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Background. People living with human immunodeficiency virus (HIV; PLWH) have a markedly elevated anal cancer risk, 

largely due to loss of immunoregulatory control of oncogenic human papillomavirus infection. To better understand anal cancer de-

velopment and prevention, we determined whether recent, past, cumulative, or nadir/peak CD4+ T-cell count (CD4) and/or HIV-1 

RNA level (HIV RNA) best predict anal cancer risk.

Methods. We studied 102 777 PLWH during 1996–2014 from 21 cohorts participating in the North American AIDS Cohort 

Collaboration on Research and Design. Using demographics-adjusted, cohort-stratified Cox models, we assessed associations be-

tween anal cancer risk and various time-updated CD4 and HIV RNA measures, including cumulative and nadir/peak measures 

during prespecified moving time windows. We compared models using the Akaike information criterion.

Results. Cumulative and nadir/peak CD4 or HIV RNA measures from approximately 8.5 to 4.5 years in the past were generally 

better predictors for anal cancer risk than their corresponding more recent measures. However, the best model included CD4 nadir 

(ie, the lowest CD4) from approximately 8.5 years to 6 months in the past (hazard ratio [HR] for <50 vs ≥500 cells/µL, 13.4; 95% 

confidence interval [CI], 3.5–51.0) and proportion of time CD4 <200 cells/µL from approximately 8.5 to 4.5 years in the past (a cu-

mulative measure; HR for 100% vs 0%, 3.1; 95% CI, 1.5–6.6).

Conclusions. Our results are consistent with anal cancer promotion by severe, prolonged HIV-induced immunosuppression. 

Nadir and cumulative CD4 may represent useful markers for identifying PLWH at higher anal cancer risk.

Keywords. HIV infection; CD4+ T-cell count; HIV-1 RNA viral load; anal cancer; risk.

Anal cancer risk is markedly elevated among people living 

with human immunodeficiency virus (HIV; PLWH), especially 

those with AIDS and men who have sex with men (MSM) [1, 2]. 

Immunosuppression is associated with persistent oncogenic 

human papillomavirus (HPV) infection, which promotes de-

velopment of anal high-grade squamous intraepithelial lesions/

anal intraepithelial neoplasia 2-3 (HSIL/AIN2-3) but may play 

a lesser role in HSIL/AIN2-3 progression to anal cancer [3–6]. 

Despite improvements in immune function after the introduc-

tion of effective antiretroviral therapy (ART) in 1996, most 

studies of anal cancer incidence trends in PLWH have reported 

an increase or no change over time [7–15], with an apparent de-

cline in recent years [1, 2]. Among non-AIDS–defining cancers, 

anal cancer exhibits the highest relative risk in PLWH compared 

with the general population [1].
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Immunosuppression and HIV viremia have been associated 

with anal cancer risk, but the time courses over which they exert 

their effects are unclear. Increased anal cancer risk has been as-

sociated with lower CD4+ T-cell count (CD4) [8–10, 16–26] 

and higher HIV-1 RNA level (HIV RNA) [18, 24, 26–28], even 

after mutual adjustment [18, 24, 26, 27]. It remains unknown 

whether risk is driven by recent, past, cumulative, or nadir/

peak (ie, the lowest CD4 and the highest HIV RNA) CD4 and/

or HIV RNA. Evidence suggests that past (ie, 6–7 years before 

diagnosis) [23], cumulative (ie, duration with CD4 <200 cells/

µL) [18], and nadir (ie, the lowest CD4 ever or before ART ini-

tiation) [8, 23, 24, 26] CD4 are better risk predictors than recent 

CD4 and that cumulative HIV RNA (eg, duration with HIV 

RNA >100 000 copies/mL) is a better predictor than recent HIV 

RNA [18, 27].

To contribute to our understanding of anal carcinogenesis 

and help tailor approaches to prevention, we aimed to deter-

mine whether recent, past, cumulative, or nadir/peak CD4 

and HIV RNA measures best predict anal cancer risk among 

PLWH in the North American AIDS Cohort Collaboration on 

Research and Design (NA-ACCORD) [29].

METHODS

Study Sample

Our study population included PLWH (aged ≥18 years) from 21 

cohorts in the United States and Canada that contributed data, 

including cancer diagnoses, to the NA-ACCORD (1996–2014) 

[15, 29]. Cohorts submitted demographic and clinical data 

using standardized collection methods. Incident invasive anal 

cancers were validated using a standardized process of either 

cancer registry linkage or manual review of medical records and 

pathology reports [15]. Institutional review board approval was 

obtained for each cohort.

Follow-up started at the latest of the following dates: 1 

January 1996, NA-ACCORD entry (first of 2 HIV primary care 

visits ≤1 year apart), cohort-specific start for cancer reporting, 

18th birthday, or 360 days before the later of the first CD4 or 

HIV RNA measurement. Follow-up ended at the earliest of 

anal cancer diagnosis, cohort-specific end for cancer reporting, 

death, or 540 days after the earlier of the last CD4 or HIV RNA 

measurement. We excluded persons with <2 CD4 or <2 HIV 

RNA measurements or with follow-up ≤180 days.

Time-updated CD4 and HIV RNA Measures

We estimated CD4 and HIV RNA values at 30-day intervals 

using observed laboratory measurements, as previously 

described (Supplementary Methods) [30]. Based on these 

estimated values, we constructed time-updated CD4 and HIV 

RNA measures that were all lagged by at least 180 days to reduce 

the possibility of reverse causality. Thus, we examined CD4 and 

HIV RNA lagged by 180  days (approximately 6  months; de-

fined as “recent”) and then by longer lag (lagged by 360  day 

[approximately 1 year] increments from 540 to 1620 days, and 

by 720  day [approximately 2  years] increments from 1620 to 

3060 days).

We also constructed lagged cumulative and nadir/peak meas-

ures during prespecified moving time windows. Cumulative 

measures were CD4 or HIV RNA average (ie, normalized by 

time) and proportion of time CD4 <200 cells/µL or HIV RNA 

>500 copies/mL. Nadir/peak measures were lowest CD4 and 

highest HIV RNA. The duration of the “early” (more distant 

past) and “late” (more recent past) windows was 1440 days (ap-

proximately 4 years). The early window was lagged by 1620 days 

(ie, covered approximately 8.5 to approximately 4.5 years in the 

past), and the late window was lagged by 180 days (ie, covered 

approximately 4.5 years to approximately 6 months in the past). 

The “overall” (early and late combined) window (2880 days du-

ration; approximately 8  years) covered 3060 to 180  days (ap-

proximately 8.5 years to approximately 6 months) in the past.

Analyses of these various measures were restricted to per-

sons with follow-up duration greater than the examined lag 

or window start (eg, the late window [starting at 1620 days in 

the past] can only be assessed among persons with follow-up 

>1620  days). Thus, the analyzed sample size decreased with 

increasing lag or amount of time in the past of the window start.

Statistical Analyses

We assessed associations between CD4 and HIV RNA meas-

ures and anal cancer risk using cohort-stratified Cox regression 

models with follow-up time as the time scale using counting 

process syntax [31] to account for time-varying covariates 

updated at 30-day intervals. We modeled these measures as cat-

egorical variables (calculating likelihood ratio global P values) 

and as continuous variables to test for trends (P
trend

).

To identify a final model with the most robust independent 

CD4 and/or HIV RNA predictors, we compared models using 

the Akaike information criterion (AIC), which accounts 

for both model fit and parsimony. A  smaller AIC indicates a 

better model; a difference in AIC that is >10 between models 

is considered meaningful [32]. Models being compared must 

use the same participant set. To make valid comparisons across 

all models, we examined AICs among persons with follow-up 

>3060 days (N = 34 625; anal cancer cases = 170). To choose 

CD4 measures for further testing, we compared separate models 

including each CD4 measure individually. Then, to select the 

best CD4 measure(s), we compared models that included the 

measures chosen for further testing, 2 at a time in the same 

model. We did the same for HIV RNA measures. To develop 

our final model, we compared models including combinations 

of the best CD4 and/or HIV RNA measures in the same model.

All models were adjusted for sex, race/ethnicity, and baseline 

age and calendar period. We did not adjust for history of AIDS 

due to its expected high collinearity with CD4 nadir and other 

CD4 or HIV RNA measures. In the primary analysis, we did 
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not adjust for HIV risk group or smoking due to a large number 

of unknowns, and we did not adjust for ART use because ART 

initiation during the study period was affected by prior CD4 

[33]. In separate sensitivity analyses, we adjusted for HIV risk 

group, smoking, and cumulative ART use in our final model 

and assessed whether HIV risk group modified the association 

between the predictors and anal cancer risk in our final model 

(Supplementary Methods).

We used SAS version 9.4 (SAS Institute Inc., Cary, NC) to 

perform analyses, and a 2-sided P value of .05 to determine sta-

tistical significance.

RESULTS

Among 122 840 PLWH included in the 21 NA-ACCORD cohorts, 

102 777 persons were eligible for this study (Table 1). Excluded 

persons had <2 CD4 or <2 HIV RNA measurements (n = 13 701) 

or no follow-up time (n = 6362). Most eligible persons were male 

(85%), of white (44%) or black race/ethnicity (40%), and started 

follow-up during the period 1996–2003 (57%). At baseline, most 

were aged ≥40 years (57%) and ART naive (67%), with CD4 ≥200 

cells/µL (69%) and HIV RNA >500 copies/mL (70%). Persons 

diagnosed with anal cancer (n = 492) included a larger propor-

tion of males (96%), persons of white race/ethnicity (61%), and 

persons who started follow-up during the period 1996–1999 

(55% vs 32%). At baseline, they were more likely to be aged 

≥40 years (64%) but less likely to be ART naive (57%) or to have 

a CD4 ≥200 cells/µL (49%).

Selection of Individual CD4 or HIV RNA Measures for Further Testing

In separate models, anal cancer risk was significantly associ-

ated with each CD4 and HIV RNA measure, except HIV RNA 

lagged by 180 and 540 days (Tables 2–4). Models with stronger 

associations (ie, higher hazard ratios [HRs]) and lower AICs were 

largely concentrated in single measures lagged by ≥1260 days (ie, 

occurring approximately 8.5 to approximately 3.5  years in the 

past) and in early cumulative and nadir/peak measures (ie, from 

3060 to 1620 days [approximately 8.5 to approximately 4.5 years] 

in the past). Based on the results from separate models and 

models that included 2 cumulative or nadir/peak measures of the 

same type for CD4 (eg, early and late CD4 average in the same 

model) and HIV RNA, respectively (Supplementary Results; 

Supplementary Tables 1 and 2), we chose several CD4 measures 

(1620 day lag, early and overall average, early and overall propor-

tion of time CD4 <200 cells/ µL, and early and overall nadir) and 

HIV RNA measures (3060 day lag, early average, and early peak) 

for further consideration.

Selection of Best CD4 Predictor(s)

We fit models including the CD4 measures chosen for further 

consideration above, 2 at a time. The model with both overall 

Table 1. Baseline Characteristics of Study Sample, North American AIDS 

Cohort Collaboration on Research and Design, 1996–2014

Characteristic

All (N = 102 777)

Anal Cancer Cases 

(n = 492)

n (%) n (%)

Sex   

 Male 87 059 (84.7) 470 (95.5)

 Female 15 718 (15.3) 22 (4.5)

Race/ethnicity   

 Black 41 331 (40.2) 156 (31.7)

 White 44 741 (43.5) 302 (61.4)

 Hispanic 6934 (6.8) 13 (2.6)

 Other 4100 (4.0) 9 (1.8)

 Unknown, imputed 5671 (5.5) 12 (2.4)

Age, y   

 18–29 13 107 (12.8) 18 (3.7)

 30–39 30 890 (30.1) 160 (32.5)

 40–49 35 930 (35.0) 188 (38.2)

 ≥50 22 850 (22.2) 126 (25.6)

Calendar period   

 1996–1999 32 426 (31.6) 272 (55.3)

 2000–2003 25 949 (25.2) 133 (27.0)

 2004–2007 19 870 (19.3) 55 (11.2)

 2008–2011 18 287 (17.8) 28 (5.7)

 2012–2014 6245 (6.1) 4 (0.8)

Combination antiretroviral therapy 

naive

  

 No 34 022 (33.1) 210 (42.7)

 Yes 68 755 (66.9) 282 (57.3)

CD4 count, cells/µL   

 <50 11 259 (11.0) 87 (17.7)

 50 to <100 6856 (6.7) 62 (12.6)

 100 to <200 13 596 (13.2) 104 (21.1)

 200 to <350 22 252 (21.7) 120 (24.4)

 350 to <500 20 058 (19.5) 59 (12.0)

 ≥500 28 756 (28.0) 60 (12.2)

HIV RNA level, copies/mL   

 ≤500 30 987 (30.1) 133 (27.0)

 >500 to <10 000 20 738 (20.2) 113 (23.0)

 10 000 to <100 000 30 394 (29.6) 138 (28.0)

 ≥100 000 20 658 (20.1) 108 (22.0)

HIV risk group   

 Injection drug use 12 695 (12.4) 33 (6.7)

 Men who have sex with men 32 669 (31.8) 222 (45.1)

 Heterosexual 16 134 (15.7) 29 (5.9)

 Other 2089 (2.0) 4 (0.8)

 Unknown, imputeda 5636 (5.5) 14 (2.9)

 Unknown, not imputeda 33 554 (32.6) 190 (38.6)

Smoking status   

 Ever 54 994 (53.5) 350 (71.1)

 Never 19 491 (19.0) 102 (20.7)

 Unknown, imputeda 15 711 (15.3) 19 (3.9)

 Unknown, not imputeda 12 581 (12.2) 21 (4.3)

Abbreviation: HIV, human immunodeficiency virus.

aWe imputed HIV risk group and smoking status for persons with unknown values, except 

for cohorts with a high proportion of unknowns, or, for smoking, with all the knowns being 

smokers.
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CD4 nadir and early proportion of time CD4  <200 cells/µL 

showed an AIC that was meaningfully lower than any other 

model containing 1 or 2 CD4 measures (data not shown). These 

2 measures were highly correlated (Supplementary Table  3; 

Spearman correlation coefficient, –0.77; P <  .0001), as were 

most cumulative and nadir CD4 measures.

Selection of the Best HIV RNA Predictor(s)

We fit models including the HIV RNA measures chosen for 

further consideration above, 2 at a time. None of these models 

showed an AIC that was meaningfully lower than that for early 

HIV RNA average alone, the single HIV RNA measure with 

the lowest AIC (data not shown). Although the AIC differ-

ence between separate models for early HIV RNA average and 

early HIV RNA peak was not meaningful (Table 4), when they 

were included in the same model, only early HIV RNA average 

remained significant (global P = .0061).

Final Model

We compared models with combinations of the best CD4 

predictors (overall nadir and early proportion of time CD4 <200 

cells/µL) and HIV RNA predictors (early average; Table 5). The 

model with the 2 CD4 measures prevailed as the model with 

the lowest AIC. Furthermore, early HIV RNA average lost its 

significance when added to this model. Thus, our final model 

included overall CD4 nadir (HR for <50 vs ≥500 cells/µL, 13.4; 

95% confidence interval [CI], 3.5–51.0; P
trend

 < .0001) and early 

proportion of time CD4 <200 cells/µL (HR for entire vs no time, 

3.1; 95% CI, 1.5–6.6; P
trend

 = .0030). In sensitivity analyses (data 

not shown), the HRs for these 2 measures did not meaningfully 

change after our final model was adjusted for HIV risk group, 

smoking, or cumulative ART use and were not significantly 

different between MSM and other/unknown HIV risk groups 

(P = .69 for overall CD4 nadir and P = .065 for early proportion 

of time CD4 <200 cells/µL).

The median overall CD4 nadir at the end of follow-up was 

137 cells/µL (interquartile range [IQR], 38–256) among anal 

cancer cases compared with 259 cells/µL (IQR, 134–401) among 

noncases. The median time from CD4 nadir to anal cancer di-

agnosis was 4.9 years (IQR, 3.0–7.4).

DISCUSSION

Among PLWH in the United States and Canada, the most ro-

bust independent predictors for anal cancer risk were overall 

CD4 nadir (ie, lowest CD4 from approximately 8.5 years to ap-

proximately 6 months in the past) and early cumulative CD4 

(ie, proportion of time CD4 <200 cells/µL from approximately 

8.5 to approximately 4.5  years in the past). HIV RNA meas-

ures did not further improve anal cancer risk prediction. Our 

results confirmed the association between HIV-related immu-

nosuppression and anal cancer risk [8–10, 16–26]; suggested 

a key role for severe, prolonged immunosuppression in anal 

carcinogenesis; and favored a greater role of immunosuppres-

sion at earlier compared with late phases of anal carcinogenesis.

Similar to our study, a previous study found nadir and cu-

mulative CD4 to be independent predictors of anal cancer risk 

[25]. Other studies have found nadir [8, 9, 16, 19, 23, 24, 26] 

or cumulative CD4 [18, 21] to be associated with anal cancer 

risk and found nadir [8, 23, 24, 26], cumulative [18], and past 

[23] CD4 to be better predictors than recent CD4. Furthermore, 

PLWH with a prior AIDS diagnosis, which captures a history 

of severe immunosuppression (ie, a low CD4 nadir), have an 

elevated anal cancer risk compared to PLWH without AIDS [1].

In our study, based on AICs and strengths of association, 

single past CD4 measures (ie, lagged by approximately 3.5 to 

approximately 8.5 years) and early cumulative and nadir CD4 

measures (from approximately 8.5 to approximately 4.5  years 

in the past) were generally better predictors of anal cancer risk 

than more recent CD4 measures, with early proportion of time 

CD4 <200 cells/µL included in our final model. Furthermore, 

only early measures remained significant when both early and 

late CD4 measures of the same type were modeled together 

(Supplementary Table 1). Nevertheless, as overall CD4 nadir 

was highly correlated with both early and late CD4 nadir, it was 

difficult to definitively tease apart these 3 constructs. Moreover, 

besides capturing severity of immunosuppression, overall CD4 

nadir likely captured cumulative immunosuppression, as it was 

highly correlated with cumulative CD4 measures.

We and others have found cumulative HIV RNA measures 

to be significantly associated with anal cancer risk [18, 24, 26, 

27] and to be better predictors than recent HIV RNA [18, 27]. 

However, when we added early HIV RNA average to a model 

with our 2 key CD4 predictors, it lost statistical significance and 

the model fit did not improve. These results suggest that the 

HIV RNA effect was entirely mediated by its effect of lowering 

CD4 [34], with no independent HIV RNA effect. In contrast, 

the only other study to comprehensively evaluate different CD4 

and HIV RNA measures determined both cumulative CD4 and 

cumulative HIV RNA to be independent key predictors [18].

Prolonged immunosuppression-driven loss of control of on-

cogenic HPV infection is considered the primary mechanism 

that drives anal carcinogenesis in PLWH [3–5]. Lower CD4 

is associated with increased anal HPV infection prevalence 

and persistence, greater amounts of HPV DNA, more HPV 

types in anal specimens, higher incidence and prevalence of 

anal intraepithelial neoplasia, and faster progression to HSIL/

AIN2-3 [3, 4]. However, HIV-induced immunosuppression 

may not be critical for HSIL/AIN2-3 progression to anal cancer 

[3–6], and HPV-associated genetic instability and other factors 

(eg, smoking) that lead to genetic changes in HSIL/AIN2-3 may 

have a greater influence on progression [3, 4]. Our results gen-

erally supported this model, with early CD4 measures being 

better predictors for anal cancer risk than late CD4 measures. 

Nevertheless, our identification of overall CD4 nadir (ie, from 
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Table 2. Recent and Past CD4 Count Measures and Anal Cancer Risk, North American AIDS Cohort Collaboration on Research and Design, 1996–2014

CD4 Count Measure (cells/µL) Anal Cancer Cases Hazard Ratio (95% Confidence Interval)a Global P Value (Akaike Information Criterion)b

180 d (approximately 6 mo) lag (ie, “recent”)    

 <50 27 4.1 (2.7, 6.3) <.0001 (2603)

 50 to <100 34 4.6 (3.1, 6.7) …

 100 to <200 73 3.1 (2.3, 4.2) …

 200 to <350 135 2.6 (2.0, 3.3) …

 350 to <500 106 1.8 (1.4, 2.3) …

 ≥500 117 1.0 (ref) …

 Per 50 cells/µLc … 0.91 (0.89, 0.93) …

540 d (approximately 1.5 y) lag    

 <50 34 5.8 (3.9, 8.7) <.0001 (2591)

 50 to <100 27 3.7 (2.4, 5.7) …

 100 to <200 88 3.8 (2.9, 5.1) …

 200 to <350 113 2.2 (1.7, 2.9) …

 350 to <500 92 1.6 (1.2, 2.1) …

 ≥500 106 1.0 (ref) …

 Per 50 cells/µLc … 0.90 (0.88, 0.92) …

900 d (approximately 2.5 y) lag    

 <50 25 4.6 (2.9, 7.2) <.0001 (2596)

 50 to <100 32 4.6 (3.1, 6.9) …

 100 to <200 79 3.6 (2.6, 4.8) …

 200 to <350 98 2.0 (1.5, 2.7) …

 350 to <500 74 1.4 (1.0, 1.8) …

 ≥500 98 1.0 (ref) …

 Per 50 cells/µLc … 0.90 (0.88, 0.92) …

1260 d (approximately 3.5 y) lag    

 <50 36 8.0 (5.4, 12.0) <.0001 (2584)

 50 to <100 25 4.2 (2.7, 6.6) …

 100 to <200 66 3.4 (2.4, 4.7) …

 200 to <350 80 1.9 (1.4, 2.5) …

 350 to <500 69 1.5 (1.1, 2.0) …

 ≥500 83 1.0 (ref) …

 Per 50 cells/µLc … 0.89 (0.86, 0.91) …

1620 d (approximately 4.5 y) lag    

 <50 33 9.5 (6.2, 14.7) <.0001 (2575)

 50 to <100 28 6.0 (3.8, 9.5) …

 100 to <200 58 3.8 (2.6, 5.4) …

 200 to <350 65 1.9 (1.4, 2.8) …

 350 to <500 74 2.1 (1.5, 2.9) …

 ≥500 62 1.0 (ref) …

 Per 50 cells/µLc … 0.88 (0.86, 0.91) …

2340 d (approximately 6.5 y) lag    

 <50 27 9.0 (5.6, 14.6) <.0001 (2581)

 50 to <100 14 3.6 (2.0, 6.6) …

 100 to <200 47 3.6 (2.4, 5.5) …

 200 to <350 53 1.9 (1.3, 2.8) …

 350 to <500 48 1.6 (1.1, 2.4) …

 ≥500 50 1.0 (ref) …

 Per 50 cells/µLc … 0.88 (0.86, 0.91) …

3060 d (approximately 8.5 y) lag    

 <50 13 6.3 (3.3, 12.2) <.0001 (2580)

 50 to <100 18 6.6 (3.7, 11.9) …

 100 to <200 37 4.2 (2.6, 6.8) …

 200 to <350 47 2.5 (1.6, 3.9) …

 350 to <500 23 1.2 (0.7, 2.0) …

 ≥500 32 1.0 (ref) …

 Per 50 cells/µLc … 0.87 (0.84, 0.90) …

aEach measure was individually included in a cohort-stratified Cox model adjusted for sex, race/ethnicity, and baseline age and calendar period. The N and number of anal cancer cases used for the model 

of each measure was: 180 d lag (N = 102 777; number of anal cancer cases = 492), 540 d lag (94 458; 460), 900 d lag (79 882; 406), 1260 d lag (68 953; 359), 1620 d lag (60 006; 320), 2340 d lag (45 343; 

239), and 3060 d lag (34 625; 170).

bGlobal P value and Akaike information criterion from models among persons with follow-up >3060 days (N = 34 625; number of anal cancer cases = 170).
c
P
trend

 < .0001.
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approximately 8.5  years to approximately 6  months in the 

past) as a key predictor suggests a role for severe, prolonged 

immunosuppression in both HSIL/AIN2-3 development and 

progression.

HIV-encoded proteins may also contribute to HSIL/AIN2-3 

development by facilitating initial HPV infection [35] or by 

upregulating HPV oncogenes [5, 36]. Although our finding of 

no independent HIV RNA effect contradicts this hypothesis, 

HIV RNA may be an imperfect marker for viral protein effects.

ART’s role in preventing anal carcinogenesis is unclear [3–5]. If 

severe, prolonged immunosuppression in the presence of infection 

with oncogenic HPV types is a key risk factor in anal carcinogenesis, 

Table 3. Recent and Past Human Immunodeficiency Virus RNA Level Measures and Anal Cancer Risk, North American AIDS Cohort Collaboration on 

Research and Design, 1996–2014

Human Immunodeficiency Virus RNA Level Measure 

(copies/mL) Anal Cancer Cases

Hazard Ratio (95% Confidence 

Interval)a
Global P Value (Akaike Infor-

mation Criterion)b

180 d (approximately 6 mo) lag (ie, “recent”)    

 ≤500 341 1.0 (ref) .14 (2643)

 >500 to <10 000 66 0.9 (0.7, 1.2) …

 10 000 to <100 000 59 1.0 (0.8, 1.3) …

 ≥100 000 26 1.3 (0.9, 1.9) …

 Per log10 copies/mLc … 1.01 (0.93, 1.11) …

540 d (approximately 1.5 y) lag    

 ≤500 288 1.0 (ref) .086 (2642)

 >500 to <10 000 77 1.1 (0.8, 1.4) …

 10 000 to <100 000 63 1.2 (0.9, 1.5) …

 ≥100 000 32 1.8 (1.2, 2.7) …

 Per log10 copies/mLc … 1.13 (1.03, 1.23) …

900 d (approximately 2.5 y) lag    

 ≤500 233 1.0 (ref) .013 (2638)

 >500 to <10 000 74 1.2 (0.9, 1.6) …

 10 000 to <100 000 70 1.5 (1.1, 1.9) …

 ≥100 000 29 2.0 (1.3, 2.9) …

 Per log10 copies/mLc … 1.22 (1.11, 1.33) …

1260 d (approximately 3.5 y) lag    

 ≤500 189 1.0 (ref) <.0001 (2624)

 >500 to <10 000 70 1.3 (1.0, 1.7) …

 10 000 to <100 000 70 1.7 (1.3, 2.3) …

 ≥100 000 30 2.5 (1.7, 3.7) …

 Per log10 copies/mLc … 1.27 (1.16, 1.39) …

1620 d (approximately 4.5 y) lag    

 ≤500 165 1.0 (ref) <.0001 (2627)

 >500 to <10 000 61 1.1 (0.8, 1.5) …

 10 000 to <100 000 62 1.6 (1.2, 2.1) …

 ≥100 000 32 2.8 (1.9, 4.2) …

 Per log10 copies/mLc … 1.31 (1.19, 1.45) …

2340 d (approximately 6.5 y) lag    

 ≤500 105 1.0 (ref) .0002 (2629)

 >500 to <10 000 59 1.5 (1.1, 2.0) …

 10 000 to <100 000 53 1.8 (1.3, 2.6) …

 ≥100 000 22 2.7 (1.7, 4.3) …

 Per log10 copies/mLc … 1.32 (1.18, 1.48) …

3060 d (approximately 8.5 y) lag    

 ≤500 66 1.0 (ref) <.0001 (2619)

 >500 to <10 000 37 1.3 (0.9, 1.9) …

 10 000 to <100 000 50 2.5 (1.7, 3.7) …

 ≥100 000 17 3.1 (1.8, 5.3) …

 Per log10 copies/mLc … 1.49 (1.30, 1.70) …

aEach measure was individually included in a cohort-stratified Cox model adjusted for sex, race/ethnicity, and baseline age and calendar period. The N and number of anal cancer cases 

used for the model of each measure was: 180 d lag (N = 102 777; number of anal cancer cases = 492), 540 d lag (94 458; 460), 900 d lag (79 882; 406), 1260 d lag (68 953; 359), 1620 d lag 

(60 006; 320), 2340 d lag (45 343; 239), and 3060 d lag (34 625; 170).

bGlobal P value and Akaike information criterion from models among persons with follow-up >3060 days (N = 34 625; number of anal cancer cases = 170).

c
P
trend

 < .0001, except for 180 d lag (P
trend

 = .75) and 540 d lag (P
trend

 = .0086).
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Table 4. Cumulative and Nadir/Peak CD4 Count and Human Immunodeficiency Virus RNA Level Measures During Moving Time Windows and Anal Cancer 

Risk, North American AIDS Cohort Collaboration on Research and Design, 1996–2014

Measurea

Moving Time Window

Early Late Overall

(3060 to 1620 d in the Past) (1620 to 180 d in the Past) (3060 to 180 d in the Past)

Anal Cancer Cases HR (95% CI) Anal Cancer Cases HR (95% CI) Anal Cancer Cases HR (95% CI)

CD4 count average, cells/µL     

 <50 10 12.2 (6.0, 24.8) 15 7.6 (4.3, 13.3) 8 20.7 (9.5, 45.0)

 50 to <100 18 9.1 (5.1, 16.2) 24 5.4 (3.4, 8.6) 14 9.3 (5.0, 17.3)

 100 to <200 28 3.7 (2.2, 6.1) 60 3.8 (2.7, 5.3) 30 4.4 (2.7, 7.2)

 200 to <350 43 2.4 (1.5, 3.7) 74 2.0 (1.5, 2.8) 45 2.7 (1.7, 4.1)

 350 to <500 36 1.7 (1.1, 2.7) 66 1.5 (1.1, 2.0) 35 1.6 (1.0, 2.6)

 ≥500 35 1.0 (ref) 81 1.0 (ref) 38 1.0 (ref)

 Per 50 cells/µLb … 0.86 (0.83, 0.90) … 0.88 (0.86, 0.91) … 0.86 (0.83, 0.89)

 Global P value (AIC)c … <.0001 (2577) … <.0001 (2594) … <.0001 (2569)

Proportion of time CD4 count <200 cells/µL     

 0.00 73 1.0 (ref) 148 1.0 (ref) 61 1.0 (ref)

 >0.00 to 0.25 29 2.1 (1.4, 3.3) 44 1.7 (1.2, 2.5) 36 1.8 (1.2, 2.7)

 >0.25 to 0.50 12 2.1 (1.1, 3.8) 24 2.3 (1.5, 3.5) 19 2.7 (1.6, 4.6)

 >0.50 to 0.75 10 2.2 (1.2, 4.3) 26 3.2 (2.1, 4.8) 18 3.6 (2.1, 6.2)

 >0.75 to <1.00 9 2.1 (1.1, 4.3) 32 4.1 (2.8, 6.0) 16 4.0 (2.3, 7.1)

 1.00 37 7.9 (5.3, 11.9) 46 4.7 (3.4, 6.6) 20 10.3 (6.1, 17.1)

 Per 20% of time CD4 <200 cells/µLb … 1.39 (1.29, 1.49) … 1.36 (1.28, 1.43) … 1.46 (1.35, 1.58)

 Global P value (AIC)c … <.0001 (2572) … <.0001 (2591) … <.0001 (2575)

CD4 count nadir, cells/µL     

 <50 45 12.6 (6.1, 26.0) 61 7.0 (4.4, 11.2) 54 22.9 (7.1, 73.9)

 50 to <100 17 5.5 (2.4, 12.5) 34 4.5 (2.7, 7.6) 20 11.2 (3.3, 37.7)

 100 to <200 35 4.1 (1.9, 8.5) 77 3.8 (2.4, 6.0) 35 7.6 (2.3, 24.8)

 200 to <350 49 3.2 (1.6, 6.6) 80 2.2 (1.4, 3.5) 47 6.5 (2.0, 20.9)

 350 to <500 15 1.5 (0.6, 3.4) 42 1.6 (1.0, 2.6) 11 2.6 (0.7, 9.4)

 ≥500 9 1.0 (ref) 26 1.0 (ref) 3 1.0 (ref)

 Per 50 cells/µLb … 0.82 (0.78, 0.86) … 0.85 (0.82, 0.88) … 0.79 (0.75, 0.84)

 Global P value (AIC)c … <.0001 (2564) … <.0001 (2583) … <.0001 (2562)

HIV RNA level average, copies/mL     

 ≤500 47 1.0 (ref) 122 1.0 (ref) 44 1.0 (ref)

 >500 to <10 000 41 1.2 (0.8, 1.9) 81 1.3 (1.0, 1.8) 51 1.4 (0.9, 2.1)

 10 000 to <100 000 61 2.4 (1.6, 3.5) 88 1.9 (1.4, 2.5) 59 2.2 (1.5, 3.3)

 ≥100 000 21 5.3 (3.1, 8.9) 29 3.6 (2.4, 5.5) 16 5.4 (3.0, 9.8)

 Per log10 copies/mLb … 1.58 (1.36, 1.84) … 1.36 (1.23, 1.52) … 1.56 (1.33, 1.83)

 Global P value (AIC)c … <.0001 (2607) … .0001 (2628) … <.0001 (2617)

Proportion of time HIV RNA level >500 copies/mL     

 0.00 31 1.0 (ref) 95 1.0 (ref) 25 1.0 (ref)

 >0.00 to 0.25 29 1.6 (0.9, 2.6) 51 1.2 (0.8, 1.7) 42 1.6 (1.0, 2.7)

 >0.25 to 0.50 19 1.6 (0.9, 2.8) 49 1.8 (1.3, 2.6) 24 1.5 (0.9, 2.7)

 >0.50 to 0.75 21 1.8 (1.0, 3.2) 47 1.9 (1.3, 2.8) 32 2.4 (1.4, 4.1)

 >0.75 to <1.00 40 3.1 (1.9, 5.1) 57 2.2 (1.6, 3.2) 41 3.7 (2.2, 6.4)

 1.00 30 2.5 (1.5, 4.3) 21 0.9 (0.6, 1.5) 6 1.8 (0.7, 4.5)

 Per 20% of time HIV RNA >500 copies/mLb … 1.21 (1.11, 1.31) … 1.11 (1.04, 1.18) … 1.25 (1.14, 1.37)

Global P value (AIC)c … .0002 (2629) … .0001 (2627) … <.0001 (2625)

HIV RNA level peak, copies/mL     

 ≤500 31 1.0 (ref) 95 1.0 (ref) 25 1.0 (ref)

 >500 to <10 000 24 1.2 (0.7, 2.0) 44 1.0 (0.7, 1.4) 23 1.3 (0.7, 2.2)

 10 000 to <100 000 54 1.9 (1.2, 3.0) 92 1.6 (1.2, 2.1) 54 1.9 (1.1, 3.0)

 ≥100 000 61 3.2 (2.1, 5.1) 89 2.3 (1.7, 3.1) 68 2.8 (1.7, 4.5)

 Per log10 copies/mLb … 1.49 (1.30, 1.70) … 1.30 (1.19, 1.43) … 1.43 (1.25, 1.64)

 Global P value (AIC)c … <.0001 (2615) … .0001 (2628) … <.0001 (2626)

Abbreviations: AIC, Akaike information criterion; CI, confidence interval; HIV, human immunodeficiency virus; HR, hazard ratio. 

aEach measure was individually included in a cohort-stratified Cox model adjusted for sex, race/ethnicity, and baseline age and calendar period. The N and number of anal cancer cases for 

each moving window was: early (N = 34 625; number of anal cancer cases = 170), late (60 006; 320), and overall (34 625; 170).

b
P
trend

 < .0001, except for early proportion of time HIV RNA level >500 copies/mL (P
trend

 = .0010).

cGlobal P value and AIC from models among persons with follow-up >3060 days (N = 34 625; number of anal cancer cases = 170).
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then ART would have little preventive effect if initiated late, once 

immunosuppression has already played its main role of promoting 

HSIL/AIN2-3 [4]. Presumably a high proportion of persons who 

initiated ART at the start of the ART era already had experienced 

severe, prolonged immunosuppression, likely explaining the lack 

of decline in anal cancer incidence at that time [2, 7–15]. The trend 

toward earlier ART initiation since then [37] might explain the ap-

parent decreasing incidence since 2008 [1, 2].

Nevertheless, anal cancer risk remains markedly elevated 

in PLWH [1], so optimization of prevention and screening 

efforts are needed. Early HIV diagnosis and prompt ART 

initiation [38, 39] could prevent the severe, prolonged im-

munosuppression associated with increased anal cancer risk. 

Vaccination against oncogenic HPV infection, especially 

among young MSM, and smoking cessation could also re-

duce risk and merit incorporation into primary HIV care 

Table 5. Best CD4 Count and Human Immunodeficiency Virus RNA Level Predictors and Final Model for Anal Cancer Risk, North American AIDS Cohort 

Collaboration on Research and Design, 1996–2014

Best Predictor

Anal Cancer 

Cases

Separate  

Modelsa

Combined Modelsb

Model 1 (Final 

Model) Model 2 Model 3 Model 4

HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

Overall CD4 count nadir, cells/µLc       

 <50 54 22.9 (7.1, 73.9) 13.4 (3.5, 51.0) 18.4 (5.5, 61.7) … 11.7 (3.0, 46.1)

 50 to <100 20 11.2 (3.3, 37.7) 8.1 (2.1, 31.2) 10.1 (2.9, 35.0) … 7.9 (2.0, 31.0)

 100 to <200 35 7.6 (2.3, 24.8) 6.2 (1.7, 22.2) 7.3 (2.2, 24.0) … 6.1 (1.7, 22.2)

 200 to <350 47 6.5 (2.0, 20.9) 6.5 (2.0, 20.9) 6.4 (2.0, 20.8) … 6.4 (2.0, 20.9)

 350 to <500 11 2.6 (0.7, 9.4) 2.6 (0.7, 9.4) 2.6 (0.7, 9.4) … 2.6 (0.7, 9.4)

 ≥500 3 1.0 (ref) 1.0 (ref) 1.0 (ref) … 1.0 (ref)

 Global P value … <.0001 <.0001 <.0001 … <.0001

 Per 50 cells/µL … 0.79 (0.75, 0.84) 0.85 (0.79, 0.92) 0.82 (0.77, 0.87) … 0.87 (0.80, 0.93)

  P
trend

… <.0001 <.0001 <.0001 … .0002

 AIC … 2562 … … … …

Early proportion of time 

CD4 count <200 cells/µLd

      

 0.00 73 1.0 (ref) 1.0 (ref) … 1.0 (ref) 1.0 (ref)

 >0.00 to 0.25 29 2.1 (1.4, 3.3) 1.4 (0.7, 2.7) … 1.9 (1.2, 2.9) 1.3 (0.7, 2.6)

 >0.25 to 0.50 12 2.1 (1.1, 3.8) 1.1 (0.5, 2.5) … 1.7 (0.9, 3.2) 1.1 (0.5, 2.4)

 >0.50 to 0.75 10 2.2 (1.2, 4.3) 1.1 (0.4, 2.6) … 1.8 (0.9, 3.5) 1.0 (0.4, 2.4)

 >0.75 to <1.00 9 2.1 (1.1, 4.3) 0.9 (0.4, 2.3) … 1.6 (0.8, 3.3) 0.9 (0.3, 2.2)

 1.00 37 7.9 (5.3, 11.9) 3.1 (1.5, 6.6) … 5.8 (3.7, 9.1) 2.9 (1.4, 6.1)

 Global P value … <.0001 .0009 … <.0001 .0015

 Per 20% of time CD4 <200 cells/µL … 1.39 (1.29, 1.49) 1.17 (1.05, 1.29) … 1.31 (1.20, 1.42) 1.15 (1.04, 1.28)

  P
trend

… <.0001 .0030 … <.0001 .0065

 AIC … 2572 … … … …

Early HIV RNA level 

average, copies/mLd

      

 ≤500 47 1.0 (ref) … 1.0 (ref) 1.0 (ref) 1.0 (ref)

 >500 to <10 000 41 1.2 (0.8, 1.9) … 0.9 (0.6, 1.3) 1.1 (0.7, 1.6) 0.9 (0.6, 1.3)

 10 000 to <100 000 61 2.4 (1.6, 3.5) … 1.2 (0.8, 1.8) 1.6 (1.0, 2.4) 1.2 (0.7, 1.8)

 ≥100 000 21 5.3 (3.1, 8.9) … 1.9 (1.0, 3.4) 2.5 (1.4, 4.5) 1.7 (0.9, 3.2)

 Global P value … <.0001 … .089 .014 .15

 Per log10 copies/mL … 1.58 (1.36, 1.84) … 1.17 (0.99, 1.39) 1.28 (1.09, 1.51) 1.14 (0.96, 1.35)

  P
trend

… <.0001 … .064 .0030 .15

 AIC … 2607 … … … …

Combined models’ AIC …  2551 2561 2567 2551

Abbreviations: AIC, Akaike information criterion; CI, confidence interval; HR, hazard ratio; HIV, human immunodeficiency virus. 

aEach measure was individually included in a cohort-stratified Cox model adjusted for sex, race/ethnicity, and baseline age and calendar period among persons with follow-up >3060 days 

(N = 34 625; number of anal cancer cases = 170).

bFrom cohort-stratified Cox model with combinations of key predictors as covariates and adjusted for sex, race/ethnicity, and baseline age and calendar period among persons with follow-up 

>3060 days.

cCD4 count nadir from 3060 to 180 days (approximately 8.5 years to approximately 6 months) in the past.

dProportion of time CD4 count <200 cells/µL and HIV RNA level average from 3060 to 1620 days (approximately 8.5 to approximately 4.5 years) in the past.
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[39]. Furthermore, a firm evidence base needs to be de-

veloped for HSIL/AIN2-3 screening and management in 

PLWH [39, 40]. Anal cancer screening may be more effective 

if targeted to high-risk subgroups such as MSM, especially 

young MSM with AIDS [2]. Nadir and cumulative CD4, 

along with having a prior AIDS diagnosis (a proxy for low 

CD4 nadir), may represent useful markers for identifying 

patients at higher risk for anal cancer to target for screening 

and other prevention efforts.

Our study’s limitations included a lack of information on anal 

HPV infection (including HPV genotype), anal intercourse fre-

quency (a risk factor for HPV infection), presence of anal warts 

(an indicator of HPV infection), and anal cancer screening. 

HIV risk group and smoking data were incomplete; never-

theless, adjusting for these variables in sensitivity analyses re-

vealed that our final model was highly robust. Furthermore, our 

study included a low percentage of females and Hispanics and 

only US and Canadian populations, limiting generalizability. 

Finally, none of the examined CD4 or HIV RNA measures fully 

characterize HIV-associated immune dysfunction (before or 

after ART).

Our study’s strengths included large sample size and number 

of events, coverage across 19 years during the ART era among 

people with varied characteristics and from diverse North 

American locations, validated anal cancer diagnoses, and com-

prehensive evaluation of various CD4 and HIV RNA measures, 

capturing exposures that occurred as far back as approximately 

8.5 years. Our approach of examining cumulative and nadir/peak 

measures during moving windows of fixed duration may be su-

perior to examining these measures during total follow-up time, 

which varies by person.

In summary, we found CD4 nadir from approximately 

8.5 years to approximately 6 months in the past and cumulative 

CD4 (ie, proportion of time CD4 <200 cells/µL) from approxi-

mately 8.5 to approximately 4.5 years in the past, in combination, 

to be the most robust independent predictors of anal cancer risk. 

Besides capturing severity of immunosuppression during the ap-

proximately 8-year window, CD4 nadir likely also captured cu-

mulative immunosuppression. As evidence suggested that CD4 

in the early part of the window had the greatest influence on 

risk, our results were consistent with severe, prolonged immu-

nosuppression affecting the earlier stages in anal carcinogen-

esis. Initiating ART promptly upon HIV diagnosis, as currently 

recommended [38], and monitoring nadir and cumulative CD4 

to help target prevention efforts may be important for anal 

cancer prevention in PLWH.
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