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IMPORTANCE Outcomes for patients with pancreatic ductal adenocarcinoma (PDAC) remain

poor. Advances in next-generation sequencing provide a route to therapeutic approaches,

and integrating DNA and RNA analysis with clinicopathologic data may be a crucial step

toward personalized treatment strategies for this disease.

OBJECTIVE To classify PDAC according to distinct mutational processes, and explore their

clinical significance.

DESIGN, SETTING, AND PARTICIPANTS Weperformed a retrospective cohort study of resected

PDAC, using cases collected between 2008 and 2015 as part of the International Cancer

Genome Consortium. The discovery cohort comprised 160 PDAC cases from 154 patients

(148 primary; 12 metastases) that underwent tumor enrichment prior to whole-genome and

RNA sequencing. The replication cohort comprised 95 primary PDAC cases that underwent

whole-genome sequencing and expressionmicroarray on bulk biospecimens.

MAIN OUTCOMES ANDMEASURES Somaticmutations accumulate from sequence-specific

processes creating signatures detectable by DNA sequencing. Using nonnegative matrix

factorization, wemeasured the contribution of each signature to carcinogenesis, and used

hierarchical clustering to subtype each cohort. We examined expression of antitumor

immunity genes across subtypes to uncover biomarkers predictive of response to systemic

therapies.

RESULTS The discovery cohort was 53%male (n = 79) and had amedian age of 67

(interquartile range, 58-74) years. The replication cohort was 50%male (n = 48) and had a

median age of 68 (interquartile range, 60-75) years. Five predominant mutational subtypes

were identified that clustered PDAC into 4major subtypes: age related, double-strand break

repair, mismatch repair, and 1 with unknown etiology (signature 8). These were replicated

and validated. Signatures were faithfully propagated from primaries to matchedmetastases,

implying their stability during carcinogenesis. Twelve of 27 (45%) double-strand break repair

cases lacked germline or somatic events in canonical homologous recombination

genes—BRCA1, BRCA2, or PALB2. Double-strand break repair andmismatch repair subtypes

were associated with increased expression of antitumor immunity, including activation of

CD8-positive T lymphocytes (GZMA and PRF1) and overexpression of regulatory molecules

(cytotoxic T-lymphocyte antigen 4, programmed cell death 1, and indolamine

2,3-dioxygenase 1), corresponding to higher frequency of somatic mutations and

tumor-specific neoantigens.

CONCLUSIONS AND RELEVANCE Signature-based subtypingmay guide personalized therapy

of PDAC in the context of biomarker-driven prospective trials.
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P
ancreatic ductal adenocarcinoma (PDAC) has the

lowest 5-year overall survival (OS) of any epithelial

carcinoma.1 Randomized clinical trials2,3 of adjuvant4

and palliative5,6 cytotoxic chemotherapies showmodest end

point improvements with considerable attendant toxicities.

Targeted agents investigated without biomarker selection,

including evofosfamide, programmed cell death 1 ligand

(PD-L1),7 cytotoxic T-lymphocyte antigen 4 (CTLA-4),8 and

human epiadermal growth factor receptor 29 inhibitors,

have not improved OS, except for marginal benefit from

erlotinib hydrochloride.10-12 Outcomes for patients with

PDAC will improve with rational molecular subtyping and

ensuing directed therapies, as with breast13 and lung14 carci-

nomas. The PDAC exome15-17 contains 4 driver genes, KRAS,

TP53, CDKN2A, and SMAD4, and few disturbed pathways

that are not translatable into predictive subtypes. Stratifica-

tion by somatic events, including MYC amplification

and specific KRAS mutant codons,17 is not consistently

prognostic. Structural variation in 100 genomes18 identified

4 PDAC subtypes, with 1 predictive of platinum chemo-

therapy response, but progression-free survival and OS

were not assessed. Finally, prognostic transcription-based

subtypes have been described19 and refined,20,21 but

with neither relation to genomic features nor therapeutic

implications.

Cancer genomes accumulate mutations over cell cycles

fromDNAdamageand repair.Analysesof theseprocesses,22,23

informative in other tumors,24-26 have not been comprehen-

sively reported in PDAC. Signatures representative of each

process22 can be quantified per tumor, and the population of

tumorssubtyped25bytheir relativecontributions.Genomicand

transcriptomic landscapes of antitumor immunity have been

systemically explored in other tumor types23 and predict re-

sponse to immunotherapies26,27; however, the character of

immune infiltration and its association with mutational sig-

natures has not been studied in PDAC.

We integrated genome, transcriptome, and clinico-

pathologic data from 2 independent data sets to define 4

major signature-based PDAC subtypes. These aligned with

known hereditary pancreas cancer predisposition syn-

dromes (HPCSs),28 were propagated from primary tumors to

paired metastases, and differentially expressed antitumor

immune markers.

Methods

All studies were approved by local research ethics boards or

institutional reviewboards andwritten informedconsentwas

obtained foralldonors.Whole-genomesequencing (WGS)vari-

ant calls, RNA sequencing andmicroarray expression values,

and clinical information andmetadata for discovery and rep-

lication cohorts are available from the International Cancer

Genome Consortium (ICGC) data portal.29 Discovery cohort

samplesunderwent tumorenrichmentprior to sequencing.All

reads were processed through the same data workflows. Bio-

informatics tool names and versions are provided in the

eMethods in Supplement 1.

Results

Mutational Signatures Define 4 Principal PDAC Subtypes

Our discovery cohort consisted of 148 primary PDACs and 12

metastases from 154patientswhounderwentWGS (Figure 1A

andeTable 1 in Supplement 1). For replication, 95whole PDAC

genomes from 95 patients were obtained from the ICGC

(eFigure 1 and eTable 1 in Supplement 1).

We identified 11mutational signatures inourdiscoveryand

12 inour replicationgenomesusing theapproachofAlexandrov

et al,30 which were merged by shared etiologies into 7 signa-

tures per cohort. Hierarchical clustering by the proportion of

single-nucleotide variants (SNVs) attributable to each signa-

ture (eFigure 2A and B in Supplement 1) in each cohort inde-

pendentlyconfirmed4majorsubtypes: (1) anage-relatedgroup

dominated by signatures 1 and 5, attributed to clocklike mu-

tational processes accumulated over cell divisions31; (2) a

double-strand break repair (DSBR) group characterized by

signature 3, attributed to deficiencies in homologous recom-

bination repair (HRR) of double-strand breaks; (3) a

mismatch repair (MMR) group characterized by signatures 6,

20, and26, attributed todefects inDNAMMR; and (4) a group

characterized by signature 8, of unknown etiology (Figure 1A

and eFigure 1 in Supplement 1). Therewere 2minor groups in

both cohorts, 1 dominated by signature 17, another by APO-

BEC. Tumor cellularity and coverage were consistent

betweensubtypes (eFigure3 inSupplement 1). Subtypepreva-

lence was equivalent between cohorts (P = .08, χ2).

We verified that signatures associated with their attrib-

uted etiologies. The number of SNVs in signatures 1 and 5

correlated with patient age at diagnosis across all cases (r for

discovery = 0.21, P for discovery = .008; r for replica-

tion = 0.23,P for replication = .03; Pearson correlation),while

total SNVs did not (eFigure 4 in Supplement 1).

Tumors dysfunctional in HRR rely on nonconservative

forms of DSBR, namely, single-strand annealing, which cre-

ates large structural deletions,32,33 and nonhomologous end

joining andmicrohomology-mediated end joining,which cre-

ate short deletions (3-20base pairs [bp] in length). Consistent

Key Points

Question Canmutational signatures be used for developing

translationally relevant personalized treatment in patients with

pancreas cancer?

Findings Using a discovery/validation cohort study of resected

pancreas cancer cases from the International Cancer Genome

Consortium, distinct somatic mutational signatures in genomic

DNA and RNAwere identified. Mechanisms of both germline and

somatic genomic instability, characteristic of DNAmismatch repair

and double-stranded break repair, were found in approximately

12% of cases and were associated with transcriptional and

immunohistochemical hallmarks of antitumor immune activation.

Meaning Mutational signatures may guide biomarker

development and application of personalized chemo/

immunotherapeutic approaches for a subset of patients with

pancreas cancer.
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with this, DSBR cases had greater numbers of both large

structural and short deletions greater than 3 bp relative to

age-related cases (P for discovery < .001 for each; P for repli-

cation < .001; Wilcoxon) (Figure 1A and eFigure 5 in

Supplement 1).

The MMR cases had dramatically more SNVs than the

age-related cases (P for discovery < .001; Wilcoxon)

(Figure 1A). Mismatch repair deficiency was verified by

immunohistochemical analysis and a polymerase chain

reaction (PCR)-based assay (eTable 2 in Supplement 1). Of

Figure 1. Mutational Signatures in Primary andMetastatic Pancreatic Ductal Adenocarcinoma
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A, Bar plot of proportion of 7 merged signatures in each of the 160 discovery

tumors, sorted by hierarchical clustering (dendogram at bottom), showing

germline (dark blue), somatic (mauve), and occult (white) double-strand break

repair (DSBR) etiologies and heat maps for total number of single-nucleotide

variants (SNVs), total number of neoantigens, total number of indels, total

number of short deletions (dels) greater than 3 base pairs (bp), total number of

structural deletions, and transcriptional subtypes (Moffitt tumor class, Collisson

class, and Bailey class) in cases for which RNA sequencing is available for the

tumor. B, Bar plots of proportion of 7 merged signatures in paired primary

tumors andmetastases from 4 cases. ADEX indicates aberrantly differentiated

endocrine exocrine.
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the 4 MMR cases, 3 had germline and 1 had only somatic

mutations in MMR genes (eTable 3 in Supplement 1). Pub-

lished frequencies of MMR deficiency in PDAC vary

widely.17,34 Absence of MMR from the replication cohort is

likely due to its smaller size. To validate MMR prevalence,

we stained a tumor microarray of 370 PDACs from the Euro-

pean Society Group for Pancreatic Cancer (ESPAC)35-37 for 4

MMR proteins. Of 342 successfully stained, 6 were immuno-

deficient. Assuming discovery, replication, and ESPAC

cohorts to be unbiased samplings of 1 population, we infer

MMR deficiency prevalence in PDAC to be 1.7% (95% CI,

0.65%-2.7%), nearly equal to that of Lynch syndrome in

PDAC38 (eTable 4 in Supplement 1). Somatic MMR defi-

ciency thus contributes little to PDAC, unlike colorectal39

and endometrial40 cancers.

The discovery cohort included 12 metastases: 10 age re-

lated, 1 DSBR, and 1 MMR. Five of these werematched with 3

primaries and showed faithful propagation of signatures

(Figure 1B), including aDSBRpairwith a germlinePALB2mu-

tation. This implies that mutational processes are estab-

lished early in carcinogenesis and is important for trials in

which PDACmetastases are more safely biopsied. Paired pri-

maries and metastases were obtained at autopsy from pa-

tients who received palliative chemotherapy (eTable 5 in

Supplement 1).

Tiers of DSBRDeficiency

Clinical interest in HRR deficiency is increasing, with tai-

lored treatment strategies for breast41 and ovarian42 cancer.

Of 17 discovery DSBR cases, 11 are explained by biallelic

inactivation of BRCA1, BRCA2, or PALB2. Nine had patho-

genic germline mutations with somatic inactivations of the

second allele, and 2 had biallelic somatic inactivations

(eTable 6 in Supplement 1). The remaining 6 were occult,

lacking germline or somatic inactivation of canonical HRR

genes, referred to as “BRCAness” in the literature.33 In the

replication cohort, DSBR etiology was similar, with 2 germ-

line, 2 somatic, and 6 BRCAness. We inferred DSBR preva-

lence in PDAC to be 10.8% (95% CI, 7.0%-14.7%), comprising

4.4% (95% CI, 1.9%-7.0%) germline deficiency, 1.6% (95%

CI, 0.04%-3.2%) somatic, and 4.8% (95% CI, 2.2%-7.5%)

BRCAness. This germline frequency is nearly equal to the

prevalence of germline BRCA1 or BRCA2 deficiency in

PDAC,43 implying that PALB2 contributes minimally to

PDAC predisposition.

In theamalgamateddiscoveryand replicationDSBRcases,

the proportion of SNVs attributed to signature 3 was greater

in germline than somatic cases, with BRCAness cases inter-

mediate (Figure 2). The number of SNVs attributed to a

mutational process likely increases with its duration in

tumorigenesis.30 Thus, germline cases may become HRR de-

ficient earlier, while somatic cases become deficient later or

subclonally, with BRCAness an admixture of both etiologies.

This may have implications for therapies targeting HRR defi-

ciency. BRCAness cases also have relatively low numbers of

structural variants (SVs) (Figure 2) and may alternatively

harbor a mutational process distinct from classical HRR

deficiency.

Assuming that 1 or a few genes with “2 hits” explain the

12 BRCAness cases, we agnostically compared frequencies of

biallelic inactivation of genes in the DSBR and age-related tu-

mors of our amalgamated cohorts (Figure 3). We considered

onlyprimary tumors becausemetastasis-specific eventswere

reported in PDAC.44 BRCA2 was the only gene preferentially

inactivated in theDSBR group (false discovery rate, 0.004%).

The idiopathic signature 8 is similar to signature 3, with

theadditional featureof strandbias forC>Asubstitutions. The

latterwas reported in PDACexomes17 and attributed to smok-

ing, aPDAC risk factor,45 althoughourdatadonot support this

epidemiologic association (eFigure 6 in Supplement 1). Signa-

ture8 isalso found inbreastcancer,30,46suggestedasdueeither

to past activity of transcription-coupled nucleotide excision

repair or to HRR deficiency. Comparison of frequencies of bi-

allelic inactivation per gene in signature 8 with either DSBR

or age-related primary cases revealed no associations (eFig-

ure 7A and B in Supplement 1). One signature 8 case bore a

germline missense mutation (rs141465583) of uncertain sig-

nificance in BRCA1 with somatic loss of the wild-type allele.

This variant is unlikely to impair HRR because overexpres-

sion of green fluorescent protein (GFP)-fused BRCA1 p.P977L

restored the ability of RAD51 to form ionizing radiation–

induced foci in U2OS Flp-In cells depleted of endogenous

BRCA1 to a similar extent as wild-type GFP-BRCA1 (eFigure 8

in Supplement 1). Thus, occult drivers of BRCAness and sig-

nature 8 either were so heterogeneous that each affected few

cases orwerenot assayed—for example, noncodingor epigen-

etic changesorhaploinsufficiencyof anHRR-pathwaygeneor

exogenous carcinogens.

Mutational Signatures Are Linked

to Predisposition Syndromes

Truncating germlinemutations of HPCS genes were found in

16 cases inourdiscovery cohort, includingBRCA1,BRCA2,and

PALB2mutations in 10,MSH2 andMSH6 in 3, ATM in 2, and

CDKN2A in 1. Therewere 7HPCS carriers in the replication co-

hort, including 4 BRCA2, 1 PALB2, 1ATM, and 1 PMS2 (eTable

7 in Supplement 1). Age at diagnosis differed in discovery but

not replication donors with vs without HPCS (P for discov-

ery = .002, P for replication = .32, t test) (eFigure 9 in

Supplement 1).

MostpatientswithHPCSdeveloped tumorsdrivenbypro-

cesses linked to their predispositions, demonstrating the im-

portanceof recognizingHPCS, includinggeneticcounselingand

germline testing. A minority developed tumors with pro-

cessesunrelated to theirpredisposition.ThesomaticMMRdis-

covery case had a germline BRCA2 frameshift. Another dis-

coverydonorhadagermlineMSH6 frameshift,buta tumor that

wasmicrosatellite stable andstronglypositive for signature 17,

ofunknownetiology.One replicationcasehadagermlinestop-

gain inPMS2 (not long-rangePCRverified) thatwasmicrosat-

ellite stable, and 2 cases had germline BRCA2 truncations

without somatic “secondhits” that lacked signature 3. The lat-

ter agrees with a mouse model heterozygous for BRCA2 that

retained thesecond, functional allele inPDACandwasnot sen-

sitive to mitomycin C and PARP1 (poly [ADP-ribose] poly-

merase 1) inhibitors.47
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Ninediscovery and7 replication caseshadbiallelic events

inATM. Only 1 bore signature 3, the replication germlineATM

carrierwho lacked inactivationof another canonicalHRRgene

(eFigure 10 in Supplement 1).

Integration ofMutational SignaturesWith Gene Expression

We performed RNA sequencing on 76 discovery tumors. Our

replication cohort had array expression data for 91 cases. We

classified these by the methodologies of Collisson et al,19

Moffitt et al,20 and Bailey et al.21 As with other cancers,

including melanoma24 and colorectal cancer,48 mutational

and transcriptional subtypes did not overlap (eFigure 11 in

Supplement 1). Survival analyses had a nonsignificant find-

ing of worse prognosis in the Moffitt basal subtype (eFigure

12 in Supplement 1).

Weused gene sets23 representative of 16 categories of im-

mune function to characterize local immune activity. Adap-

tive immunity and co-inhibition genes were more highly ex-

pressed in DSBR and MMR cases (Figure 4A and eFigure 13A

in Supplement 1). Cytolytic activity of infiltrating CD8-

positive T lymphocytes, measured by the geometric mean of

GZMA and PRF1 expression, and co-regulatory molecules,

namely, CTLA-4, PD-L1, PD-L2, and indolamine 2,3-

dioxygenase 1 (IDO-1),were increased inDSBRandMMRrela-

tive to age-related cases (eFigure 14 in Supplement 1), remi-

niscent of expression patterns in melanoma responsive to

checkpoint blockade.26 Clustering of cases by differential ex-

pression of the genes in these sets23 identified most DSBR

(discovery, 6 of 6DSBR; replication, 5 of 8) and allMMR cases

as “immunogenic” (eFigures 15 and 16 in Supplement 1).

The DSBR primary and metastasis pair both had high cyto-

lytic activity, implying that antitumor responses are driven

intrinsically.

To relate signatures to elevated cytolytic activity, we

enumerated tumor neoantigens in discovery and replication

cases. These paralleled SNV counts (r for discovery = 0.98,

P for discovery < .001; r for replication = 0.85, P for replica-

tion < .001; Pearson) (Figure4BandeFigure 13B inSupplement

1) and were elevated in DSBR and MMR cases (P for discov-

ery < .001; P for replication < .001; DSBR vs age related;

Wilcoxon) (eFigure 17 in Supplement 1). The number of neo-

antigens per SNV did not differ by subtype, implying that no

signature was inherently immunogenic. Neither neoantigen

nor SNV counts were associated with OS (eFigure 18 in

Supplement 1). We found no other drivers of antitumor

immunity, including incorporation of exogenous viruses or

expression of endogenous retroviruses or of cancer testes

antigens.

Figure 2. Etiologic Stratification of Double-Strand Break Repair Genomes
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Equal frequencies of biallelic mutations in genes in the

DSBR and age-related cases (Figure 3) imply that neither tu-

mor suppressor, nor HLA class 1, nor extrinsic apoptosis gene

inactivation is an immune resistance strategy in PDAC.

Cytolytic activity and CD8A and PD-L1 expression

strongly correlated with CD8 and PD-L1 immunohistochem-

istry on a tumor microarray of 33 separate PDAC cases, vali-

dating our RNA sequencing results (Figure 5). Histologic

analysis from 81 discovery cases showed no difference in

the degree of peritumoral and intratumoral inflammation

across signature classes, implying that microscopy alone

cannot accurately measure local antitumor immunity (eFig-

ure 19 in Supplement 1).

Prognostic and Predictive Value ofMutational Signatures

Signature groupswereneither prognostic nor associatedwith

tumor grade and stage (eFigures 20 and 21 in Supplement 1).

Favorable outcomes are anecdotally reported for MMR-

deficient PDAC.49-51 The 4 discovery MMR patients had me-

dianOSof 1281 (interquartile range [IQR], 1248-1457)dayscom-

paredwith461 (IQR, 254-1165) days for age-related cases. The

patient with the stage IVMMR tumor is alive 24months from

diagnosis, responding to immunotherapy. In contrast, the 6

MMR immunodeficient ESPAC cases hadworse survival than

immunointact cases (P = .03, log-rank test) (eFigure 22 in

Supplement 1). Rarity of MMR deficiency precludes defini-

tive conclusions.

Roughly 1 in 10 cases in both cohorts have the DSBR sig-

nature. As HRR-deficient PDAC,18 breast,42 and ovarian41

cancers may be sensitive to platinum-based therapy,

we compared outcomes in 18 cases treated with either cis-

platin or oxaliplatin (eTable 8 in Supplement 1 and eWork-

sheet in Supplement 2). In the palliative setting, median

progression-free survival was not significantly longer in

DSBR than in age-related cases (253 [IQR, 148.5-452] vs 108

[IQR, 82-194] days) (eFigure 23 in Supplement 1). Platinum

responders were observed in both groups, suggesting that

platinum-based therapy may also benefit non-DSBR cases.

Figure 3. Association of Genetic InactivationsWith Double-Strand Break
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Figure 4. Integrated Genomic and Transcriptomic Features of Antitumor Immunity in Pancreatic Ductal Adenocarcinoma
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Sample size limitations preclude determining whether sus-

ceptibility varies with proportion of DSBR.

Discussion

Mutational signatures in WGS defined 4 major PDAC classes,

namely age related, DSBR,MMR, and signature 8. Thesewere

verified, replicated in independent cohorts, associated with

predisposition syndromes, and propagated from primary to

metastatic lesions. Cases of PDAC bearing DSBR and MMR

signatureshave elevated local antitumor immunity, drivenby

high levels of tumorneoantigens andevadedbyexpressionof

regulatory genes. This has implications for personalizedman-

agement of PDAC.

Approximately 10% of PDAC is categorized as DSBR.

Slightly more than half of these have biallelic inactivation of

HRR genes; the rest are occult. The latter have lower num-

bers of large and small deletions greater than 3 bp relative to

DSBR cases with known causal variants. These BRCAness tu-

morsmayhavemilderHRRdeficiencyormayrepresentanovel

process that generatesDSBR-likenucleotide substitutions but

is distinct from classical HRR deficiency at the SV level. We

might not expect platinum- or PARP inhibitor–based thera-

piesdirectedatHRRdeficiencies tobeaseffective in theBRCA-

ness group, nor perhaps in the somatic DSBR cases that have

a lower proportion of signature 3 attributed SNVs. Similarly,

ovarian cancers with BRCA1 promoter hypermethylation are

less sensitive to chemotherapy than those with BRCA1

mutations,52,53despitebothbeingHRRdeficient. Thismayex-

plain why exceptional responses to platinum-based chemo-

therapy are not seen in 10% of patients with PDAC in clinical

trials.Our failure to retrospectivelydetect significant improve-

ment inprogression-free survival inapalliative setting inDSBR

cases is also consistent with heterogeneous mechanisms of

HRRdeficiencyandsecondaryplatinumresistance.Biomarker-

driven prospective trials of PARP inhibitors54 and platinum-

based therapies should clarify this controversy.

Although BRCAness genomes do not appear to be driven

by 1 or a fewgenes,multiple lines of evidence support thedis-

tinction of these cases. At the nucleotide level, the analogous

mutational processes acting in germline, somatic, and occult

DSBRcasesgive rise to tumor-specificneoantigens that in turn

drive antitumor cytolytic activity, a prerequisite to success-

ful immunotherapy.23 A recent study found that metastatic

melanomas responding toanti–programmedcell death 1 (PD-1)

therapyareenrichedformutations inBRCA2.55Therateofneo-

antigen formation per SNV was equal across signature types,

implying that increasedmutationratealonemaypredict check-

point inhibitor response, as shown in colorectal cancer,27 and

platinum-based chemotherapy response, as shown in ovar-

ian cancer.56 While it has been hypothesized that sequestra-

tionprotectsPDACcells fromadaptive immunity,57-59ourdata

suggest that resistance occurs through increased expression

of PD-1, CTLA-4, and IDO-1. The potential for immuno-

therapy in PDAC has recently been demonstrated in a mouse

model that recapitulates its fibrotic stroma using T cells engi-

neered to recognize PDAC-specific antigen.60 The progres-

sivedysfunctionof theseT cells in vivo is compatiblewithour

RNA expression findings, implying a role for immune check-

point inhibition. Also, high expression of IDO-1 in both DSBR

and MMR cases argues for trials of IDO-1 inhibitors in PDAC,

Figure 5. Correlation of ImmunohistochemistryWith RNA Sequencing
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as in other cancers.61,62 Current limited success of immuno-

therapy in PDAC7,8 may be because only a minority of cases

have significant local antitumor activity. Nonetheless, our

datadonot prove responsiveness to immunotherapies in sub-

types of PDAC. Other important factors, such as host immu-

nocompetence and tumormicroenvironment,must be better

understood to facilitate use of immunotherapeutics in clini-

cal settings.

The nature of our complementary DNA–based RNA

capture did not allow assessment of expression of all endog-

enous retroviruses or cancer testes antigens, nor quantifica-

tion of tumor cellularity from RNA sequencing. Tumor cellu-

larity estimates of the same fresh tissue fromsectionsused for

WGS were not significantly different between subtypes

(eFigure 3 in Supplement 1). Our outcome analyses are lim-

ited by the retrospective nature of this work, including non-

randomized patient treatment selection and possible con-

founding factors not balanced between subtypes. Also,

biallelic inactivation of other genes important to both DNA

damage response and PDAC predisposition, such as ATM,63

was not associated with signatures, implying that either our

whole genome sample size was too small to detect all muta-

tional processes or that the contributions of mutations pro-

duced by some processes were too few to be detected.30

Nonetheless, that genomic and transcriptomic data gener-

ated separately with different platforms agree in all aspects

validates our findings.

Conclusions

Our and other sequencing efforts have focused on resect-

able PDAC, constituting one-fifth of cases. Improving out-

comes for the majority of patients with metastatic disease is

needed. Our analysis provides a framework for integrating

genomics and transcriptomics to suggest translatable differ-

ences between tumor subtypes. We are now applying this to

whole-genome and transcriptome sequences from tumor

biopsies to understand resistance to conventional treatment

and to select second-line strategies for patients with

advanced disease within the context of a prospective clini-

cal trial (NCT02750657).
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