
Association of CETP Gene Variants With Risk for Vascular
and Nonvascular Diseases Among Chinese Adults
Iona Y. Millwood, DPhil; Derrick A. Bennett, PhD; Michael V. Holmes, PhD; Ruth Boxall, MSc; Yu Guo, MSc; Zheng Bian, MSc; Ling Yang, PhD;
Sam Sansome, BSc; Yiping Chen, DPhil; Huaidong Du, PhD; Canqing Yu, PhD; Alex Hacker, MA; Dermot F. Reilly, PhD; Yunlong Tan, MBBS;
Michael R. Hill, PhD; Junshi Chen, MD; Richard Peto, FRS; Hongbing Shen, PhD; Rory Collins, FRS; Robert Clarke, MD; Liming Li, MPH;
Robin G. Walters, PhD; Zhengming Chen, DPhil; for the China Kadoorie Biobank Collaborative Group

IMPORTANCE Increasing levels of high-density lipoprotein (HDL) cholesterol through
pharmacologic inhibition of cholesteryl ester transfer protein (CETP) is a potentially
important strategy for prevention and treatment of cardiovascular disease (CVD).

OBJECTIVE To use genetic variants in the CETP gene to assess potential risks and benefits of
lifelong lower CETP activity on CVD and other outcomes.

DESIGN, SETTING, AND PARTICIPANTS This prospective biobank study included 151 217
individuals aged 30 to 79 years who were enrolled from 5 urban and 5 rural areas of China
from June 25, 2004, through July 15, 2008. All participants had baseline genotype data,
17 854 of whom had lipid measurements and 4657 of whom had lipoprotein particle
measurements. Median follow-up of 9.2 years (interquartile range, 8.2-10.1 years) was
completed January 1, 2016, through linkage to health insurance records and death and
disease registries.

EXPOSURES Five CETP variants, including an East Asian loss-of-function variant (rs2303790),
combined in a genetic score weighted to associations with HDL cholesterol levels.

MAIN OUTCOMES AND MEASURES Baseline levels of lipids and lipoprotein particles,
cardiovascular risk factors, incidence of carotid plaque and predefined major vascular and
nonvascular diseases, and a phenome-wide range of diseases.

RESULTS Among the 151 217 individuals included in this study (58.4% women and 41.6%
men), the mean (SD) age was 52.3 (10.9) years. Overall, the mean (SD) low-density
lipoprotein (LDL) cholesterol level was 91 (27) mg/dL; HDL cholesterol level, 48 (12) mg/dL.
CETP variants were strongly associated with higher concentrations of HDL cholesterol
(eg, 6.1 [SE, 0.4] mg/dL per rs2303790-G allele; P = 9.4 × 10−47) but were not associated with
lower LDL cholesterol levels. Within HDL particles, cholesterol esters were increased and
triglycerides reduced, whereas within very low-density lipoprotein particles, cholesterol
esters were reduced and triglycerides increased. When scaled to 10-mg/dL higher levels of
HDL cholesterol, the CETP genetic score was not associated with occlusive CVD (18 550
events; odds ratio [OR], 0.98; 95% CI, 0.91-1.06), major coronary events (5767 events;
OR, 1.08; 95% CI, 0.95-1.22), myocardial infarction (3118 events; OR, 1.14; 95% CI, 0.97-1.35),
ischemic stroke (13 759 events; OR, 0.94; 95% CI, 0.86-1.02), intracerebral hemorrhage
(6532 events; OR, 0.94; 95% CI, 0.83-1.06), or other vascular diseases or carotid plaque.
Similarly, rs2303790 was not associated with any vascular diseases or plaque. No associations
with nonvascular diseases were found other than an increased risk for eye diseases with
rs2303790 (4090 events; OR, 1.43; 95% CI, 1.13-1.80; P = .003).

CONCLUSIONS AND RELEVANCE CETP variants were associated with altered HDL metabolism
but did not lower LDL cholesterol levels and had no significant association with risk for CVD.
These results suggest that in the absence of reduced LDL cholesterol levels, increasing HDL
cholesterol levels by inhibition of CETP may not confer significant benefits for CVD.
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O bservational epidemiologic studies have reported
that low plasma concentrations of high-density
lipoprotein (HDL) cholesterol are an independent

risk factor for occlusive cardiovascular disease (CVD),
including coronary heart disease (CHD) and ischemic
stroke.1,2 Given these associations, therapeutic strategies
to reduce CVD risk by increasing HDL cholesterol concentra-
tions have attracted considerable interest. One such
approach is through pharmacologic inhibition of cholesterol
ester transfer protein (CETP), which transfers esterified
cholesterol from HDL to apolipoprotein B–containing lipo-
proteins, including very low-density lipoprotein (VLDL), in
exchange for triglycerides.3 The first CETP inhibitor
assessed in phase 3 trials, torcetrapib, was associated with
increased CVD risk, probably owing to off-target effects.4,5

Subsequent trials of dalcetrapib (which had only modest
effects on HDL cholesterol) or evacetrapib (which increased
HDL cholesterol levels substantially and lowered LDL cho-
lesterol levels) were stopped early for futility after 2 to 3
years of treatment in high-risk individuals.6,7 A trial of the
potent CETP inhibitor anacetrapib (which doubled HDL
cholesterol levels and lowered non-HDL cholesterol levels
by about one-fifth) that involved approximately 30 000
high-risk individuals treated for 4 years recently reported a
benefit for risk of major coronary events consistent with the
effects of lowering non-HDL cholesterol levels.8

Genetic variants can be used to assess causal associa-
tions with a mendelian randomization approach that
resembles a randomized trial because genetic variants
are randomly allocated at conception and should not be
subject to confounding or reverse causation bias.9 As such,
genetic studies can be used to estimate the effects of altera-
tions of the expression or activity of a drug target, such as
CETP.10 Common CETP gene (HGNC 1869) variants associ-
ated with lower CETP mass and activity have been associ-
ated with lower risks for CHD and ischemic stroke and a
higher risk for intracerebral hemorrhage.11-16 Previous
studies were conducted mainly in populations of European
origin, among whom the mean LDL cholesterol level is
high compared with the Chinese population, and common
CETP variants tend to be associated not only with higher
HDL cholesterol concentrations but also with lower LDL
cholesterol concentrations, as is the case for several
CETP inhibitors.17,18 A loss-of-function variant in CETP
(rs2303790; c.1376A>G; p.D459G) that results in lower
plasma CETP levels and activity has been identified in
Japanese individuals with elevated HDL cholesterol
concentrations.19-21 Some studies of rs2303790 and other
CETP loss-of-function variants suggest an association
with lower CHD risk that may be mediated by lower LDL
cholesterol levels, but findings are inconsistent.22-25

To assess the potential benefits and risks of lifelong
lower CETP activity, we examined the association of CETP
variants (rs2303790 and a genetic score consisting of this
and 4 other common CETP variants) with lipid and lipopro-
tein metabolism, CVD risk factors, and a range of vascular
and nonvascular diseases in as many as 151 217 adults from
the China Kadoorie Biobank (CKB) study.

Methods

Study Population, Baseline Survey, and Resurvey
The design and methods of the CKB study have been re-
ported in detail elsewhere.26,27 Overall, 512 891 adults aged 30
to 79 years were enrolled from June 25, 2004, through July 15,
2008, from 5 rural and 5 urban areas in China. CKB partici-
pants were confirmed to be of Chinese ancestry based on find-
ings of principal component analysis of genotyping data,
where available. The baseline survey included a detailed ques-
tionnaire and physical measurements (including anthropom-
etry and blood pressure). A nonfasting blood sample was col-
lected for on-site testing (including plasma glucose level using
the SureStep Plus meter [LifeScan]) and then separated into
plasma and buffy-coat fractions for long-term storage. Study
procedures and staff training were standardized across re-
gions. Periodic resurveys were conducted for approximately
5% of surviving participants. The second resurvey from

August 4, 2013, through September 18, 2014, included mea-
surements of carotid intima media thickness and plaque using
a diagnostic ultrasound system (GM-72P00A; Panasonic
Healthcare Co, Ltd). Ethical approval for the study was ob-
tained from the University of Oxford, Oxford, England, the
Chinese Centre for Disease Control and Prevention, and the
local Centres for Disease Control and Prevention in the 10 study
areas. All participants provided written informed consent.

Long-term Follow-up
Vital status and incidence of disease events were recorded using
electronic linkage of each participant’s unique national iden-
tification number with established registries for morbidity
(stroke, CHD, cancer, and diabetes) and mortality in each
locality and a nationwide health insurance system. Registry
data included scanned copies of official death certificates and
reports for hospitalization of specific diseases. Health insur-
ance reports included detailed information (eg, disease
description, International Statistical Classification of Diseases
and Related Health Problems, 10th Revision [ICD-10] code, and
procedure or examination codes) about each hospital admis-
sion. Events related to major chronic diseases (stroke, CHD,
diabetes, chronic obstructive pulmonary disease [COPD], and
cancer) were carefully reviewed and standardized. By January

Key Points
Question What is the association of genetic variants in the CETP
gene that lower cholesteryl ester transfer protein activity with risk
for cardiovascular and other diseases?

Findings In this biobank study of 151 217 Chinese adults, CETP
gene variants were associated with higher levels of high-density
lipoprotein cholesterol but not with lower levels of low-density
lipoprotein cholesterol and were not associated with risk for
cardiovascular disease.

Meaning Increasing levels of high-density lipoprotein cholesterol
by cholesteryl ester transfer protein inhibition in the absence of
lower levels of low-density lipoprotein cholesterol may not confer
significant benefits for cardiovascular disease.
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1, 2016, after a median follow-up of 9.2 years (interquartile range,
8.2-10.1 years), 37 289 deaths were recorded among the 512 891
CKB participants, and 4875 (<1%) were lost to follow-up.

Genotyping and Lipid and Lipoprotein Measurements
Five CETP gene variants (rs3764261, rs1800775, rs708272,
rs9939224, and rs2303790; eTable 1 in the Supplement) were
selected on the basis of previously reported associations
with HDL cholesterol and CETP activity.11,19,28 Genotyping was
conducted in 151 217 individuals by using a 384–single-
nucleotide polymorphism (SNP) array (GoldenGate;
Illumina) or a custom-designed 800K-SNP array (Axiom;
Affymetrix) (call rates were >99.97% for all variants). Geno-
typing consisted of a population-based sample of 134 790
participants included in analyses of all disease outcomes, an
additional 13 000 participants with an incident CVD event and
control participants included in analyses of specified CVD out-
comes, and an additional 3427 participants with an incident
COPD event included in analyses of COPD. A subset of the geno-
typed population (17 854 selected for CVD case-control stud-
ies) had measurements of plasma concentrations of total cho-
lesterol, LDL cholesterol, HDL cholesterol, triglycerides,
lipoprotein(a), apolipoprotein B, and apolipoprotein A1 using
a clinical chemistry analyzer (AU680; Beckman-Coulter).
Among these individuals, 4657 also had plasma measure-
ments of metabolomics using proton nuclear magnetic reso-
nance spectroscopy providing data on 225 metabolic mea-
sures, including detailed lipid and lipoprotein particle profiles.29

Further details of assays and participants included are shown
in eFigure 1 and eMethods 1 in the Supplement.

Main Outcome Measures
Prespecified vascular outcomes included major coronary events
(myocardial infarction, coronary revascularization, or death
from CHD), stroke, occlusive CVD (major coronary events or is-
chemic stroke), major vascular events (major coronary events,
stroke, or vascular-associated death), and their components (see
eMethods 2 in the Supplement for ICD-10 codes). Common con-
trols for vascular outcomes excluded individuals reporting a his-
tory of CHD, stroke, or transient ischemic attack at baseline or
any major vascular event during follow-up. Other outcomes in-
cluded diabetes, COPD, chronic kidney disease, liver disease,
cancer, eye disease, and nonvascular death; controls for these
outcomes excluded individuals reporting a history of that dis-
ease at baseline when appropriate. Incident events in the
range of ICD-10 codes A00 to N99 were grouped into 41 dis-
tinct categories for a phenome-wide analysis using a previ-
ously described approach.30 For these 41 ICD-10 categorized
outcomes, no exclusions for prevalent diseases were made
from controls. For all outcomes, no exclusions for prevalent
diseases were made from cases (ie, not all cases were new
onset), and hospital episodes were restricted to those identi-
fied from inpatient records.

Statistical Analyses
Measurements of lipid and lipoprotein levels were stratified
by area and standardized by rank inverse normal transforma-
tion after adjustment for sex and age. Continuous traits were

assessed by linear regression, and disease outcomes were as-
sessed by logistic regression with stratification by area and ad-
justment for sex and age. Individuals with missing genotype
data were excluded from analyses of the relevant variant or the
genetic score. An additive (per allele) model was used for in-
dividual variants. A multivariable model including 5 CETP vari-
ants was used to obtain independent per-allele associations
with rank inverse normal-transformed HDL cholesterol lev-
els, with mutual adjustment to account for linkage disequi-
librium (ie, correlation) between variants (eTable 2 in the
Supplement). Per-allele associations from the multivariable
model (eTable 3 in the Supplement) were used to construct a
weighted genetic score.31 Among participants with lipid-
level measurements, unbiased internal weights were derived
by 100-fold cross-validation. Among participants without lipid-
level measurements, weights were derived directly from the
multivariable model. Given the variance in HDL cholesterol lev-
els explained by the genetic score (eTable 3 in the Supple-
ment), the study had more than 80% power at P < .05 to de-
tect a 20% lower risk for major coronary events or a 10% lower
risk for major vascular events, for a 1-SD higher HDL choles-
terol level. Associations of rs2303790 and the CETP genetic
score with outcomes were scaled to correspond to 10-mg/dL
higher HDL cholesterol levels (to convert to millimoles per
liter, multiply by 0.0259). Subgroup analyses were per-
formed by urban or rural area, age group, sex, smoking, and
alcohol consumption. P values are presented as unadjusted for
multiple testing, unless otherwise indicated. For assessment
of significance, α = .05, a Bonferroni-corrected threshold was
used that divided 0.05 by the number of outcomes examined
(8 vascular, 7 nonvascular, or 41 phenome wide) or by the num-
ber of principal components accounting for 95% of variation
in the proton nuclear magnetic resonance metabolomics data
set (18). All analyses used SAS software (version 9.3; SAS
Institute, Inc).

Results
Among the 151 217 individuals included in this study, the mean
(SD) age was 52.3 (10.9) years. A total of 58.4% were women
and 41.6% were men; 42.0% were from urban areas (Table).
Compared with controls, individuals reporting a major vascu-
lar event during follow-up were older, less likely to be female,
and more likely to reside in urban areas (eTable 4 in the Supple-
ment). In a subset selected for CVD case-control studies with
no self-reported history of CVD or treatment to lower lipid
levels at baseline, the mean (SD) baseline plasma HDL choles-
terol concentration was 48 (12) mg/dL; LDL cholesterol con-
centration, 91 (27) mg/dL; and total cholesterol concentra-
tion, 180 (38) mg/dL. Median triglyceride concentration
was 139.8 mg/dL (interquartile range, 95.6-211.5 mg/dL; to
convert to millimoles per liter, multiply by 0.0113).

The CETP loss-of-function variant rs2303790-G (allele fre-
quency, 2%; eTable 1 in the Supplement) was associated with
6.1-mg/dL (SE, 0.4-mg/dL) higher HDL cholesterol levels per
allele (equivalent to 0.53 of the SD; P = 9.4 × 10−47) (eTable 5
in the Supplement). The 4 common CETP variants were also
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associated with higher HDL cholesterol levels (1.4-3.6 mg/dL
per allele; allele frequencies, 16%-88%). In a joint model,
all 5 variants had independent associations with HDL choles-
terol level (0.7-4.0 mg/dL per allele) (eTable 3 in the Supple-
ment), and in the absence of measured CETP activity, a
genetic score was weighted according to these HDL choles-
terol associations.

Baseline characteristics of the study participants, includ-
ing age, income, smoking, and alcohol drinking, did not vary
significantly by rs2303790 genotype or the CETP genetic score
after adjustment for sex, age, and area (eTable 6 in the Supple-
ment), indicating that analyses of rs2303790 and the genetic
score were not confounded by these factors. However, the
prevalence of previously diagnosed hypertension varied across
the tertiles of the genetic score (12.8% vs 11.9% for the lowest
compared with highest tertile; P = 3.5 × 10−5 for trend).

The loss-of-function variant rs2303790 was not associ-
ated with LDL cholesterol or triglyceride levels but was associ-
ated with 0.19 mg/dL (95% CI, 0.04-0.35 mg/dL) lower lipopro-
tein(a) levels when scaled to a 10-mg/dL higher HDL cholesterol
level (Figure 1). The CETP genetic score, similarly scaled to
10-mg/dL higher HDL cholesterol levels, was associated with
2.4-mg/dL (95% CI, 0.6- to 4.2-mg/dL) higher LDL cholesterol
levels, 14.6-mg/dL (95% CI, 5.2- to 24.0-mg/dL) lower triglyc-
eride levels, and 0.09-mg/dL (95% CI, 0.00- to 0.18-mg/dL)
lower lipoprotein(a) levels. The 4 common CETP variants as-
sessed individually were all associated with higher LDL cho-
lesterol levels (0.6-1.2 mg/dL per allele) (eTable 5 in the Supple-
ment), and all except rs9939224 were associated with lower
triglyceride levels (3.1-4.9 mg/dL per allele). When assessed sepa-
rately by area, the associations of rs2303790 or the genetic score
with LDL cholesterol level were not related to the mean LDL cho-
lesterol level in each area (eTable 7 in the Supplement).

We found similar patterns of association for rs2303790 and
the CETP genetic score with the lipid compositions of lipopro-
tein particles measured by proton nuclear magnetic reso-
nance metabolomics. Consistent with the expected associa-
tions of lower CETP activity (ie, a genetic proxy for CETP
inhibition), CETP variants that increased HDL cholesterol
levels were associated with higher levels of esterified choles-
terol within large and medium HDL particles and lower levels
within extra large, very large, and large VLDL particles rela-
tive to the total lipid content of these particles (Figure 2). Con-
versely, levels of triglycerides relative to total lipids were
higher in VLDL particles and lower in HDL particles. Further-
more, HDL particle size was larger and LDL particle size smaller,
and the concentration of mature (large and very large) HDL par-
ticles was higher (eFigure 2 in the Supplement). The overall
concentration of cholesterol in HDL and LDL particles was
higher and, in VLDL particles, was lower.

In analyses of continuous traits, the CETP genetic score
was associated with lower systolic blood pressure of 0.74
(SE, 0.25) mm Hg per 10-mg/dL higher HDL cholesterol level
(P = .004) (eTable 8 in the Supplement). Neither rs2303790
nor the CETP genetic score was associated with body mass
index, waist circumference, or random plasma glucose lev-
els, nor were they associated with carotid intima media
thickness or carotid plaque.

We found no associations of rs2303790 or the CETP ge-
netic score with risk for major vascular diseases (Figure 3). For
major occlusive CVD events, the adjusted odds ratios (ORs)
were 1.01 (95% CI, 0.89-1.16; 18 585 events) for rs2303790 and
0.98 (95% CI, 0.91-1.06; 18 550 events) for the genetic score,
both scaled to 10-mg/dL higher HDL cholesterol levels. The
CETP genetic score was not associated with the components
of occlusive CVD, including major coronary events (OR, 1.08;
95% CI, 0.95-1.22; 5767 events) and ischemic stroke (OR, 0.94;

Table. Selected Baseline Characteristics of the Study Population

Characteristic
Data
(N = 151 217)

Age, mean (SD), y 52.3 (10.9)

Female, No. (%) 88 361 (58.4)

Urban area, No. (%) 63 447 (42.0)

Educational attainment >6 y, No. (%) 30 018 (19.9)

Income >20 000 yuan/y, No. (%)a 60 936 (40.3)

Disease history, No. (%)

Hypertension 18 731 (12.4)

CHD 4534 (3.0)

Stroke or transient ischemic attack 2358 (1.6)

Diabetes 5145 (3.4)

Medication use, No. (%)

Antihypertensives 7616 (5.0)

Statins 332 (0.2)

Regular smoking, No. (%) 40 634 (26.9)

Regular alcohol consumption, No. (%) 22 742 (15.0)

Physical activity, mean (SD), MET-h/d 20.7 (13.9)

Systolic blood pressure (SD), mm Hg 132.5 (22.1)

Standing height, mean (SD), cm 158.6 (82.8)

Body mass index, mean (SD)b 23.6 (3.4)

Waist circumference, mean (SD), cm 80.2 (9.9)

Random plasma glucose level, mean (SD), mg/dLc 109.9 (43.2)

Lipid and lipoprotein levels, mean (SD)d

HDL cholesterol 47.7 (11.5)

LDL cholesterol 91.4 (27.4)

Total cholesterol 180.0 (38.3)

Lipoprotein(a) 1.04 (1.31)

Apolipoprotein A1 134.1 (22.3)

Apolipoprotein B 83.8 (21.2)

Triglycerides, median (IQR) 139.8 (95.6-211.5)

Abbreviations: CHD, coronary heart disease; CVD, cardiovascular disease;
HDL, high-density lipoprotein; IQR, interquartile range; LDL, low-density
lipoprotein; MET, metabolic task equivalent.

SI conversion factors: To convert cholesterol to millimoles per liter, multiply by
0.0259; glucose to millimoles per liter, multiply by 0.0555; lipoprotein(a) to
micromoles per liter, multiply by 0.0357; lipoproteins A1 and B to grams per
liter, multiply by 0.01; and triglycerides to millimoles per liter, multiply by
0.0113.
a One yuan equals US $0.15.
b Calculated as weight in kilograms divided by height in meters squared.
c Measured in 148 693 individuals.
d Measured by clinical biochemistry in a selected subset of 17 854 individuals

with incident CVD and control individuals with no history of CVD at baseline
and not using statin treatment. Unless otherwise indicated, data are reported
as milligrams per deciliter.
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95% CI, 0.86-1.02; 13 759 events). Similarly, we found no as-
sociations of the genetic score with myocardial infarction (OR,
1.14; 95% CI, 0.97-1.35), intracerebral hemorrhage (OR, 0.94;
95% CI, 0.83-1.06), total stroke (OR, 0.94; 95% CI, 0.87-1.01),
vascular death (OR, 1.01; 95% CI, 0.90-1.12), or major vascu-
lar events (OR, 0.97; 95% CI, 0.91-1.04). Estimates for rs2303790
were similar. We found no differences in the associations of
the CETP genetic score with occlusive CVD among several sub-
groups (eTable 9 in the Supplement). Adjusting for systolic
blood pressure had no material effect on the association of the
genetic score with occlusive CVD.

No associations were observed for diabetes, COPD,
chronic kidney disease, cancer, and nonvascular death
(Figure 4). However, a higher risk for eye diseases was found
with rs2303790 (OR, 1.43; 95% CI, 1.13-1.80; P = .003), which
was significant after adjustment for multiple testing. Of 4090
eye disease events, 2980 were cataracts, and rs2303790
showed the same direction of association with cataracts (OR,
1.43; 95% CI, 1.09-1.88; P = .01) as with noncataract eye dis-
eases (OR, 1.53; 95% CI, 0.99-2.35; P = .06). The association
of the CETP genetic score with eye diseases was directionally
consistent (OR, 1.17; 95% CI, 1.02-1.35; P = .03) but was not
significant after correction for multiple testing. Analyses of
age-related macular degeneration suggested a direction of
association (OR, 1.39; 95% CI, 0.42-4.44 for the genetic score)
consistent with previous reports of the association of age-
related macular degeneration with CETP gene variants; how-
ever, rs2303790 could not be reliably assessed owing to the
low allele frequency and limited number of cases (70
reported among genotyped participants).24,32,33 In the

phenome-wide screen, we found no associations of the CETP
genetic score with any of the 41 ICD-10 coded disease catego-
ries, including diseases of the nervous system (OR, 1.49; 95%
CI, 1.16-1.92; P = .002), after correction for multiple testing
(Bonferroni-corrected threshold P = .05 for 41 disease catego-
ries, P = .001) (eFigure 3 in the Supplement).

Discussion
This large genetic study of 151 217 Chinese adults found no evi-
dence to support a beneficial association with CVD of increas-
ing HDL cholesterol concentration through CETP inhibition.
Four common CETP variants and an East Asian loss-of-
function variant were associated with higher HDL choles-
terol levels but did not lower LDL cholesterol levels, as seen
in previous genetic studies performed mainly in European
populations and with pharmacologic CETP inhibitors.7,8,17

These genetic variants influenced lipid and lipoprotein par-
ticle metabolism in a manner consistent with lower CETP ac-
tivity, including reduced CETP-mediated movement of esteri-
fied cholesterol from mature HDL particles to VLDL in parallel
with reduced movement of triglycerides from VLDL to HDL.
However, we found no significant association of the loss-of-
function variant rs2303790 or a CETP genetic score with the
risk of occlusive CVD, major coronary events, stroke sub-
types, or other major vascular diseases. When we assessed a
range of predefined nonvascular diseases to identify other
potential risks and benefits of CETP inhibition, rs2303790 was
associated with an increased risk for eye diseases.

Figure 1. Associations of rs2303790 and a CETP Genetic Score With Lipids and Lipoproteins
Measured by Clinical Biochemical Analysis
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rank inverse normal
transformation–standardized traits
measured by clinical biochemical
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Findings were adjusted for sex and
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Further adjustment for time since the
last meal or cardiovascular disease
case or control status had no
appreciable effect on the
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Common CETP variants have been associated with a mod-
est lower risk for CHD, mainly in populations of European ori-
gin, including recent large studies that reported an approxi-
mately 5% lower risk with genetic variants that increased HDL
cholesterol levels.12,15,16 These results are in contrast to the
present null findings. Common CETP variants were also asso-
ciated with an almost 2-fold increased risk for intracerebral
hemorrhage in a meta-analysis involving 2800 cases of Euro-
pean origin,14 but with 6500 cases, we found no such associa-
tion with intracerebral hemorrhage. Rare protein-truncating
variants in populations of East Asian and European ancestry
have been associated with lower CHD risk, and 2 studies in
East Asians involving a total of 5082 cases reported an
approximately 17% lower risk for CHD with rs2303790.23-25

However, when published data for rs2303790 were meta-
analyzed with results from the present study, no significant
association was evident (for 10 856 coronary events, OR, 0.97;
95% CI, 0.88-1.07) (eTable 10 in the Supplement) nor was there
any association with the intermediate CVD traits carotid thick-

ness and plaque. Of note, coronary events in the present study
population showed the expected associations with variants at
9p21 (eTable 11 in the Supplement).

The association of CETP variants with CVD risk in previ-
ous studies16,25 may have been influenced, partly or wholly,
by lower LDL cholesterol level or other lipid-related factors
rather than higher HDL cholesterol level. The association of
common CETP variants with LDL cholesterol levels in the
present study were consistent with other studies in East
Asians28 but directionally different from previous studies in
Europeans17 (eTable 12 in the Supplement). Differences in LDL
cholesterol level measurement methods may have contrib-
uted to such discrepancies because most previous studies
contributing to the large European consortia17 estimated LDL
cholesterol level using the Friedewald formula in contrast to
the present study, which measured LDL cholesterol level
directly. A study in Japanese adults also using the Friedewald
formula23 found that rs2303790 was associated with 0.2-SD
lower LDL cholesterol level, an association not seen in the

Figure 2. Associations of rs2303790 and a CETP Genetic Score With Lipoprotein Particle Composition
Measured by Proton Nuclear Magnetic Resonance (NMR) Metabolomics
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present study. If the composition of VLDL particles is altered,
as with genetic or pharmacologic CETP inhibition, then this al-
teration may affect the comparability of LDL cholesterol lev-
els measured directly or estimated using the Friedewald
formula.34

Although inverse associations between HDL cholesterol
concentration and occlusive CVD have been widely reported
in large prospective studies,1, 2 including the CKB,35

the causal relevance of such associations has not been
established.12,36,37 In a prospective study, HDL efflux capacity
was inversely associated with atherosclerotic CVD risk in a
population in which HDL cholesterol concentration had no
significant association.38 Another recent study reported that
a functional variant in the scavenger receptor B1 (SRB1) gene,
which blocks uptake of HDL-associated cholesterol into the
liver, was associated with higher HDL cholesterol level and
increased CHD risk.39 Any associations of elevated HDL cho-
lesterol level with vascular disease may vary depending on
the mechanisms involved and may not be beneficial if
aspects of reverse cholesterol transport, such as cholesterol
efflux, or other important functions of HDL are impeded.

With linkage to electronic health records in a large pro-
spective study, we were able to assess the associations of CETP

genetic variants with a range of diseases, which could identify
other potential beneficial or adverse associations with life-
long lower CETP activity. The risk for eye disease was
elevated with rs2303790, with weaker but directionally con-
sistent findings for the CETP genetic score. In a recent genome-
wide study of age-related macular degeneration in East
Asians,24 the strongest association signal was observed
for rs2303790 (OR, 1.70; P = 5.6 × 10−22). Other studies of
age-related macular degeneration in East Asians and
Europeans32,33,40 have identified associations at CETP and other
loci associated with HDL cholesterol levels, suggesting that
higher HDL cholesterol level or other changes may be associ-
ated with an increased risk for age-related macular degenera-
tion. The present study had only a limited number of reported
age-related macular degeneration cases, but the direction of
association with CETP variants was consistent with previous
reports. These results suggest that CETP inhibition may have
a potential adverse association with eye diseases.

Strengths and Limitations
Genetic studies are a useful tool in drug development, spe-
cifically by prioritizing targets, assessing safety, and identify-
ing opportunities for alternative indications.10 Although the

Figure 3. Associations of rs2303790 and a CETP Genetic Score With Vascular Diseases
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The association of rs2303790 and a
CETP genetic score (consisting of
rs3764261, rs1800775, rs708272,
rs9939224, and rs2303790) with
vascular diseases was scaled to
10-mg/dL higher levels of
high-density lipoprotein cholesterol.
Findings were adjusted for sex and
age and stratified by study area.
Squares represent the odds ratio
(OR) with area inversely proportional
to the variance of the logarithm OR.
Error bars represent the
corresponding 95% CIs. P values in
the plot are not adjusted for multiple
testing, but Bonferroni adjustment
for 8 outcomes would result in a
threshold of P < .0063 (.05/8).
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present study did not measure CETP levels or activity, the
genetic associations with lipid and lipoprotein metabolism
were consistent with lower CETP activity and suggest that
increasing HDL cholesterol levels through this pathway may
not be associated with reduced CVD risk. Pharmacologic
CETP inhibitors, however, have more potent effects to raise
HDL cholesterol levels than genetic variants, as well as other
potentially favorable lipid modifications, including lowering
LDL cholesterol levels.7,8,18 In contrast, in the present study,
LDL cholesterol level was modestly increased in association
with the CETP genetic score. Genetic studies are also limited
to assessing on-target drug effects and are not able to iden-
tify off-target toxic effects, such as the increased blood pres-
sure seen with torcetrapib (blood pressure was also slightly
increased with other CETP inhibitors).4-8 Systolic blood pres-
sure was, in contrast, modestly lower with CETP variants in
the present study. The present study provides important
new evidence about the relevance of increasing HDL choles-

terol levels through lower CETP activity and complements
findings from the Randomized Evaluation of the Effects
of Anacetrapib Through Lipid Modification (REVEAL) trial,8

in which the approximately 10% lower risk for major coro-
nary events was consistent with the observed reduction in
non-HDL cholesterol levels, suggesting that the benefits
were not driven by increasing HDL cholesterol levels.

Conclusions
Genetic variants in the CETP gene that were associated with
altered HDL metabolism but not lower LDL cholesterol lev-
els had no association with CVD risk in 151 217 Chinese
adults. These results suggest that in the absence of signifi-
cantly reduced LDL cholesterol, increasing HDL cholesterol
levels by CETP inhibition may not be associated with
reduced risk for CVD.
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Figure 4. Associations of rs2303790 and a CETP Genetic Score With Nonvascular Diseases
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Malignant neoplasms 6458 127 882 1.14 (0.94-1.38) .18
Eye diseases 4090 130 697 1.43 (1.13-1.80) 2.8 × 10−3

Nonvascular mortality 5991 128 796 1.05 (0.85-1.29) .65
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CETP genetic scoreB

End Point
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The association of rs2303790 and a
CETP genetic score (consisting of
rs3764261, rs1800775, rs708272,
rs9939224, and rs2303790) with
nonvascular diseases was scaled to
10-mg/dL higher levels of
high-density lipoprotein cholesterol.
Findings were adjusted for sex and
age and stratified by study area.
Squares represent the odds ratio
(OR) with area inversely proportional
to the variance of the logarithm OR.
Error bars represent the
corresponding 95% CIs. P values in
the plot are not adjusted for multiple
testing, but Bonferroni adjustment
for 7 outcomes would result in a
threshold of P < .0071 (.05/7).
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