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Association of hypertension drug target genes with blood pressure
and hypertension in 86,588 individuals
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Abstract

We previously conducted genome-wide association meta-analysis of systolic blood pressure,
diastolic blood pressure, and hypertension in 29,136 people from 6 cohort studies in the
Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Here we
examine associations of these traits with 30 gene regions encoding known antihypertensive
drug targets. We find nominal evidence of association of ADRB1, ADRB2, AGT, CACNA1A,
CACNA1C, and SLC12A3 polymorphisms with 1 or more BP traits in the Cohorts for Heart
and Aging Research in Genomic Epidemiology genome-wide association meta-analysis. We
attempted replication of the top meta-analysis single nucleotide polymorphisms for these
genes in the Global BPgen Consortium (n=34,433) and the Women's Genome Health Study
(n=23,019) and found significant results for rs1801253 in ADRB1 (Arg389Gly), with the Gly
allele associated with a lower mean systolic blood pressure (β: 0.57 mm Hg; SE: 0.09 mm Hg;
meta-analysis: P=4.7×10(-10)), diastolic blood pressure (β: 0.36 mm Hg; SE: 0.06 mm Hg;
meta-analysis: P=9.5×10(-10)), and prevalence of hypertension (β: 0.06 mm Hg; SE: 0.02 [...]
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Cornelia M. van Duijn, Paul Ridker, Patricia B. Munroe, and Daniel Levy on Behalf of the
CHARGE Consortium, Global BPgen Consortium and Women’s Genome Health Study

Abstract

We previously conducted genome-wide association meta-analysis (GWA) of systolic blood

pressure (SBP), diastolic blood pressure (DBP) and hypertension in 29,136 people from six cohort

studies in the CHARGE Consortium. Here we examine associations of these traits with 30 gene

regions encoding known anti-hypertensive drug targets. We find nominal evidence of association

of ADRB1, ADRB2, AGT, CACNA1A, CACNA1C, and SLC12A3 polymorphisms with one or more

BP traits in the CHARGE GWA meta-analysis. We attempted replication of the top meta-analysis

SNPs for these genes in the Global BPgen Consortium (GBPG, n=34,433) and the Women’s

Genome Health Study (WGHS, n=23,019), and found significant results for rs1801253 in ADRB1

(Arg389Gly), with the Gly allele associated with a lower mean SBP (beta −0.57 (mmHg), se 0.09,

meta-analysis P=4.7×10−10), DBP (beta −0.36, se 0.06, meta-analysis P=9.5×10−10) and

prevalence of hypertension (beta −0.06, se 0.02, meta-analysis P=3.3×10−4). Variation in AGT

(rs2004776) was associated with SBP (beta 0.42, se 0.09, meta-analysis P=3.8×10−6), as well as

DBP (P=5.0×10−8) and hypertension (P=3.7×10−7). A polymorphism in ACE (rs4305) showed

modest replication of association with increased hypertension (beta 0.06, se 0.01, meta-analysis

P=3.0×10−5). Two loci, ADRB1 and AGT, contain SNPs that reached a genome-wide significance

threshold in meta-analysis for the first time. Our findings suggest that these genes warrant further

studies of their genetic effects on BP, including pharmacogenetic interactions.

Keywords
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Introduction

Elevated blood pressure (BP) is a critical risk factor for cardiovascular diseases (1), and BP

control in hypertensive individuals is an effective intervention for reducing cardiovascular

disease risk. Hundreds of compounds representing multiple drug classes have been approved
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for treatment of hypertension. Achieving BP control in patients often requires multiple

medications, and trial-and-error switching of drug classes to achieve control. This suggests

that inter-individual differences in BP and in response to treatment may be influenced by

genetic variation, or environmental or other non-genetic factors.

We recently completed a genome-wide association study (GWAS) and meta-analyses of

systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in

29,136 individuals from six population-based cohorts of European ancestry in the CHARGE

Consortium, identifying and replicating novel BP loci at genome-wide significance levels

(2). While GWAS have been successful in identifying new genes with common variants that

exhibit small effects on BP, standard methods of analysis ignore all a priori information

about specific genes. The strict requirements for controlling the occurrence of false positives

in such an ‘unbiased’ approach leads to severe multiple testing corrections, whereby true

positive associations will be missed, particularly when replication resources are limited.

Examining subsets of GWAS associations based on a priori hypotheses is one way to

identify genes of interest for further investigation (3) while paying a smaller penalty for

multiple testing. Evidence from lipid GWAS and candidate gene studies indicates some

polymorphisms in drug target genes (e.g. HMGCR, APOE) are associated with main effects

on lipids as well as effects on drug response (4,5). We hypothesized that GWAS approaches

have missed some true BP association signals in antihypertensive drug target genes. We

identified 30 drug target genes, including the targets of alpha blockers, ACE inhibitors, beta-

blockers, angiotensin-receptor blockers, calcium-channel blockers, diuretics, and

vasodilators, and analyzed single nucleotide polymorphisms (SNPs) in these gene regions

for association with BP and hypertension.

Methods

Description of cohorts, participants, genotypes and phenotypes

The CHARGE consortium cohorts, their genotyping, SNP imputation (6) and BP and

hypertension GWAS have been previously described (2). Participants underwent

standardized resting seated BP readings (means of two repeated measures used in analysis)

and had GWAS results available (n=29,136). BP readings from the first examination

attended were used. Hypertension was defined as SBP≥140 or DBP≥90 mmHg or drug

treatment for hypertension at BP assessment.

The Global BPgen consortium (GBPG) included 17 cohorts of European ancestry with

either population-based designs or controls drawn from case-control designs (7). In most

participants BP analysis was based on the mean of two resting sitting measurements (7).

The WGHS population sample with BP and hypertension data consisted of 23,019 female

health professionals of European descent ≥45 years of age at enrollment, free of

cardiovascular disease or other major chronic illnesses, with GWAS and genotyping

previously described (8). BP was determined by self-report in ranges (see the online

Supplement, available at http://hyper.ahajournals.org), with the midpoint of these ranges

used in analyses, and hypertension defined as above.

For individuals in CHARGE who were taking antihypertensive medication, we added 10/5

mmHg to the observed SBP and DBP; for those in GBPG we added 15/10 mmHg.

Association results for different treatment adjustments were highly correlated in CHARGE

(Table S1, available at http://hyper.ahajournals.org). Individual studies obtained approval

from their IRBs for consent procedures, examination, data security, and DNA collection and
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use in genetic research. All cohorts in the current study conducted imputation using a

HapMap CEU reference panel.

Discovery in CHARGE and replication in GBPG/WGHS

Within each cohort, regression models for BP phenotypes were fit adjusting for sex, age, age

squared, and BMI. Genomic control (lambda) parameter values (9) were calculated and

applied, to account for within study heterogeneity. Meta-analyses of the SNP-trait

association estimates were inverse-variance weighted and reflect the combination of additive

model analyses from the cohorts (2).

We identified a priori 30 candidate genes that code for proteins that are direct targets of

anti-hypertensive drugs based on general knowledge and DrugBank (www.drugbank.ca), a

database of human drug target genes (10). We analyzed all CHARGE BP/hypertension

associations within 60 kb of each target gene, and applied a resampling based test ([11], see

Figure S1, available at http://hyper.ahajournals.org). To augment SNPs for replication, we

additionally selected SNPs at a P<1/(the number of SNPs tested). SNPs selected for

replication are in bold in Table S2 (available at http://hyper.ahajournals.org).

For selected gene regions, we examined the most significant CHARGE SNP-trait

association for the same trait in GBPG and WGHS. Replication was defined a priori as

allelic association in the same direction as in CHARGE (thresholds: SBP, P<8.3×10−3,

DBP, P<7.1×10−3, hypertension, P<8.3×10−3). We also conducted meta-analysis to provide

estimates comparable to GWAS thresholds. We used SNAP (12) to identify SNPs creating a

protein change, or (based on HapMap populations) in linkage disequilibrium (LD) with

protein-changing variants or SNPs with prior associations with SBP, DBP or hypertension.

Results

For 30 regions that encode anti-hypertensive drug targets, the single strongest SNP

associations for SBP, DBP, and hypertension in/near each drug target gene for the initial

CHARGE analysis are in Table S2 (available at http://hyper.ahajournals.org), along with the

number of SNPs tested within each gene region. The most significant SNP association

among the drug target genes tested in CHARGE was rs1985579 in CACNA1A with SBP

(P=2.6×10−5). Using resampling to account for multiple SNPs per locus, 2 significant SNP

associations were identified for SBP (in ADRB1, CACNA1A), 4 for DBP (in ADRB1, AGT,

CACNA1A, SLC12A3) and 4 for hypertension (in ADRB2, AGT, CACNA1C, CACNA1H). At

a less restrictive cutoff of P<1/(the number of SNPs tested in/near a gene), 11 additional

SNPs in 9 genes were selected (ACE, ADRB2, AGT, CA1, CACNA1C, MME, REN,

SCNN1A, SLC9A1), for a total of 19 SNPs in 13 genes selected for replication. Two genes

(CACNA1H, MME) were dropped from replication because their most associated SNPs had

poor imputation in ≥2 groups, and attempts to find satisfactory surrogate SNPs in LD were

unsuccessful.

For SBP we replicated associations for variants in ADRB1 and AGT (Table 1). In ADRB1 the

minor allele of rs1801253 (nonsynonymous Arg389Gly) was associated with decreased SBP

(replication: P=7.3×10−7, meta-analysis: beta (units as mmHg) −0.57, se 0.09,

P=4.7×10−10) and in AGT the minor allele of rs2004776 was associated with increased SBP

(replication: P=2.8×10−5).

We also replicated associations for ADRB1 and AGT with DBP (Table 2). The minor allele

of rs1801253 in ADRB1 was associated with decreased DBP (replication: P=2.5×10−7,

meta-analysis: beta −0.36, se 0.06, P=9.5×10−10) and in AGT the minor allele of

rs11122587 was associated with increased DBP (replication: P=2.4×10−5).
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We sought replication for 6 SNPs where hypertension was the primary trait (Table 3). The

minor allele of an intron 5 SNP (rs4305) in ACE replicated with all cohort associations with

increased odds of hypertension (replication: P=7.5×10−3, meta-analysis: beta 0.06, se 0.01,

P=3.0×10−5). In secondary analysis, this SNP also showed association with increased levels

of SBP (P=4.6×10−4) and DBP (P=6.0×10−5).

In secondary analyses, the AGT SNP selected for SBP, rs2004776, reached a low p-value for

DBP (meta-analysis: P=5.0×10−8). ADRB1 and AGT SNPs were also associated with

hypertension, in the same direction as expected based on their BP associations (ADRB1:

rs1801253 P=3.3×10−4, AGT: rs2004776 P=3.7×10−7).

Heterogeneity analyses for ADRB1, AGT, or ACE in the multi-study cohorts (CHARGE,

GBPG) or within the full meta-analysis found no evidence for heterogeneity (all I2<0.50). In

additional analyses for ADRB1 and AGT, conditioning on the top variant for SBP or DBP,

we found no additional SNPs that contributed to these phenotypes after multiple test

correction (see Supplement, available at http://hyper.ahajournals.org). Summary results for

the three replicated genes and four promising, non-replicated genes (ADRB2, CACNA1C,

CACNA1A, SLC12A3) compared with prior results and meta-analyses from the literature are

presented in Tables S3 and S4, respectively (available at http://hyper.ahajournals.org).

Discussion

Within one of the largest genetic studies of BP traits to date, we examined evidence for

associations in gene regions encoding protein targets of anti-hypertensive medications. We

conducted a discovery scan in >29,000 individuals from the CHARGE consortium, with

validation of significant results in >57,000 individuals from GBPG and WGHS. Of note, in

previously published GWAS meta-analysis reports from CHARGE and GBPG (2,7), none of

the SNPs we tested reached genome-wide significance (P<5.0 × 10−8). Associations at three

loci in our study (ADRB1, AGT, ACE) successfully replicated in independent populations.

The beta-adrenergic receptors (ADRB1, ADRB2) are targets of a variety of endogenous and

pharmacological agonists and antagonists including epinephrine, norepinephrine and beta-

blocker drugs, and they mediate important cardiovascular responses including cardiac

contractility and heart rate. A nonsynonymous variant of ADRB1 (rs1801253, Arg389Gly)

was reported to alter BP response to beta blocker therapy in multiple studies (e.g.,13,14) and

was also reported to affect outcomes following treatment (15-17). However, tests of this

variant with baseline BP have generally been conducted in modestly-sized samples not

drawn from general population cohorts, with conflicting reports about association of the

Arg389 allele with increased BP ([14,16,18-23], Table S3, available at

http://hyper.ahajournals.org). In our survey of 142 SNPs in/near ADRB1, we found the

strongest association at rs1801253 with the Gly389 allele being associated with decreased

SBP (P=4.7×10−10) and DBP (P=9.5×10−10). Our study is consistent with several studies

(Table S3, available at http://hyper.ahajournals.org) indicating that there is a small reduction

in BP associated with Gly389 (16,19,21-23). This result is also consistent with experimental

observations that Gly389 acts functionally to reduce basal and agonist-stimulated receptor

responses (24-26).

The renin-angiotensin system plays critical roles in BP regulation, is targeted by multiple

drug classes, and has been the subject of prior genetic studies for candidate genes (e.g.,

AGT, ACE). Among 3 AGT SNPs (rs2004776, rs12046196, rs11122587) associated with BP

in CHARGE, rs2004776, in intron 1 (between the AGT 5′UTR and exon 1), showed the

strongest validation in an independent European ancestry cohort (meta-analysis

P=5.0×10−8). Of note, rs2004776 is in partial LD (r2=0.49, CEU) with a Met235Thr (rs699)

Johnson et al. Page 4

Hypertension. Author manuscript; available in PMC 2012 May 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://hyper.ahajournals.org
http://hyper.ahajournals.org
http://hyper.ahajournals.org
http://hyper.ahajournals.org


that has been widely studied for association with hypertension (27). Prior analyses suggest a

role for Met235Thr (27,28) or other variants affecting AGT function (29,30) in

hypertension, with multiple variants being supported in meta-analyses (27,29, Table S3,

available at http://hyper.ahajournals.org). In CHARGE, the minor allele of Met235Thr

showed nominal association with hypertension (P=0.0011), SBP (P=0.012), and DBP

(P=0.0042). These results suggest that Met235Thr may not be the most relevant AGT variant

and that there may be other functional alleles to be discovered and characterized.

Another important gene within the renin-angiotensin system, ACE, showed significant

positive association with hypertension (rs4305, P=3.0×10−5), and with SBP (P=4.6×10−4)

and DBP (P=6.0×10−5). ACE genotypes have been studied for association with various

traits, including BP and hypertension where results from a literature-based meta-analysis

indicate no significant effect (31). A large study of anti-hypertensive drug response also

indicates no genotype-treatment effect (32). However; most previous studies focused only

on the well-known intronic I/D polymorphism (Table S3, available at

http://hyper.ahajournals.org) and lacked detailed information on the genetic architecture of

ACE. The importance of this point is emphasized by a recent resequencing study of ACE in

African-Americans that found novel functional variation associated with myocardial

infarction in hypertensives (33). Furthermore, a recent GWAS for ACE enzyme activity

found strong association of the minor allele of rs4343 with increased activity in Han Chinese

(P=3.0×10−25) (34). The nonsynonymous SNP rs4343 is in moderate-high LD in Asian and

European populations with our replicated BP SNP, rs4305 (HapMap CEU r2=0.48, JPT/

CHB r2=0.80), suggesting a potential common link between the studies. We examined a

sample of 944 unrelated individuals in Framingham and found rs4350-I/D are also in modest

LD (r2=0.55).

The effect of variation in ADRB1, AGT, and ACE on BP variation and treatment response

were the subject of prior research (Table S3, available at http://hyper.ahajournals.org). Our

large study validates their role in BP genetics. The effect sizes of the ADRB1 and AGT

variants are on par with variants identified in GWAS for BP, lipids and similar traits,

accounting for only ~0.25-0.50% of the variation in BP (2,7,35). These results demonstrate

that surveying prior biological candidates in large genetic studies may be a useful approach

to identify and replicate additional loci. This observation is consistent with two recent

surveys of published GWAS, that indicate some a priori candidates show true associations

(36,37). Candidate genes for variation in lipid levels have also been validated in GWAS and

shown to have treatment effects (4,5,35).

The loci and variants identified here may also influence treatment response, a hypothesis

that we did not assess. Our study is limited in that treated and untreated individuals are

included, with variable ascertainment of treatment across cohorts. We applied differing

treatment adjustments in different cohorts to impute expected baseline effects. Further

analysis in CHARGE indicates +15/10 and +10/5 adjustments generate similar results for

BP associations so this is unlikely to have greatly affected replication (Table S1, Figures S2

and S3, available at http://hyper.ahajournals.org). Since treatment of participants in our

GWAS was non-randomized, it is difficult to assess gene-by-treatment interactions without

confounding. Prospective studies, or more sophisticated cross-sectional analyses will be

required to determine whether gene variants identified from large GWAS influence

treatment outcomes; our results indicate these could be worthwhile pursuits. Another

potential limitation of the study is reliance in WGHS on self-reported BP values. However,

past studies indicate that self-report is reasonably reliable in assessment of BP and

hypertension (e.g.,38,39). Furthermore, we independently found high replication rates for

BP GWAS loci in the WGHS (40).
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Perspectives

Our results indicate that candidate genes, with clinical and physiological relevance by virtue

of their role as antihypertensive drug targets, harbor true BP associated variants. Such loci,

not identified in prior large GWAS meta-analyses but detected in our drug target gene

approach, account for a portion of the unexplained proportion of BP variance. These results

suggest that re-visiting GWAS scans from the perspective of biological and clinical

knowledge may be useful for discovery and validation of new genetic associations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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