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IMPORTANCE The extent to which large-caliber axonal degeneration contributes to Alzheimer
disease (AD) progression is unknown. Cerebrospinal fluid (CSF) neurofilament light (NFL)
concentration is a general marker of damage to large-caliber myelinated axons.

OBJECTIVE To test whether CSF NFL concentration is associated with cognitive decline and
imaging evidence of neurodegeneration and white matter change in AD.

DESIGN, SETTING, AND PARTICIPANTS A commercially available immunoassay was used to
analyze CSF NFL concentration in a cohort of patients with AD (n = 95) or mild cognitive
impairment (MCI) (n = 192) and in cognitively normal individuals (n = 110) from the
Alzheimer’s Disease Neuroimaging Initiative. The study dates were January 2005 to
December 2007. The NFL analysis was performed in November 2014.

MAIN OUTCOMES AND MEASURES Correlation was investigated among baseline CSF NFL
concentration and longitudinal cognitive impairment, white matter change, and regional
brain atrophy within each diagnostic group.

RESULTS Cerebrospinal fluid NFL concentration (median [interquartile range]) was higher in
the AD dementia group (1479 [1134-1842] pg/mL), stable MCI group (no progression to AD
during follow-up; 1182 [923-1687] pg/mL), and progressive MCI group (MCI with progression
to AD dementia during follow-up; 1336 [1061-1693] pg/mL) compared with control
participants (1047 [809-1265] pg/mL) (P < .001 for all) and in the AD dementia group
compared with the stable MCI group (P = .01). In the MCI group, a higher CSF NFL
concentration was associated with faster brain atrophy over time as measured by changes in
whole-brain volume (β = −4177, P = .003), ventricular volume (β = 1835, P < .001), and
hippocampus volume (β = −54.22, P < .001); faster disease progression as reflected by
decreased Mini-Mental State Examination scores (β = −1.077, P < .001) and increased
Alzheimer Disease Assessment Scale cognitive subscale scores (β = 2.30, P < .001); and faster
white matter intensity change (β = 598.7, P < .001).

CONCLUSIONS AND RELEVANCE Cerebrospinal fluid NFL concentration is increased by the
early clinical stage of AD and is associated with cognitive deterioration and structural brain
changes over time. This finding corroborates the contention that degeneration of
large-caliber axons is an important feature of AD neurodegeneration.
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A lzheimer disease (AD) is a common neurodegenera-
tive disorder characterized by distinct pathologic hall-
marks, including neuronal degeneration and loss to-

gether with extracellular deposits of aggregated Aβ and
intraneuronal accumulation of hyperphosphorylated tau
proteins.1 While AD is characterized by cortical and hippo-
campal neuronal loss and widespread gray matter atrophy, pa-
tients may also have progressive disconnection of cortical and
subcortical regions due to white matter (WM) injury.2 White
matter pathologic conditions include loss of axons and my-
elin sheaths.3,4 Patients with AD demonstrate significant WM
atrophy5-8 as well as a gradual decrease in the integrity of WM
commissures, such as the corpus callosum, and key path-
ways, such as the cingulum and superior longitudinal
fasciculus.9-12 These tracts are composed of large-caliber my-
elinated axons that are particularly rich in neurofilaments.13

There are 3 different neurofilament subunits, including neu-
rofilament light (NFL), neurofilament medium (NFM), and neu-
rofilament heavy (NFH). A neurofilament is a structural com-
ponent of the neural cytoskeleton, constituting one NFL and
either NFM or NFH arranged head to tail.14 Increased cerebro-
spinal fluid (CSF) concentrations of NFL correlate with WM le-
sions in multiple sclerosis,15 subcortical vascular disease,16 and
AD16 and are seen in other pathologic conditions, such as fron-
totemporal dementia,17-20 idiopathic normal-pressure
hydrocephalus,21 amyotrophic lateral sclerosis,22 progressive en-
cephalopathies in children,23 and various central nervous sys-
tem infections.24,25 A recent study20 based on the Swedish De-
mentia Registry showed that a high CSF NFL concentration
correlates with more severe cognitive impairment and shorter
survival in several neurodegenerative diseases, including AD.

Herein, we performed a detailed analysis of associations be-
tween CSF NFL concentration and WM change and neuropsy-
chological and neuroimaging measures of AD in a large cohort
of longitudinally followed, cognitively normal (CN) control par-
ticipants; individuals with mild cognitive impairment (MCI); and
patients with AD. We tested the following 4 hypotheses: (1) CSF
NFL concentration is increased in patients with AD compared
with healthy controls, (2) high CSF NFL concentration predicts
MCI conversion to AD dementia, (3) high CSF NFL concentra-
tion is associated with more rapid cognitive worsening in AD,
and (4) high CSF NFL concentration is associated with WM
change within the 4 diagnostic groups herein.

Methods
Data used in this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (http://adni
.loni.usc.edu). The ADNI was launched in 2003 by the Na-
tional Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, the US Food and Drug Adminis-
tration, private pharmaceutical companies, and nonprofit or-
ganizations as a $60 million, 5-year public-private partner-
ship. The primary objective of the ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron
emission tomography, other biological markers, and clinical
and neuropsychological assessment can be combined to mea-

sure progression of MCI and early AD. The principal investi-
gator of this initiative is one of us (M.W.W.). The ADNI is the
result of efforts of many co-investigators from a broad range
of academic institutions and private corporations, and study
participants have been recruited from more than 50 sites across
the United States and Canada. The initial goal of the ADNI was
to recruit 800 participants, but the initiative has been fol-
lowed by the ADNI Grand Opportunities (GO) and the ADNI 2.
To date, these 3 protocols have recruited more than 1500 adults
(age range, 55-90 years) to participate in the research, includ-
ing CN older individuals, persons with early or late MCI, and
patients with early AD. The follow-up duration for each study
group is specified in the protocols for the ADNI 1, ADNI 2, and
ADNI GO. Participants originally recruited for the ADNI 1 and
the ADNI GO had the option to be followed up in the ADNI 2.
The most recent information on the ADNI is available online
(http://www.adni-info.org).

Participants
The study was conducted with prior institutional ethics ap-
proval from ADNI’s 59 study sites (http://adni.loni.usc.edu/about
/centers-cores/study-sites/). Written informed consent was ob-
tained for all participants in the ADNI. Our study population
consisted of all CN, MCI, and AD dementia group participants
with available baseline CSF samples from the ADNI 1. Inclu-
sion and exclusion criteria are described in detail online (http:
//www.adni-info.org). Briefly, all participants included in the
ADNI 1 were between 55 and 90 years old, had completed at least
6 years of education, were fluent in Spanish or English, and were
free of any significant neurological disease other than AD. The
CN group had a Mini-Mental State Examination (MMSE) score
of 24 or higher and a Clinical Dementia Rating of 0. The MCI
group had an MMSE score of 24 or higher, objective memory
loss based on delayed recall scores of the Wechsler Memory Scale
logical memory II (>1 SD below the normal mean), a Clinical De-
mentia Rating of 0.5, preserved activities of daily living, and ab-
sence of dementia. The AD dementia group fulfilled the Na-
tional Institute of Neurological and Communicative Disorders
and Stroke and Alzheimer’s Disease and Related Disorders As-
sociation criteria for probable AD, had an MMSE score be-
tween 20 and 26, and had a Clinical Dementia Rating of 0.5 or
1.0. For this analysis, the MCI group was stratified into stable
MCI (sMCI), with no progression to AD dementia during at least
2 follow-up years, and progressive MCI (pMCI), with progres-
sion to AD dementia during at least 2 follow-up years. There-
fore, the main analyses included the following 4 groups: CN,
sMCI, pMCI, and AD dementia.

CSF Measurements
Cerebrospinal fluid collection, processing, and storage proce-
dures have been described previously.26 Levels of Aβ42, total
tau (t-tau), and phosphorylated tau (p-tau) were measured
using an architectural platform (xMAP Multiplex; Luminex Cor-
poration) and a kit (INNO-BIA AlzBio3; Fujirebio). Individu-
als were classified as Aβ42 positive or Aβ42 negative using a
previously established cutoff (CSF Aβ42 level, <192 pg/mL) that
maximized the delineation of autopsy-confirmed AD cases with
pathologic Aβ from control subjects without pathologic Aβ.26
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Cerebrospinal fluid NFL concentration was measured using a
commercially available enzyme-linked immunosorbent as-
say (NF-light; Uman Diagnostics) as described by the manu-
facturer. The measurements were performed by board-
certified laboratory technicians, who were masked to clinical
data using 1 batch of reagents. Intrabatch coefficients of varia-
tion were below 10%.

Brain Structure
Structural MRI brain scans were acquired using 1.5-T imaging
systems (at ≤7 time points, including screening and at 6, 12, 18,
24, 36, and 48 months) with a standardized protocol that in-
cluded T1-weighted images using a sagittal, volumetric, mag-
netization-prepared rapid acquisition with gradient echo
sequence.27 In brief, automated volume measures were ob-
tained with a software package (FreeSurfer; http://surfer
.nmr.mgh.harvard.edu/fswiki).28,29 For this study, we used av-
eraged volume measurements for the right and left hippo-
campi and combined volumes for the ventricles. Code ST128SV
(volume of hypointensities) in FreeSurfer was used for a mea-
sure of WM change.

Cognition
Overall cognition was assessed by MMSE and Alzheimer Dis-
ease Assessment Scale cognitive subscale (ADAS-cog) 13 scores.
Data were acquired at up to 7 time points, including screen-
ing and at 6, 12, 18, 24, 36, and 48 months.

Statistical Analysis
To evaluate potentially confounding factors, we tested asso-
ciations between CSF NFL concentration and demographic fac-

tors (age, sex, apolipoprotein E [APOE] ε4 genotype, and edu-
cational level) using the Mann-Whitney test and the Spearman
rank correlation test. Associations between CSF NFL concen-
tration and the diagnostic groups were tested in an analysis of
covariance model, adjusted for age and sex (coded as 0 or 1). Cor-
relation of Aβ42, t-tau, and p-tau levels with NFL concentra-
tion was tested with linear regression. Within the diagnostic
groups, association between CSF NFL concentration and Aβ42
positivity (CSF Aβ42 level, <192 pg/mL) was analyzed by the non-
parametric Kruskal-Wallis test. Associations between baseline
CSF NFL concentration and subsequent disease progression (as
measured by MMSE and ADAS-cog scores, hippocampus vol-
ume, ventricular volume, whole-brain volume, and WM change)
were tested with linear mixed-effects models, adjusted for age
and sex (and educational level for cognitive measurements and
intracranial volume for volume measurements). Associations
were further demonstrated using Loess regression trend lines,
with participants divided into quartiles according to their CSF
NFL concentration. All tests were 2 sided, and significance was
set at P < .05. Statistical analyses were performed using a soft-
ware program (SPSS, version 20; IBM or R, version 3.0.1; The
R Foundation for Statistical Computing).

Results
CSF NFL Concentration and Demographic Factors
Demographic and biomarker characteristics of the study par-
ticipants are shown in the Table and in Figure 1. Cerebrospi-
nal fluid NFL concentration had a moderately strong correla-
tion with age (r = 0.35, P < .001), and men had a significantly

Table. Demographic and Clinical Characteristics of Study Participants at Baseline

Characteristic

Group
CN
(n = 110)

AD Dementia
(n = 95)

pMCI
(n = 101)

sMCI
(n = 91)

Sex, No.

Female 55 42 37 26

Male 55 53 64 65

Clinical Characteristics, Median (Interquartile Range)

Age at lumbar puncture, y 76
(72-78)

76
(69-80)

74
(69-80)

74
(71-80)

MMSE score 29
(29-30)

24
(22-25)a

26
(25-28)a

28
(26-29)a

ADAS-cog score 9.7
(6.3-12.7)

28.7
(22.3-34.0)a

20.7
(17.0-24.7)a

16.7
(11.7-21.0)a

White matter change volume, mm3 3956
(2769-6272)

5180
(3781-9101)b

4533
(2942-7606)

4031
(2883-6301)

Hippocampus volume, mm3 7336
(6730-7703)

5521
(4833-6501)a

5988
(5459-6731)a

6834
(6025-7534)

Ventricular volume, mm3 32 593
(20 399-42 098)

42 875
(29 497-60 923)c

40 331
(28 929-55 946)b

37 777
(24 512-49 416)

Whole-brain volume, mm3 1 006 650
(925 721-1 057 460)

937 168
(868 796-1 042 700)

981 244
(920 902-1 074 200)

1 030 925
(962 926-1 103 060)

CSF NFL concentration, pg/mL 1047
(809-1265)

1479
(1134-1842)a

1336
(1061-1693)a

1182
(923-1687)c

Abbreviations: AD, Alzheimer disease; ADAS-cog, Alzheimer Disease
Assessment Scale cognitive subscale; CN, cognitively normal; CSF NFL,
cerebrospinal fluid neurofilament light; MMSE, Mini-Mental State Examination;
pMCI, progressive mild cognitive impairment; sMCI, stable mild cognitive
impairment.

a P < .001 vs CN group.
b P < .05 vs CN group.
c P < .01 vs CN group.
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higher NFL concentration than women (P < .001). Patient edu-
cational level in years correlated weakly with baseline NFL con-
centration (Spearman ρ = 0.113, P = .02). There were no sig-
nificant differences in NFL concentration between patients
stratified according to APOE ε4 genotype.

CSF NFL Concentration in the Diagnostic Groups
Cerebrospinal NFL concentration was higher in the AD, pMCI,
and sMCI groups compared with the CN group (P < .001,
P < .001, and P = .001, respectively) (Figure 1). Higher CSF NFL
concentration was also found in the AD dementia group com-
pared with the sMCI group (P = .01).

CSF NFL Concentration in Relation to Core AD Biomarkers
At baseline, high NFL concentration correlated with low Aβ42
level (P = .01, β = −0.127). However, there were no significant
differences in NFL concentration between Aβ42-positive (CSF
Aβ42 level, <192 pg/mL) and Aβ42-negative individuals in any
of the diagnostic groups (CN, sMCI, pMCI, or AD dementia).
Both t-tau level (P < .001, β = 0.213) and p-tau level (P = .02,
β = 0.118) correlated with NFL concentration at baseline.

CSF NFL Concentration in Relation to Baseline Measures
of Cognition, Brain Structure, and WM Change
Among the 4 major diagnostic groups, we found significant
correlation between CSF NFL concentration and MMSE
(P = .006, β = −0.026) and ADAS-cog (P = .008, β = 0.006)
scores in the AD dementia group (Figure 2A and B). Signifi-
cant correlation between CSF NFL concentration and ADAS-
cog score was also found in the sMCI group (P = .01,

β = 0.007) (Figure 2C). Furthermore, we found significant
correlation between CSF NFL concentration and hippocam-
pus volume in the pMCI group (P = .01, β = −5.88e-5)
(Figure 2D) and the sMCI group (P = .049, β = −4.94e-5)
(Figure 2E). White matter change correlated significantly
with CSF NFL concentration in the AD dementia group
(P < .001, β = 0.048) (Figure 2F), pMCI group (P = .02,
β = 0.058) (Figure 2G), and sMCI group (P = .04, β = 0.034)
(Figure 2H). No significant correlation was found between
CSF NFL concentration and whole-brain or ventricular
volume.

CSF NFL Concentration and Longitudinal Change
in Cognition and Brain Structure
Using linear mixed-effects models, we tested associations be-
tween baseline CSF NFL concentration and subsequent dis-
ease progression in MCI as measured by MMSE and ADAS-cog
scores, hippocampus volume, ventricular volume, whole-
brain volume, and WM change, adjusted for age and sex (and
educational level for cognitive measurements and intracranial
volume for volume measurements). The interaction analyses
showed that higher CSF NFL concentration was associated with
longitudinal deterioration in all 6 parameters (β = −1.077,
P < .001 for MMSE score; β = 2.30, P < .001 for ADAS-cog score;
β = 1835, P < .001 for ventricular volume; β = −4177, P = .003 for
whole-brain volume; β = −54.22, P < .001 for hippocampus vol-
ume; and β = 598.7, P < .001 for WM change). For these analy-
ses, we used continuous (log-transformed) NFL concentration
data, but the results were essentially the same when using CSF
NFL concentration quartiles as a categorical predictor. In

Figure 1. Cerebrospinal Fluid Neurofilament Light (CSF NFL) Concentration in the Diagnostic Groups
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Cerebrospinal fluid NFL
concentrations in the diagnostic
groups are shown as scatterplots.
Horizontal blue lines indicate the
median, and horizontal orange lines
indicate the interquartile range.
Cerebrospinal fluid NFL
concentration was higher in the
Alzheimer disease (AD) dementia,
progressive mild cognitive
impairment (pMCI), and stable mild
cognitive impairment (sMCI) groups
compared with the cognitively
normal (CN) group (P < .001,
P < .001, and P = .001, respectively).
Higher CSF NFL concentration was
also found in the AD dementia group
compared with the sMCI group
(P = .01).
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Figure 2. Cerebrospinal Fluid Neurofilament Light (CSF NFL) Concentration in Relation to Baseline Measures of Cognition, Brain Structure, and White
Matter Change
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Linear regression trend lines are shown in blue. These regression lines are
unadjusted, while the corresponding analysis in the text is adjusted for age and
sex. Cerebrospinal fluid NFL concentration on the x-axes is logarithmic.
Cerebrospinal fluid NFL concentration correlated significantly with Mini-Mental
State Examination (MMSE) score (A) and Alzheimer Disease Assessment Scale

cognitive subscale (ADAS-cog) score (B) in the Alzheimer disease (AD)
dementia group, with ADAS-cog score in the stable mild cognitive impairment
(sMCI) group (C), with hippocampus volume in the progressive mild cognitive
impairment (pMCI) group (D) and sMCI group (E), and with white matter (WM)
change in the AD (F), pMCI (G), and sMCI (H) groups.
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Figure 3, all study participants with an MCI diagnosis at base-
line were classified into quartile groups according to their base-
line CSF NFL concentration, and change in each parameter (de-
fined as the difference between baseline and each time point)

was demonstrated using Loess regression trend lines. These re-
gression trend lines confirmed that the pattern of high CSF NFL
concentration was associated with worse outcome for all para-
meters except ADAS-cog score and hippocampus volume.

Figure 3. Cerebrospinal Fluid Neurofilament Light (CSF NFL) Concentration and Disease Progression in Mild Cognitive Impairment (MCI)
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Associations between baseline CSF NFL concentration and subsequent disease
progression in the MCI group (n = 192) as measured by Mini-Mental State
Examination (MMSE) score (A), Alzheimer Disease Assessment Scale cognitive
subscale (ADAS-cog) score (B), ventricular volume (C), whole-brain volume (D),
hippocampus volume (E), and white matter (WM) change (F) were all significant

in linear mixed-effects models. Associations are shown using Loess regression
trend lines, with all participants classified into quartile groups according to their
baseline CSF NFL concentration. The regression trend lines confirm the pattern
of association between high CSF NFL concentration and worse outcome for all
parameters except ADAS-cog score (B) and hippocampus volume (E).
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Discussion

The main findings of this study were that CSF NFL concentra-
tion was elevated in patients with AD dementia compared with
CN controls and participants with sMCI and that CSF NFL con-
centration correlated with accelerated cognitive decline, WM
change, and increased brain atrophy in patients with MCI.
Taken together, these findings support the use of CSF NFL con-
centration as a progression marker in MCI and AD and indi-
cate that degeneration of large-caliber axons is an important
element of disease progression in AD. The diagnostic useful-
ness of CSF NFL concentration might be limited because of
overlap with other neurodegenerative conditions, but high con-
centrations in AD or MCI suggest that rapid disease progres-
sion is to be expected.

As a highly expressed structural protein in myelinated
tracts, NFL interconnects cortical and subcortical brain
regions.13 Expression of NFL is also found in neurites in the
cerebral and cerebellar cortices and in the hypothalamus, as
well as in the spinal cord.13 Cerebrospinal NFL concentration
is increased in a broad range of neurological disorders and is
thus not disease specific, which also means that it could be use-
ful as a disease intensity marker not only in AD but also in sev-
eral other neurodegenerative and neuroinflammatory dis-
eases, as well as in traumatic brain injury. High CSF NFL
concentration correlates with short survival in amyotrophic lat-
eral sclerosis,22 and similar results have been obtained in fron-
totemporal dementia, subcortical vascular dementia, and AD.20

Although we detected positive correlation of CSF NFL con-
centration with CSF tau protein level, associations of CSF NFL
concentration with increased ventricular volume and whole-
brain atrophy over time suggest that the marker contributes
information on neurodegeneration that is at least in part dif-
ferent from CSF tau (a protein predominantly expressed in cor-
tical brain regions, with CSF tau level being more strongly as-
sociated with hippocampal and cortical atrophy30). Similar CSF

NFL concentration in Aβ42-positive and Aβ42-negative indi-
viduals, as determined by CSF Aβ42 level, indicate that CSF
NFL concentration changes are not driven by pathologic Aβ42.
The findings that CSF NFL concentration correlated with base-
line MMSE and ADAS-cog scores, as well as change in MMSE
score over time (the correlation with longitudinal change in
ADAS-cog score seen in linear mixed-effects models could not
be visualized using Loess regression trend lines and may thus
be considered less robust), suggest that elevated CSF NFL con-
centration provides clinically meaningful information. In con-
trast to our results, a recent study31 failed to find an associa-
tion between CSF NFL concentration and baseline cognition
in AD, but the patients with AD in that study were younger and
more cognitively impaired than the patients in this study.

One limitation of our study is that patients with MCI were
considered to have sMCI if they remained cognitively stable
during 2 follow-up years, which may be regarded as too short.
Hence, the sMCI group may have contained some individuals
who eventually would develop progressive neurodegenera-
tive disease, which could explain why CSF NFL concentra-
tion was somewhat higher in this group compared with the
CN group.

Conclusions
Our findings support the use of CSF NFL as a progression
marker in AD and extend earlier results20 by showing an as-
sociation between this marker and longitudinal imaging data
of neurodegeneration and WM change. Together with MRI, CSF
NFL concentration may track non-Aβ42 and non-tau aspects
of AD neurodegeneration and may help to identify individu-
als with extensive involvement of large-caliber axons in the
disease process. Additional research is needed to determine
whether these findings should have an influence on inclu-
sion criteria in clinical trials of novel disease-modifying drugs
against AD.
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