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Abstract 

Background: Lung function, assessed by forced expiratory volume in 1 second (FEV1) and 

forced vital capacity (FVC), is inversely associated with coronary artery disease (CAD) but 

these associations could be due to confounding or reversed causality.  We conducted a two-

sample Mendelian randomization study, using publicly available data from relevant genome 

wide association studies (GWAS), to examine the role of FEV1 or FVC on CAD. 

Methods: We used the most recent GWAS on lung function to extract genetic instruments 

related to FEV1 and FVC (n=92,749). Data on the association between genetic instruments 

and CAD were obtained from CARDIoGRAMplusC4D 1000 Genomes based GWAS 

(60,801 CAD cases and 123,504 controls).  We used inverse variance weighting with a 

multiplicative random effect to estimate the genetic instrumented association of FEV1 and 

FVC on CAD. Sensitivity analyses included weighted median and MR-Egger methods. 

Results: Each standard deviation (SD) greater FEV1 was associated with a lower risk of 

CAD (Odds ratio (OR): 0.78 per SD; 95% CI: 0.62 to 0.98) with a similar magnitude for 

FVC on CAD risk (OR: 0.82 per SD; 95% CI: 0.64 to 1.06).  Estimates for FEV1 were 

similar when using MR-Egger method (OR: 0.80 per SD; 95% CI: 0.33 to 1.94) although the 

magnitude was smaller for weighted median method (OR: 0.93 per SD; 95% CI: 0.75 to 1.17). 

Estimates for FVC in the sensitivity analyses were attenuated (median) or changed direction 

(MR-Egger). 

Conclusion: Our study suggested an inverse relation between FEV1
 and CAD but for FVC, 

evidence is less clear.  

Keywords: Coronary artery disease; lung function; Mendelian randomization 
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Introduction 1 

Reduced lung function is consistently associated with higher risk of cardiovascular diseases 2 

(CVD), including coronary artery disease (CAD), in observational studies.1-5 Possible 3 

mechanisms linking reduced lung function and cardiovascular diseases include increased 4 

inflammation as people with higher lung function tend to have lower levels of inflammatory 5 

markers such as C-reactive protein and fibrinogen,6 inefficient cardio-toxic substance 6 

removal, or a mismatch of ventilation/perfusion ratio.6 However, these inverse associations 7 

could be a result of residual confounding or reverse causality. Smoking and height, which are 8 

both strongly related to lung function and cardiovascular disease in directions that would 9 

result in the direction of association between these two are particularly important sources of 10 

confounding. 2, 7 Furthermore, early CAD may result in reduced perfusion and reduced lung 11 

function, i.e. reverse causation.8 If improving lung function can reduce CAD risk this is a 12 

potentially modifiable risk factor that could have important public health benefit beyond that 13 

of improving lung function. 14 

 15 

Mendelian randomization studies may provide more credible evidence concerning the causal 16 

role of lung function in CAD than that possible with conventional observational approaches. 17 

For example, previous studies have shown that Mendelian randomization studies generate 18 

comparable results with randomized controlled trials.9 A Mendelian randomization study to 19 

test the effect of lung function on CAD would use genetic variants that are robustly 20 

associated with lung function as instrumental variables for its causal effect. As these variants 21 

are randomly allocated from parents to their offspring at conception they are less susceptible 22 

to reverse causation than observational studies.10 Furthermore, the random allocation also 23 

implies that the genetic variants were less likely to be affected by the many factors that 24 

commonly confound observational studies, which is supported by empirical evidence.10, 11 To 25 
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our knowledge, no previous Mendelian randomization studies have explored the effect of 1 

lung function on CAD. Therefore, we conducted a two-sample Mendelian randomization 2 

study to clarify the relation of lung function (forced expiratory volume in 1 second (FEV1) 3 

and forced vital capacity (FVC)) and CAD risk using summary statistics from large genome 4 

wide association studies (GWAS).12, 13 We hypothesized higher lung function (higher FEV1 5 

and FVC) would be associated with lower risk of CAD. Further, as FVC is particularly 6 

related to height (more so than FEV1), we hypothesized that inverse association between 7 

FVC and CAD would be weaker than those between FEV1 and CAD in our Mendelian 8 

randomization study, if height is a key confounder of FVC with CAD. 9 

 10 

Method  11 

The data and methods are publicly available. 12 

 13 

Summary of Study design 14 

We used two-sample Mendelian randomization with summary data from publicly available 15 

GWAS databases.12, 14  Firstly, we identified independent (r2<0.05) genetic instruments 16 

(single nucleotide polymorphisms (SNP)) strongly associated with FEV1 or FVC (p < 5x10-8) 17 

from GWAS of lung function and obtained the estimates between each of these SNPs and 18 

lung function parameters (i.e. difference in mean FEV1 or in FVC and their corresponding 19 

standard errors) – sample one.15-17 Secondly, we obtained the corresponding genetic 20 

associations for each of the lung function SNPs with CAD risk from 21 

CARDIoGRAMplusC4D 1000 Genomes-based GWAS – sample two.18 We then used these 22 

summary results to calculate the Mendelian randomization estimates of FEV1 and FVC on 23 

CAD risk, using various statistical methods as described in the statistical analysis section.19, 20 24 

 25 
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GWAS of lung function (FEV1 and FVC – Sample 1) 1 

For this study we used data from the most recent GWAS (which included both FEV1 and 2 

FVC as outcomes),15  which built on previous GWAS,16, 17 and had a combined discovery and 3 

replication sample size of 92,749 (discovery: 38,199; replication: 54,550). It was undertaken 4 

in European origin participants, and was imputed based on the 1000 Genomes Project Phase 5 

1 reference panel.15 Variants with imputation information <0.3, assessed using r2.hat (MACH 6 

and minimac) or .info (IMPUTE2), were excluded. The GWAS used linear regression 7 

adjusted for age, age2, sex, height, and principal component for population structure, 8 

separately for never and ever smokers. The residuals from FEV1 and FVC were converted to 9 

ranks and then transformed to normally distributed z scores, which were then used in an 10 

additive genetic model, separately for never and ever smokers, with the results from these 11 

two (never and ever smokers) strata then meta analyzed. In the GWAS, only SNPs previously 12 

not identified were genotyped and analyzed in both discovery and replication stages whereas 13 

previously known SNPs were only genotyped and analyzed in the discovery stage. As such, 14 

we extracted information for 17 SNPs related to FEV1 (10 from both stages and 7 from stage 15 

1) and 11 SNPs related to FVC (5 from both stages and 6 from stage 1).15  16 

 17 

GWAS of CAD: CARDIoGRAMplusC4D 1000 Genomes (Outcome – Sample 2) 18 

We obtained summary data on the estimates of each lung function GWAS SNP with CAD 19 

from CARDIoGRAMPLUSC4D (downloading these data from 20 

www.CARDIOGRAMPLUSC4D.ORG).18 CARDIoGRAMplusC4D 1000 Genomes-based 21 

GWAS is a meta-analysis of GWAS of CAD case-control studies of people of mainly 22 

European (~91%), South Asian, and East Asian descent imputed using the 1000 Genomes 23 

phase 1 v3 training set with 38 million variants. The study interrogated 9.4 million variants 24 

and included 60,801 CAD cases and 123,504 controls.18 Case status was defined as having 25 

http://www.cardiogramplusc4d.org/
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CAD if they had received a diagnosis of myocardial infarction, acute coronary syndrome, 1 

chronic stable angina, or coronary stenosis >50%. Diagnoses were ascertained in various 2 

ways in different studies; extracted from medical records, clinical diagnosis at the time of 3 

study, procedures (coronary angiography results or by-pass surgery), medications or 4 

symptoms that indicate angina, or self-report of a doctor diagnosis, as described elsewhere.18 5 

Covariate adjustment in the GWAS included study-specific covariates (e.g. age and sex) and 6 

genomic control. The GWAS reported the corresponding log odds and standard error on 7 

CAD for each SNP effect allele using an additive model.18  8 

 9 

Harmonization of the two samples 10 

To ensure correct allele harmonization, SNPs were orientated so that the effect allele was the 11 

same for both the exposure and the outcome datasets. Palindromic SNPs were checked and 12 

corrected using the effect allele frequency (EAF) reported in the exposure and outcome 13 

GWAS to identify corresponding strands between the two GWAS. If EAF is >0.42 and ≤0.50, 14 

a proxy non-palindromic SNP (R2=1) would be used instead to avoid ambiguity in strand 15 

direction since alleles of palindromic SNPs are the same on both strands.21 Linkage 16 

disequilibrium of the SNPs were checked via 1000 Genomes project to avoid inclusion of 17 

correlated SNPs. If two SNPs had an R2 of >0.05, the SNP with the smaller p value was 18 

retained and the other SNP was discarded.  19 

 20 

Statistical analysis 21 

Main Mendelian randomization analysis 22 

Inverse variance weighting (IVW) with multiplicative random effects was used to give our 23 

main Mendelian randomization effect estimate, which is a weighted regression of SNP-24 

outcome association (log odds of CAD per effect allele) on SNP-exposure association (mean 25 
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difference in FEV1 or FVC per effect allele), with the intercept constrained to zero.22 One key 1 

assumption for this method to produce valid estimate is that there is no other way SNPs could 2 

affect the outcome (CAD here) than through the risk factor that the SNPs are instrumenting 3 

for (FEV1 or FVC). Specifically with MR it assumes no horizontal pleiotropy.12 We also 4 

calculated Wald ratio for each SNP ((i.e. SNP-outcome association divided by SNP-exposure 5 

association), with the standard error calculated by dividing the standard error of the SNP-6 

outcome association by the effect size of the SNP-exposure association). We then meta-7 

analysed these ratios using a fixed effect method and compared the results to the 8 

multiplicative random effects IVW. Both methods are supposed to estimate the same overall 9 

effect, but standard errors will be larger when using multiplicative random effects IVW in the 10 

presence of heterogeneity of effect across SNPs.  We also estimated the I2 statistics to explore 11 

whether there was heterogeneity in effects between SNPs, which could be suggestive that one 12 

or more SNPs are invalid instruments.  13 

 14 

Sensitivity analyses  15 

We undertook a number of sensitivity analyses to test the robustness of our main analyses. 16 

Since the IVW multiplicative random effect models can give biased estimates if one or more 17 

instruments are invalid due to horizontal pleiotropy,20 we particularly focus on sensitivity 18 

analyses that allow the assumption of no horizontal pleiotropy to be relaxed. These analyses 19 

have different assumptions to the IVW (main analyses) method, and also to each other. In 20 

comparison to the IVW method they have less statistical efficiency; this is particularly the 21 

case with MR-Egger. Therefore, the aim of these sensitivity analyses was mostly to examine 22 

if the magnitude and direction of effect estimates were consistent across methods.  23 

 24 

i. Leave one out analysis 25 
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The IVW estimates were recalculated removing one SNP at a time aiming to explore whether 1 

the overall estimate was primarily driven by any (outlying) SNP.  2 

 3 

ii. MR-Egger method 4 

Similar to the IVW, the MR-Egger method is a weighted regression of the SNP-outcome on 5 

the SNP-exposure association, but unlike the IVW method, the intercept is not constrained to 6 

be zero.19 This means that if there is unbalanced pleiotropy the Mendelian randomization 7 

(slope of the regression line) effect estimate will differ from the IVW estimate, and the 8 

intercept of the regression line will be non-zero. The MR-Egger method slope will give 9 

unbiased estimate even if all instruments are invalid (i.e. due to the presence of horizontal 10 

pleiotropy).19 However, it has an additional assumption known as the InSIDE (instrument 11 

strength independent of direct effect), which requires no correlation between the strength of 12 

the direct effect of instrument on outcome and the instrument strength (strength of association 13 

between genetic variants for lung function and lung function). One possible scenario through 14 

which the InSIDE assumption could be violated is if the pleiotropic effects of genetic 15 

instruments are mediated via the same exposure-outcome confounder.20  The MR-Egger 16 

method is statistically inefficient and expected to have considerably wider confidence 17 

intervals than our main analyses or other sensitivity analyses. As such we focus on whether 18 

the odds ratio is consistent in terms of magnitude and direction with our main analysis results 19 

and also whether the intercept value suggests evidence of pleiotropy. 20 

 21 

iii. Weighted median method  22 

The weighted median method is a further method that allows some relaxation of the 23 

horizontal pleiotropy assumption. It weights each of the Wald ratio effects of each SNP by 24 

the corresponding precision and then takes the median weighted ratio as the causal effect.20 It 25 
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will provide an unbiased estimate so long as more than 50% of the weights were derived 1 

from valid instruments.20 This means that the estimate will be biased if one single SNP is 2 

pleiotropic and contributes more than 50% of the weight for the overall effect, or if a group 3 

of SNPs are pleiotropic and together they contribute more than 50% of the weight. 4 

 5 

iv. Difference in the imputation reference panel for lung function GWAS 6 

To examine whether the results were robust to the difference in the imputation reference 7 

panel, we also extracted genome wide significant SNPs for lung function from the most 8 

recent GWAS which used HapMap reference populations (CEU) and repeated the analyses.16, 9 

17 For FEV1, the SNPs were extracted from a GWAS with a sample size of 94,612 (discovery: 10 

48,201; replication: 46,411) of mainly European origin.17 For FVC, the SNPs were extracted 11 

from a GWAS with a sample size of 85,170 (discovery: 52,253; replication: 32,917) of 12 

mainly European origins.16 Similar adjustments, stratification by smoking and analytical 13 

methods, and imputation quality control threshold were used in these GWAS as in the one 14 

used in our main analyses with imputation using the 1000 Genome Project Phase 1 reference 15 

panel although the FVC GWAS used absolute FVC (mL) as the outcome.16 To improve 16 

comparability with the other analyses, we rescaled the Mendelian randomization estimates of 17 

FVC (HapMap) into per standard deviation (SD). The SD was derived by pooling the SDs 18 

reported in the European cohorts in the FVC GWAS. 19 

 20 

v. Exclusion of potential pleiotropic SNPs 21 

Considering that height and smoking are key potential confounders, we checked whether  any 22 

of our selected FEV1 or FVC genetic instruments were related to height or smoking (ever 23 

smoking status and cigarettes smoked per day)  using summary statistics from the relevant 24 

GWAS consortia (GIANT and TAG, respectively).23, 24 Similarly, we explored whether any 25 
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of our FEV1 or FVC genetic instruments were related to established cardiovascular risk 1 

factors by looking for their associations using data from relevant GWAS: triglycerides and 2 

LDL cholesterol (from GLGC);25, 26 body mass index (GIANT);27 and systolic blood pressure 3 

(UKB).28, 29 We considered a SNP as potentially pleiotropic if there was evidence of it being 4 

associated with height, smoking or cardiovascular risk factors after applying a Bonferroni 5 

correction to account for multiple testing (p<0.0004),calculated by 0.05 (nominal p value) 6 

/126 (number of comparisons)). We repeated the main analysis (IVW estimate) after 7 

excluding the SNPs classified as pleiotropic. 8 

 9 

vi. Multivariable Mendelian randomization analysis 10 

Since some of the SNPs predicted both FEV1 and FVC (i.e. with p value <5 x 10-8 for both 11 

parameters) based on the most recent GWAS,15 we also conducted a multivariable Mendelian 12 

randomization analysis to adjust effects of FEV1 by FVC, and vice-versa, in order to 13 

disentangle the effects of each exposure on CAD risk.30 14 

 15 

 16 

Exploring instrument strength 17 

Instrument strength was assessed by presenting the first stage (regression of FEV1 and FVC 18 

on genetic instruments) F-statistics and R2 values. For both of these statistics higher values 19 

related to stronger instruments.  20 

 21 

We calculated the first stage F-statistics for the main analyses using the equation 1 in the 22 

supplementary material. The GWAS only reported R2 of the instruments (known and novel) 23 

for the discovery stage.15 We directly extracted the R2 for known loci as reported in the 24 

GWAS discovery stage. However, the R2 for novel loci in the discovery stage could be 25 
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susceptible to winner’s curse.31 As such, we calculated the R2 for novel loci using equation 2 1 

in the supplementary material using parameters from each novel loci based on the combined 2 

analyses (discovery + replication). Then, we summed up the R2 and compute the F statistics 3 

using the sample size as stated in the GWAS. 4 

  5 

All analyses were performed using R Version 3.3.2 (R Development Core Team, Vienna, 6 

Austria) with the R package (TwosampleMR). This study only used publicly available data 7 

and hence no ethical approval was required to conduct this study. 8 

 9 

 10 

Results 11 

Amongst 17 SNPs for FEV1 (1000 Genomes imputation), rs1985524 was palindromic and 12 

was replaced by rs1989154 (R2=1) to avoid ambiguity in the strand direction, rs11383346 13 

was removed as this was an indel and was not available in CARDIoGRAMplusC4D, hence 14 

16 SNPs were used. Amongst 11 SNPs for FEV1 (HapMap imputation), rs17331332 and 15 

rs3995090 were in linkage disequilibrium with other SNPs and were removed, and hence 9 16 

SNPs remained in these analyses. Amongst 11 SNPs for FVC (1000 Genomes imputation), 17 

rs1430193 was palindromic and was replaced by rs1430194 to avoid ambiguity in the strand 18 

direction; rs11383346 was removed as this was an indel and was not available in 19 

CARDIoGRAMplusC4D, thus 10 SNPs remained in these analyses. Amongst 6 SNPs for 20 

FVC (HapMap imputation), rs1430193 was palindromic and was replaced by rs1430194.   21 

 22 

Supplemental Tables 1-2 summarize the genetic associations as reported in the relevant 23 

GWAS after allele harmonization. The first-stage F statistics and variance explained by the 24 

genetic instruments and were 49.5 and 0.8% for FEV1 and 38.4 and 0.4% for FVC. 25 
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 1 

Supplemental Table 3 shows the associations of all SNPs that were used as instrumental 2 

variables with FEV1 and FVC with smoking, height, BMI, LDLc, Triglycerides, and systolic 3 

blood pressure. After correcting for multiple testing, 5 of the SNPs we were using as genetic 4 

instruments were associated with height (rs1032296; rs134041; rs1430194; rs6923462; and 5 

rs7155279), one SNP (rs2036527) associated with number of cigarettes smoked per day, one 6 

with BMI (rs4237643) and 4 with systolic blood pressure (rs1989154; rs2571445; rs2863171; 7 

rs7068966); none of our genetic instruments were associated with ever smoking, LDLc or 8 

triglycerides. Based on the lung function GWAS, rs6681426, rs6441207, rs2274116, 9 

rs10850377 were associated with both FEV1 and FVC.15 10 

 11 

FEV1 was inversely associated with CAD risk in the inverse variance weighting with 12 

multiplicative random effect model (Odds ratio: 0.78 per standard deviation (SD) increase, 13 

95% Confidence Interval (CI): 0.62 to 0.98, I2=62%)) (Table 1). Findings for the association 14 

of FEV1 with CAD risk were consistent across the range of sensitivity analyses. The leave 15 

one out plot suggested the overall estimate was not driven by any single outlying SNP 16 

(Figure 1). The estimate from MR-Egger, which is more robust to invalid variants was 17 

consistent with the main estimate (OR: 0.80, 95%CI: 0.33 to 1.94), although had wider 18 

confidence as expected because of the lower statistical power of this approach. In addition, 19 

there was no evidence for directional pleiotropy based on the MR-Egger intercept value 20 

(1000 Genomes imputation: -0.0009; p=0.96; HapMap imputation: -5.4 x 10-5; p=0.998) 21 

(Table 1). The weighted median estimate was somewhat attenuated in comparison to the 22 

main inverse variance weighted analyses, but consistent with those and the MR-Egger results 23 

(OR: 0.93 per SD, 95% CI 0.75 to 1.17).  Similar findings were observed when we used 24 

estimates from the GWAS imputed using HapMap reference panel (Table 1).  25 
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 1 

There was also an inverse association of genetic instruments for FVC with CAD risk in the 2 

inverse variance weighting with multiplicative random effect model using 1000 genome 3 

imputation (Odds ratio: 0.82 per SD increase, 95% CI: 0.64 to 1.06, I2=35%) (Table 1). This 4 

point estimate is similar to that for the association of FEV1 with CAD, but with wider 5 

confidence intervals. The estimate was weaker (closer to the null) using the weighted median 6 

method (OR: 0.92, 95%CI: 0.69 to 1.23) and the MR-Egger method yielded a directionally 7 

different estimate with wide confidence intervals (OR: 1.14, 95%CI: 0.36 to 3.61). There was 8 

no evidence for directional pleiotropy based on the MR-Egger intercept value (1000 9 

Genomes imputation: -0.011, p=0.59; HapMap imputation: -0.022, p=0.48) (Table 1). The 10 

leave one out plot suggested the overall estimate was not driven by any single SNP, although 11 

it was somewhat attenuated when rs4237643 or rs6681426 were removed (Figure 2). When 12 

we used estimates from the GWAS with the HapMap imputation the main inverse variance 13 

weighed estimates were similar to the 1000 genome imputation (OR: 0.85, 95%CI: 0.49 to 14 

1.48), as were the results for weighted median analyses (attenuating towards the null) and 15 

MR-Egger (showing a positive, rather than inverse association) (Table 1).  16 

 17 

Repeating the analyses with the exclusion of SNPs related to height, smoking phenotypes, 18 

body mass index, and systolic blood pressure did not notably change the results 19 

(Supplemental Tables 4-5). The fixed effect Wald ratio meta-analysis gave similar results 20 

(Supplemental Table 6). The multivariable Mendelian randomization analysis produced 21 

directionally similar results compared to the MR-Egger regression for FEV1 (OR: 0.82 per 22 

SD increase, 95% CI: 0.53 to 1.28) and FVC (OR: 1.84 per SD increase. 95% CI: 0.61 to 23 

5.50). 24 

 25 
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Discussion 1 

To our knowledge, this is the first Mendelian randomization study examining the role of lung 2 

function on CAD. Consistent with previous multivariable regression analyses, we found an 3 

inverse relation between FEV1 and CAD.1, 2 In our main analyses the association of FVC on 4 

CAD was similar to that of FEV1. However, whilst the association of FEV1 with CAD was 5 

robust to numerous sensitivity analyses, those for FVC were less so, with MR-Egger and the 6 

multivariable regression analyses (in which we adjusted for effect of SNPs on FEV1) 7 

suggesting a possible positive association of FVC on CAD, albeit with wide confidence 8 

intervals including the null. Thus, our study does not corroborate previous multivariable 9 

regression studies of FVC, which suggested an inverse association of FVC with CAD risk.6 10 

Overall, our findings suggest that higher FEV1 may reduce CAD risk, but that previous 11 

inverse associations of FVC with CAD from multivariable regression analyses are possibly 12 

explained by residual confounding, in particular due to height. 13 

 14 

The inverse association of FEV1 with CVD risk has been consistently seen in observational 15 

studies.1-4 However, smoking is a strong determinant of FEV1
 and CAD, and it is difficult to 16 

fully adjust for it without very detailed information on life course frequency, amount and 17 

intensity of smoking. Therefore, residual confounding by smoking might have explained 18 

those previous results.2, 7 Our Mendelian randomization study, which is less susceptible to 19 

such confounding,10 suggests that greater FEV1 may be related to reduced CAD risk. This 20 

conclusion is particularly supported by the consistency of results across several different 21 

Mendelian randomization approaches, including a meta-analysis of Wald ratio estimates for 22 

each SNP, MR-Egger and weighted median methods, as well as when results from FEV1 23 

GWAS with a different imputation reference panel used to identify genetic instruments, and 24 

when we removed SNPs with known associations with smoking, height and BMI (for which 25 
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we found some possible evidence of pleiotropy), and multivariable Mendelian randomization 1 

analysis. These different approaches each have differing underlying assumptions, and hence 2 

key sources of bias, and thus the triangulation of findings across them increases confidence 3 

that FEV1
 is causally related to CAD risk.32 We did not find robust and consistent (across our 4 

sensitivity analyses) evidence of an association  of FVC on CAD. It is possible that the null 5 

findings are due to lack of statistical power although some of these methods are less 6 

statistically efficient and with FEV1 confidence intervals were wide and included the null is 7 

some sensitivity analyses. The difference between the sensitivity analyses of FEV1 and CAD 8 

and of FVC and CAD is that the former were all directionally consistent and had broadly 9 

similar magnitudes, whereas with FVC two of the sensitivity analyses suggested positive, 10 

rather than inverse associations, which suggests less robust Mendelian randomization 11 

evidence for an inverse association.  12 

 13 

That our study suggests possible differences in the association of  FEV1 and FVC on CAD is 14 

perhaps not surprising given they reflect very different aspects of lung function, as reflected 15 

by the differing genetic architecture observed in genome wide association studies.16, 17 FEV1 16 

represents severity of airway obstruction,33 whereas FVC is a measure overall lung capacity. 17 

These differences result in somewhat different confounding structures between the two 18 

measurements, with smoking being more strongly associated with FEV1 and height with FVC. 19 

Thus, our results suggest that inability to fully account for confounding by height in previous 20 

multivariable regression analyses might have resulted in spurious inverse associations of it 21 

with CAD. Our results also suggest that airway obstruction, rather than lung size or capacity, 22 

may increase CAD risk.    23 

 24 

Strengths and Limitations 25 
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Key strengths of this study are the large sample size, with over 60,000 CAD cases, and the 1 

use of Mendelian randomization to minimize the impact of confounding and reverse 2 

causation. The limitations of our study in inferring causal relation relate to the extent to 3 

which the key Mendelian randomization assumptions were satisfied – that the genetic 4 

instruments are (i) robustly associated with risk factor of interest (here FEV1 and FVC), (ii) 5 

not associated with confounders of the risk factor-outcome association, and (iii) not related to 6 

the outcome via any path other than through the risk factor (i.e. that there is no horizontal 7 

pleiotropy).  In two-sample Mendelian randomization as used here, weak instrument bias is 8 

expected to bias findings towards the null (rather than towards the confounded result as 9 

occurs in one-sample Mendelian randomization). However, this will depend on the extent of 10 

overlap between the two samples, with substantial overlap resulting in similar bias to that 11 

seen for one-sample Mendelian randomization.12 Only one cohort (n=837, 0.5%) was used in 12 

both the lung function and CAD GWAS samples, and the high F-statistic and R2 for the 13 

combined genetic instrumental variables, suggest that weak instrument bias is unlikely to 14 

have impacted our results. Horizontal pleiotropy is unlikely given the similarity of results 15 

across the different methods that we have used, and the intercept values from the MR-Egger 16 

being close to zero. One limitation of using summary GWAS data is that we are unable to 17 

explore the association of the genetic instruments with a broad range of observed potential 18 

confounders, but we did find similar results when we excluded SNPs that are known to be 19 

related to smoking and height, the two confounders we were mostly concerned about,  one 20 

SNP associated with BMI, and 4 SNPs associated with systolic blood pressure. We did not 21 

find evidence for any of our genetic instrumental variables being robustly statistically 22 

associated with LDLc and triglycerides, which are important risk factors for CAD. In these 23 

analyses, the fact that the GWAS of both FEV1 and FVC adjusted for height and smoking 24 

could introduce spurious associations through a phenomenon known as collider bias. 25 
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However, results were consistent after removing SNPs that had a residual association with 1 

height and smoking (Supplemental Table 4), suggesting that collider bias is unlikely to fully 2 

account for the inverse association between FEV1 and CAD. Nevertheless, research using UK 3 

Biobank may help verify the findings since some of these biases can only be explored with 4 

individual data.34 Lastly, we were unable to explore potential reverse causation using a bi-5 

directional Mendelian randomization design because summary data across the whole genome 6 

for the lung function GWAS are currently not available. Whilst there may be a bidirectional 7 

association (i.e. a propensity to CAD causing reduced FEV1 as well as vice versa), this would 8 

not negate the association of FEV1 in CAD that we have identified here. 9 

 10 

Conclusion 11 

In this first Mendelian randomization study of the relation of FEV1 and FVC with CAD risk 12 

that we are aware of, we find evidence for an inverse association of FEV1 with CAD risk, but 13 

less robust evidence for an association of FVC with CAD risk. Whilst it has been suggested 14 

that increased systemic inflammation in those with poor lung function, inefficient cardio-15 

toxic substance removal, or a mismatch of ventilation/perfusion ratio, are potential ways in 16 

which lower FEV1 is related to increased CAD risk the exact mechanisms are unclear.6 As 17 

our findings now provide more concrete evidence that there may be a causal effect that is not 18 

explained by confounding due to smoking or height, further research to explore potential 19 

mechanisms could identify novel targets for the prevention of CAD.  20 
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Table 1: Mendelian randomization estimates for lung function on coronary artery disease risk 1 

  Inverse variance weighting with 

multiplicative random effects 
MR-Egger Weighted median 

*Lung function  Imputation 

Odds ratio 

Per 1SD 

95% CI 

Odds ratio 

Per 1SD 

95% CI Intercept (p value) 

Odds ratio 

Per 1SD 

95% CI 

FEV1 (16 SNPs) 1000 Genomes 0.78 0.62 to 0.98  0.80 0.33 to 1.94 -0.0009 (0.96) 0.93 0.75 to 1.17 

FEV1 (9 SNPs) HapMap 0.77 0.57 to 1.04 0.77 0.28 to 2.09 -5.4 x 10-5 (0.998) 0.80 0.62 to 1.04 

FVC (10 SNPs) 1000 Genomes 0.82 0.64 to 1.06 1.14 0.36 to 3.61 -0.011 (0.59) 0.92 0.69 to 1.23 

FVC (6 SNPs)  HapMap 0.85 0.49 to 1.48 2.37 0.17 to 33.5 -0.022 (0.48) 0.92 0.53 to 1.57 

*FEV1: Forced expiratory volume in 1 second; FVC: Forced vital capacity.  2 

  3 
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Figure legends 1 
 2 
Figure 1: Leave one out plot for the association of forced expiratory volume in one second 3 

(FEV1), per standard deviation, and coronary artery disease risk using Mendelian 4 

randomization (Single nucleotide polymorphisms with 1000 Genomes imputation) 5 

 6 

Figure 2: Leave one out plot for the association of forced vital capacity (FVC), per standard 7 

deviation, and coronary artery disease risk using Mendelian randomization (Single nucleotide 8 

polymorphisms with 1000 Genomes imputation) 9 


