) 2.08 (1.23–3.83) 0.010

XPC PATþ/–
–/– 145 (42.2) 133 (41.0) 0.022 1.00 1.00
–/þ 140 (40.7) 157 (48.5) 0.83 (0.60–1.15) 0.83 (0.58–1.15) 0.262
þ/þ 59 (17.1) 34 (10.5) 1.62 (1.00–2.64) 1.62 (1.01–2.78) 0.050

P53 Arg72Pro
Arg/Arg 94 (27.3) 96 (29.6) 0.119 1.00 1.00
Arg/Pro 153 (44.5) 159 (49.1) 0.98 (0.69–1.41) 1.00 (0.70–1.48) 0.991
Pro/Pro 97 (28.2) 69 (21.3) 1.43 (0.94–2.18) 1.44 (0.97–2.27) 0.097

FASL T–844C
TT 30 (8.7) 31 (9.6) 4.73 � 10�5 1.00 1.00
TC 115 (33.4) 160 (49.4) 0.73 (0.42–1.27) 0.72 (0.40–1.32) 0.291
CC 199 (57.9) 133 (41.0) 1.48 (0.85–2.57) 1.48 (0.85–2.73) 0.174

MMP-2 C–1306T
TT þ CTd 49 (14.2) 108 (33.3) 4.37 � 10�8 1.00 1.00
CC 295 (85.8) 216 (66.7) 3.07 (2.09–4.50) 3.06 (2.06–4.72) 0.001

aP values were calculated by v2-test or Fisher’s exact test.
bData were calculated by LR model and adjusted for sex, age and smoking status.
cData were calculated by bootstrap with 1000 replications.
dThere were six cases and zero controls with the SULT1A1 His/His genotype and three cases and eight controls with the MMP-2 TT genotype.
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(95% CI, 2.18–4.11; P , 0.001). Furthermore, a combined effect of
MMP-2 C–1306T, FASL T–844C and FAS G–1377A was evaluated by
LR analysis (Table V) with the MMP-2 –1306CC, FASL –844CC and
FAS –1377AA genotypes as risk genotypes. Subjects were catego-
rized into four groups based on the number of risk genotypes they
carried and those without any risk genotype were designated as the
reference group. We found that the OR of GCA for individuals car-
rying one, two or three risk genotypes was 2.07 (95% CI, 1.18–3.65),
4.85 (95% CI, 2.74–8.60) or 6.60 (95% CI, 2.76–15.76), suggesting
a significant gene dose effect (Ptrend 5 4.736 � 10�12).

Analysis of gene–environment interaction was also performed us-
ing the 12 SNPs and the trichotomized cumulative smoking dose by
MDR analysis. However, no significant interaction between smoking
and any SNP was found.

Association of high-order interactions with GCA risk by CART
analysis

The final resulting tree generated by the CART analysis is shown in
supplementary Figure 1 (available at Carcinogenesis Online) and
Table VI. Consistent with the MDR best one-factor model, the initial

Table IV. Interaction models by MDR analysis

Number of risk factors Best interaction modela Testing accuracy CVC P for permutation test

1 MMP-2 0.595 10/10 0.020
2 MMP-2, FASL 0.616 10/10 ,0.001
3 MMP-2a, FASL and FAS 0.632 10/10 ,0.001
4 MMP-2, FASL, FAS and SULT1A1 0.623 9/10 ,0.001
5 MMP-2, FASL, FAS, SULT1A1 and XRCC1-4 0.628 6/10 ,0.001

XRCC1-4, XRCC1 Arg399Gln polymorphism.
aThe best model was selected as the onewith the maximum testing accuracy and maximum CVC. In this study, the best interaction model was the three-factor model
including MMP-2 C–1306T, FASL T–844C and FAS G–1377A polymorphisms.

Table V. Combined effect of FAS G-1377A, FASL T-844C and MMP-2 C-1306T on GCA risk

Number of risk genotypesa Cases Controls ORb (95% CI) P ORc (95% CI) P

N (%) N (%)

0 (Group 1) 20 (5.8) 54 (16.7) 1.00 1.00
1 (Group 2) 122 (35.5) 162 (50.0) 2.03 (1.16–3.58) 0.014 2.07 (1.18–3.65) 0.012
2 (Group 3) 175 (50.9) 97 (29.9) 4.87 (2.76–8.61) 5.167 � 10�8 4.85 (2.74–8.60) 6.109 � 10�8

3 (Group 4) 27 (7.8) 11 (3.4) 6.63 (2.78–15.80) 1.984 � 10�5 6.60 (2.76–15.76) 2.210 � 10�5

Ptrend 4.736 � 10�12

aThe MMP-2 –1306CC, FASL –844CC and FAS –1377AA genotypes were considered as risk genotypes. Individuals in group 1 had no risk genotypes; in the next
three groups, we pooled all individuals carrying risk genotype in any one gene (Group 1), in any two genes (Group 3) and all the three genes (Group 4).
bUnadjusted OR.
cOR adjusted for sex, age and smoking status.

Table III. Analyses of interaction between genotypes and cumulative smoking dose

Genotype ORa (95% CI) Pb for interaction

Non-smokers Light smokers Heavy smokers

SULT1A1 Arg213His
Arg/Arg 1.00 0.75 (0.48–1.17) 0.92 (0.59–1.43 0.020
Arg/His þ His/His 1.96 (0.97–3.99) 1.28 (0.64–2.55) 2.19 (1.27–3.76)

XRCC1 Arg194Trp
Arg/Arg 1.00 0.89 (0.51–1.55) 1.02 (0.59–1.74) 0.651
Arg/Trp þ Trp/Trp 1.53 (0.96–2.44) 0.80 (0.47–1.36) 1.14 (0.66–1.95)

XPC PATþ/–
(–/–) þ (–/þ) 1.00 0.70 (0.46–1.07) 0.85 (0.56–1.30) 0.726
(þ/þ) 2.11 (1.02–4.39) 0.93 (0.38–2.29) 1.51 (0.71–3.22)

P53 Arg72Pro
Arg/Arg þ Arg/Pro 1.00 0.77 (0.49–1.20) 0.99 (0.63–1.55) 0.713
Pro/Pro 1.77 (1.05–2.98) 0.93 (0.44–1.98) 1.10 (0.58–2.09)

FASL T–844C
TT þ TC 1.00 0.65 (0.37–1.14) 0.88 (0.51–1.50) 0.472
CC 1.85 (1.16–2.95) 1.32 (0.76–2.28) 1.77 (1.01–3.13)

MMP-2 C–1306T
CT þ TT 1.00 0.78 (0.34–1.82) 0.87 (0.38–1.99) 0.562
CC 3.33 (1.91–5.82) 2.03 (1.11–3.71) 2.69 (1.48–4.92)

aData calculated by LR, adjusted for sex, age and smoking status.
bP values for gene–smoking interaction were calculated using the multiplicative interaction term in SPSS software.

Multiple interaction analysis of genetic variations and GCA

339

D
ow

nloaded from
 https://academ

ic.oup.com
/carcin/article/32/3/336/2463741 by guest on 21 August 2022



split of the root node on the decision tree was MMP-2 C–1306T SNP,
suggesting that this SNP is the strongest risk factor for GCA among
the polymorphisms examined. Further inspection of the tree structure
revealed distinct interaction patterns between individuals carrying the
MMP-2 –1306CT or TT and those with the MMP-2 –1306CC geno-
type. Individuals carrying at least one MMP-2 –1306T allele
(–1306CT or TT genotype) had the lowest risk for GCA with a
rate of 31.2% cases. Using the terminal node comprising the
MMP-2 –1306CT or TT genotype carriers as the reference, individu-
als carrying both the MMP-2 –1306CC and FASL –844CC genotypes
exhibited a significantly higher risk for GCA (adjusted OR 5 4.27;
95% CI, 2.80–6.52), whereas individuals with the combined geno-
types of MMP-2 –1306CC, FASL –844TT or TC and FAS –1377AA
had the highest risk for GCA (adjusted OR 5 4.58; 95% CI, 2.07–
10.14). Furthermore, individuals carrying combined genotypes of
MMP-2 –1306CC, FASL –844TT or TC, FAS –1377GG or GA and
SULT1A1 213Arg/His or His/His also had significantly increased risk
(OR 5 3.03, 95% CI, 1.59–5.79).

Discussion

In this study, we applied a multi-analytic strategy combining LR,
MDR and CART approaches to systematically examine the associ-
ations between GCA risk and a panel of genetic polymorphisms
involved in carcinogen metabolism, DNA repair, cell cycle control,
apoptosis and extracellular proteolysis. In the single-locus analysis,
six polymorphisms showed significant association with GCA risk.
Results from LR, MDR and CART analyses consistently suggested
that MMP-2 C–1306T polymorphism was the most important single
susceptibility factor for GCA development. Furthermore, LR, MDR
and CART analyses also consistently revealed the prediction value of
gene–gene interaction among MMP-2 C–1306T, FASL T–844C and
FAS G–1377A polymorphisms in GCA risk. To the best of our
knowledge, this is the first study showing that complex gene–gene
interactions may significantly contribute to GCA susceptibility.

Although MMP-2 was traditionally considered to be important in
late steps of cancer progression (invasion and metastasis) due to its
proteolysis of extracellular matrix, current understanding of the ef-
fects of MMP-2 is particularly relevant to both cancer initiation and
progression because this enzyme cleaves a diverse non-extracellular
matrix substrates to modulate cell proliferation, apoptosis, angio-
genesis and immune surveillance (10). For instance, it has been
shown that MMP-2 is capable of cleaving insulin-like growth factor
binding proteins and releasing insulin-like factors, which is a stimu-
lator of malignant cell proliferation (9). MMP-2 can convert pro-
tumor necrosis factor-a to its soluble cytokinetic form, promoting
cancer survival (26). MMP-2 may also increase the bioavailability of
vascular endothelial growth factor to trigger angiogenesis (27).
Additionally, MMP-2 can cleave cell adhesion molecule E-cadherin
and liberate transforming growth factor-b to promote epithelial–
mesenchymal transition, which is associated with malignant cell
invasion (28). Moreover, MMP-2 has been shown to be overex-
pressed in a wide variety of human cancers, strongly supporting its
importance in cancer development (29,30). In our LR single-locus

analysis, the MMP-2 C–1306T SNP showed the strongest associa-
tion with GCA risk and consistent results were also obtained by both
MDR and CART analysis, indicating the MMP-2 C–1306T variant as
the predominant risk factor for GCA. The consistent results across
three different analytic approaches demonstrate a true association
between this polymorphism and susceptibility to GCA development.
The –1306C/T change is located within the MMP-2 promoter
region and abolishes a transcriptional factor Sp1-binding site. Pre-
vious study has shown that reporter gene expression driven by the
T allelic MMP-2 promoter was significantly lower than that driven
by the C allelic promoter counterpart both in epithelial cells and
macrophages (31). Intriguingly, it was found that Mmp-2-deficient
mice developed fewer tumors than wild-type mice induced by car-
cinogen stimulus (32); conversely, the induced MMP-2 expression
by oncogene-mediated cellular transformation caused increased ca-
pacity for malignant progression (33). These data strongly supported
that high expression of MMP-2 might increase cancer susceptibility.
Because MMP-2 plays an important role in multiple steps of cancer
development and high expression of MMP-2 has been shown to
be risk factor for cancer, one might expect that individuals carrying
the MMP-2 –1306CC genotype are in higher susceptibility to GCA.

By LR analysis we also found that other five polymorphisms (SUL-
T1A1 Arg213His, XRCC1 Arg194Trp, XPC PATþ/–, P53 Arg72Pro
and FASL T–844C) were significantly associated with GCA risk and
the associations remained significant after correction by bootstrapping
for multiple comparisons. These results are biologically plausible
because all these polymorphisms appear to be of functional signifi-
cance. It has been shown that SULT1A1 encoded by the SULT1A1
213His allele has 2-fold lower catalytic activity and thermo stability
than SULT1A1 produced by the SULT1A1 213Arg allele, thereby
reducing this enzyme activity in metabolic detoxification of carcino-
gens (34). Due to the neoconservative amino acid change, the XRCC1
194Trp variant may have changed XRCC1 function and therefore,
resulting in altered DNA repair capacity (35). The XPC PATþ allele
has been shown to be in strong linkage disequilibrium with the A
allele of an SNP comprising a C to A transition in intron 11 splice
acceptor, and the A allele represents lower information content than
the C allele and may trigger a deletion that entails the skipping of exon
12, resulting in diminished DNA repair capacity (36). For the P53
polymorphism, the G to C change at codon 72 causes Arg to Pro
amino acid substitution resulting in altered P53 function for apoptosis
(37). The T to C change at position –844 in promoter region of FASL
creates a binding site for the CAAT/enhancer-binding protein b tran-
scription factor, leading to a significantly higher basal FASL expres-
sion that has been shown to be a common feature of malignant
transformation (38).

The most significant finding in the current study was the multiple
gene–gene interactions consistently identified by three different sta-
tistical approaches. MDR analysis reported the highest prediction
accuracy of combined MMP-2, FASL and FAS polymorphisms for
GCA risk and consistent results were also obtained by CART analysis,
showing a significant interaction of these polymorphisms in the genes.
Furthermore, LR analysis indicated GAC risk associated with MMP-2,
FASL and FAS polymorphisms in a gene dose dependent manner,

Table VI. Risk estimates of CART terminal nodes

Node Genotype Cases Controls Case ratea (%) ORb (95% CI) LR P Bootstrap P

1 MMP-2 (HV) 49 108 31.2 1.00
4 MMP-2 (W)-FASL (V) 175 90 66.0 4.27 (2.80–6.52) 1.789 � 10�11 0.001
6 MMP-2 (W)-FASL (WH)-FAS (V) 23 11 67.6 4.58 (2.07–10.14) 1.747 � 10�4 0.001
7 MMP-2 (W)-FASL (WH)-FAS (WH)-SULT1A1 (W) 67 93 41.9 1.60 (1.01–2.54) 0.045 0.052
8 MMP-2 (W)-FASL (WH)-FAS (WH)-SULT1A1 (HV) 30 22 57.5 3.03 (1.59–5.79) 0.001 0.001

H, heterozygote; V, variant homozygote; W, wild-type homozygote.
aCase rate is the percentage of cancer patients among all individuals in each node.
bORs of terminal nodes were calculated by LR analysis adjusted for age and gender.
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suggesting that the three-factor model consisting of MMP-2, FASL
and FAS polymorphisms is the best model for assessment of GAC risk.
These results are biologically plausible since FAS and FASL are the
receptor-ligand system. Previous studies have shown that these FAS
and FASL polymorphisms have synergistic effect on other types of
cancer (39–41). The evidence linking FAS/FASL signaling to MMP-2
activity comes from the study showing that inhibition of FAS/FASL
signaling reduces MMP-2 level or proteolytic activity via nuclear
factor-kappaB (42). On the other hand, MMP-2 may also play a role
in regulating FAS/FASL signaling in tumor cells (10) since MMP-7,
another member of MMPs, has been shown to be able to cleave
membrane forms of FAS and FASL, reducing the effectiveness of
FAS/FASL in triggering apoptosis (43). Taken together, this func-
tional relationship among MMP-2, FASL and FAS might explain
why these genes polymorphisms have statistical interaction in enhanc-
ing GCA risk. In addition, we also found a significant interaction of
SNPs in MMP-2, FASL, FAS and SULT1A1 in increasing GCA risk
by MDR and CART analysis, the underlying mechanism for SULT1A1
in the interaction remains to be elucidated.

Interestingly, a gene–environment interaction between SULT1A1
polymorphism and smoking was also revealed in this study. Because
SULT1A1 plays an important role in the metabolism of cigarette
carcinogens that may promote GCA development (44), a synergistic
effect between functional SULT1A1 variant and smoking is expected.
Previous study has shown reduced ability of gastric tissues carrying
the SULT1A1 213His allele to detoxify cigarette carcinogens (45).

This study might have some limitations. Because it was a hospital-
based case–control study, selection bias cannot be fully excluded. It
would therefore be important to confirm these findings in a population-
based prospective study. The sample size of our study is relatively small
although we had .80% power to detect a significant pairwise interaction
using LR and MDR analysis based on genotype frequencies and the
prevalence of smoking in our study population (46,47). In addition,
our study lacked information on exposures to other environmental risk
factors such as alcohol use, dietary consumption, pathogenic infec-
tions and further studies are needed to investigate whether these fac-
tors also interact with genetic variants in GCA risk.

In conclusion, our study highlights the contribution of the complex
gene–gene and gene–environment interactions among polymorphisms
involved in different processes of carcinogenesis and smoking to
GCA susceptibility. Furthermore, population-based or cohort studies
are required to confirm these results and more functional analyses are
warranted to elucidate the biological plausibility of the complex
gene–gene interactions identified in this study.

Supplementary material

Supplementary Figure 1 and Tables 1 and 2 can be found at http://
carcin.oxfordjournals.org/
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