

HOKKAIDO UNIVERSITY

Title	A ssociation of inflamm atory biom arkers with long litern outcomes after curative surgery form ass liforming intrahepatic cholangiocarcinom a
Author[s]	OhiraIM asafum iIY oshizum iIT om oharuIIY ugaw aIK yoheiIK osaiFu jim otoIIY ukikoIInokuchiIShoichiIM otomuraI TakashiIM anoIY oheiIToshim aIT akeoIIItohIShin jiIH aradaIN oboruIIkegam iIT oruISoe jim aIY u jiIT aketom iI A kinobuIM oriIM asaki
Citation	Surgery today[]50[]4[]]379[]B88 https://doilorg[]10[]1007[]s00595[]019[]01905[]7
Issue Date	2020104
DocURL	httpIIIhdIIhandleInetI2115I80858
Rights	This is a post[peer]review []pre]copyedit version of an article published in Surgery Today[]The final authenticated version is available online at[]http:[][dx[doi]org[]]0[]007[300595[D19[D1905]]7
Туре	article Dauthor versionD
File Information	Surg Today[]50[]379[]pdf

- 1 Article type: Original Article (Clinical Original)
- 2 Association of inflammatory biomarkers with long-term outcomes
- 3 after curative surgery for mass-forming intrahepatic
- 4 cholangiocarcinoma
- 5 Masafumi Ohira^{1,2}, Tomoharu Yoshizumi¹, Kyohei Yugawa¹,
- 6 Yukiko Kosai-Fujimoto¹, Shoichi Inokuchi¹, Takashi Motomura¹, Yohei Mano¹,
- 7 Takeo Toshima¹, Shinji Itoh¹, Noboru Harada¹, Toru Ikegami¹, Yuji Soejima¹,
- 8 Akinobu Taketomi², Masaki Mori¹
- ⁹ ¹Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu
- 10 University, Fukuoka, Japan
- ¹¹ ²Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido
- 12 University, Sapporo, Japan
- 13 Correspondence to: Masafumi Ohira, Department of Gastroenterological Surgery I,
- 14 Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo,

- 1 060-8638, Japan. Tel: +81-11-706-5927, Fax: +81-11-717-7515,
- 2 E-mail: <u>makkaringo@pop.med.hokudai.ac.jp</u>
- 3 Key words: Inflammatory biomarker, intrahepatic cholangiocarcinoma, long-term
- 4 outcome
- 5
- 6

1 Abstract

2	Purpose: Inflammatory biomarkers such as neutrophil-to-lymphocyte ratio (NLR),
3	lymphocyte-to-monocyte ratio (LMR), and platelet-to-lymphocyte ratio (PLR) are
4	reportedly predictive of long-term outcomes in several cancers. We evaluated their
5	correlations with post-surgical long-term outcomes in patients with mass-forming (MF)
6	intrahepatic cholangiocarcinoma (ICC).
7	Methods: We included 52 patients who underwent hepatic resection for MF-ICC at our
8	hospital. We determined cutoff values of NLR, LMR and PLR, using receiver operating
9	characteristics curves, and compared survival rates of patients with high- and low
10	values. We also evaluated a prognostic scoring system based on significant
11	inflammatory biomarkers.
12	Results: Cutoff values were determined as NLR: 1.93, LMR: 4.78, and PLR: 98. The
13	high-NLR and low-LMR groups had significantly worse prognoses than the low-NLR
14	and high-LMR groups, respectively. We therefore designed a scoring system
15	(inflammation score [IS]) based on NLR and LMR values that stratified patients into
16	three groups (scores 0, 1, or 2). IS was significantly correlated with overall survival

- 1 (OS; 5-year survival rates by IS score—0: 100%, 1: 61%, 2: 32%; P = 0.011), and
- 2 shown to be an independent predictor of OS in multivariate analysis.
- 3 Conclusions: The IS system may predict long-term outcomes after surgery for MF-
- 4 ICC.
- 5

1 Introduction

2	Intrahepatic cholangiocarcinoma (ICC) is the second most common primary
3	liver cancer after hepatocellular carcinoma (HCC), and is commonly treated with
4	surgical resection when possible [1, 2, 3]. However, recurrence rates after ICC surgery
5	are high; 5-year recurrence-free survival is only 2%–39%, and overall survival is also
6	poor; 5-year overall survival (OS) is reportedly only 5%–56% [4].
7	Inflammatory biomarkers, such as neutrophil-to-lymphocyte ratio (NLR), lymphocyte-
8	to-monocyte ratio (LMR), and platelet-to-lymphocyte ratio (PLR), have been widely
9	studied as prognostic markers for long-term outcomes in several cancers [5, 6, 7]. These
10	biomarkers are also reportedly significant predictors of long-term outcome after ICC
11	surgery [8, 9, 10]. However, these studies rarely consider the macroscopic types of ICC,
12	which are reported to have different prognoses after surgery between each type [11, 12,
13	13, 14, 15, 16, 17].
14	This study evaluated correlations between inflammatory biomarkers and long-
15	term outcomes in the patients who underwent surgery for the mass-forming (MF)
16	subtype of ICC. We limited our cohort to MF-ICC to reduce its heterogeneity due to

different macroscopic types, and because MF is reported to be the predominant ICC 1 2 subtype [18, 19]. We also evaluated a scoring system for comprehensive inflammatory 3 status based on plural inflammatory biomarkers. 4 Methods 5 **Patients** 6 Patients who underwent hepatic resections for ICC at our hospital between 7 May 1998 and May 2017 were eligible for this study. We excluded patients who (a) 8 underwent preoperative therapies such as radiotherapy or chemotherapy; (b) had other 9 malignant disease; (c) underwent bile-duct reconstructions; (d) died within 30 days after 10 surgery due to postoperative complications; (e) underwent non-curative resections; (f) 11 had combined hepatocellular-cholangiocarcinoma. This study was approved by the 12 institutional review board of the Graduate School of Medical Sciences, Kyushu 13 University (No. 30-578). All study participants were provided with the opportunity to

14 opt out.

6

1 Surgical procedure and postoperative follow-up strategy

2	The details of our surgical techniques and patient follow-up methods for ICC
3	have been reported previously [14, 20, 21]. Basically, anatomical hepatic resection was
4	performed in patients who had adequate postoperative remnant liver volume and
5	function. For patients with cirrhosis, or who appeared unlikely to have adequate liver
6	volume after surgery, parenchymal-sparing hepatectomy was selected.
7	Lymphadenectomy around the hepatoduodenal ligament was performed in patients
8	whose preoperative imaging studies and intraoperative findings indicated possible
9	lymph node metastasis.
10	After discharge, all patients underwent regular screening for recurrence, using
11	ultrasonography and tumor markers such as CEA and CA19-9. In addition,
12	computerized tomography scanning was performed every six months. If recurrence was
13	suspected, additional imaging studies such as magnetic resonance imaging were
14	performed. When ICC recurrence was confirmed with imaging studies, patients
15	underwent additional hepatectomy or systemic chemotherapy, according to the size, site

1	The administration of postoperative adjuvant chemotherapy in this setting was
2	determined by the physician's decision because consensus on the benefit of adjuvant
3	chemotherapy for ICC patients is lacking [22]. Physicians decided the appropriateness
4	of adjuvant chemotherapy by considering pathological findings and patient's general
5	condition. Gemcitabine hydrochloride was used in the regimen.
6	Inflammatory biomarkers
7	Data on inflammatory biomarkers, including NLR, LMR, and PLR, were
8	obtained from preoperative complete blood counts (CBC). NLR, LMR, and PLR were
9	calculated as the absolute counts of neutrophils, lymphocytes, and platelets divided by
10	the absolute counts of lymphocytes, monocytes, and lymphocytes, respectively. We used
11	preoperative CBC data taken when patients showed no sign of infection. Cutoff values
12	of these markers were determined using receiver operating characteristics (ROC)
13	curves.
14	As a comprehensive evaluation of inflammatory status, we assessed a scoring
15	system using inflammatory biomarkers that were significantly correlated with long-term
16	outcomes.

1 Outcomes and statistical analysis

2	Patient data (including clinicopathological characteristics, laboratory data,
3	operative findings, pathological findings, and survival data) were obtained from a
4	prospectively maintained institutional database. Tumor stages were assessed according
5	to the American Joint Committee on Cancer (AJCC) classification system, 8th edition.
6	Active hepatitis B or C were defined as seropositivity for hepatitis B surface antigen or
7	hepatitis C antibody, respectively. Alcoholic hepatitis and non-alcoholic steatohepatitis
8	were defined considering patients' social histories and pathological findings of non-
9	cancerous parts of surgical specimens. If the non-cancerous surgical sample showed F4-
10	stage fibrosis, the patient was defined as having cirrhosis.
11	The patients were divided into high- and low-value groups for each inflammatory
12	biomarker. Characteristics and survival rates of high- and low-value groups were
13	compared.
14	Statistical analysis
15	Statistical analyses were performed using Wilcoxon rank-sum test for
16	examining differences in continuous variable distributions, and Fisher's exact test for

1	categorical variables. Survival curves were analyzed using the Kaplan-Meier method
2	and compared using the log-rank test. The inflammatory biomarkers that were
3	significantly associated with survival rates were used to calculate the score to evaluate
4	patients' comprehensive inflammation conditions; the score was designated as the
5	inflammation score (IS). The usefulness of IS was assessed using the Kaplan-Meier
6	method and log-rank test.
7	The Cox proportional hazards model was used for univariate and multivariate survival
8	analyses. Factors, including IS, that were significantly associated with survival rates in
9	univariate analyses were included in the multivariate analyses to assess their
10	independence. $P < 0.05$ was considered significant. All of the analyses were conducted
11	using JMP software (SAS Institute, Cary, NC).
12	Results
13	Sample size and inflammatory biomarker values classified by macroscopic types
14	We identified 52 patients with MF-ICC, 7 with MF+periductal infiltrating
15	(PI)-ICC, 4 with PI-ICC, and 1 with intraductal growth (IG)-ICC who met our inclusion
16	criteria. A flowchart of patient inclusion and exclusion is shown in Figure 1. Mean

1	values of inflammatory biomarkers by macroscopic type are shown in Table 1. In the
2	following study, we analyzed only MF-ICC cases.
3	Patient characteristics and inflammatory biomarker cutoff values
4	We based our ROC curves on mortality at 5 years after surgery (Figure 2).
5	The cutoff values of inflammatory biomarkers were NLR: 1.93, LMR: 4.78, and PLR:
6	98. Patients' clinicopathological characteristics by high and low value groups for each
7	inflammatory biomarker are shown in Tables 2, 3 and 4, respectively. Cirrhosis was
8	significantly associated with NLR and PLR, tumor size with NLR, and AJCC stage with
9	LMR, but no other factors showed significant associations.
10	
11	Overall survival
12	OS rates by each inflammatory biomarker are shown in Figure 3. Five-year
13	OS rates were low-NLR: 83%, high-NLR: 42% (<i>P</i> = 0.031); high-LMR: 81%, low-
14	LMR: 37% (<i>P</i> < 0.01); and low-PLR: 57%, high-PLR: 51% (<i>P</i> = 0.84).

1 Disease-free survival

2	The low LMR group had significantly worse disease-free survival (DFS) than
3	the high LMR group. The high NLR group was likely to have worse DFS than the low
4	NLR group, but there was not significant difference between them. Five-year DFS rates
5	in low-NLR and high-NLR group were 56 % and 34 % respectively (P=0.23), and those
6	in high-LMR and low-LMR group were 58 % and 30 % respectively (P=0.014).
7	For PLR, the high- and low-value groups did not significantly differ in DFS
8	(Figure 4).
9	Comprehensive evaluation of inflammatory biomarkers
9 10	Comprehensive evaluation of inflammatory biomarkers As NLR and LMR were significantly associated with OS in ICC patients, we
9 10 11	Comprehensive evaluation of inflammatory biomarkers As NLR and LMR were significantly associated with OS in ICC patients, we designed an inflammation score (IS) system that allotted one point each to patients with
9 10 11 12	Comprehensive evaluation of inflammatory biomarkers As NLR and LMR were significantly associated with OS in ICC patients, we designed an inflammation score (IS) system that allotted one point each to patients with high NLR, or low LMR, and two points for both, thus stratifying patients into three
9 10 11 12 13	Comprehensive evaluation of inflammatory biomarkers As NLR and LMR were significantly associated with OS in ICC patients, we designed an inflammation score (IS) system that allotted one point each to patients with high NLR, or low LMR, and two points for both, thus stratifying patients into three groups by scores 0, 1, or 2. Patients' 5-year OS significantly differed by their IS, at 0:
9 10 11 12 13 14	Comprehensive evaluation of inflammatory biomarkers As NLR and LMR were significantly associated with OS in ICC patients, we designed an inflammation score (IS) system that allotted one point each to patients with high NLR, or low LMR, and two points for both, thus stratifying patients into three groups by scores 0, 1, or 2. Patients' 5-year OS significantly differed by their IS, at 0: 100%, 1: 61%, and 2: 32% (<i>P</i> = 0.011; Figure 5). Five-year DFS rates were not

Predictive factors for OS 1

2	Univariate and multivariate analyses are shown in Table 5 and 6. The cut-off
3	values of absolute neutrophil and lymphocyte counts were determined using ROC
4	curves that were based on mortality at 5 years after surgery. In univariate analysis,
5	tumor size > 50 mm, AJCC classification stage III/IV, NLR, LMR, and IS were risk
6	factors for shorter OS. In multivariate analysis, we did not include all inflammatory
7	biomarkers in the same analysis because of the multicollinearity problem; we include
8	single inflammatory biomarker in each analysis. For the same reason, we included only
9	AJCC classification stage except for tumor size in the analyses. As prognostic factors,
10	NLR, LMR, and IS were independent from AJCC classification stage.
11	
12	Discussion
13	We found that NLR and LMR were significantly associated with long-term
14	outcomes for MF-ICC patients. Moreover, the scoring system based on NLR and LMR
15	was a possible prognostic factor for long-term outcome of MF-ICC patients. This
16	implies a synergistic effect of NLR and LMR on long-term outcome, even though they

1	include a common factor (lymphocyte count), and are both indicators of inflammatory
2	status in a host. Therefore, to identify high-risk patients, we should consider both of
3	these inflammatory biomarkers. Although various assessment methods combine NLR
4	and LMR, our simple method to calculate IS can discriminate among patients according
5	to their prognoses, and is easy to use in clinical practice.
6	Tumor-infiltrating lymphocytes (TILs) have been suggested to be antitumor
7	effector cells, and are associated with better long-term outcomes for HCC [23]. In our
8	preliminary study, the ratio of lymphocytes among peripheral white blood cells was
9	correlated with better prognosis (data not shown), and this might reflect the effect of
10	TILs in the tumor microenvironment (TME). In the TME, neutrophils work as tumor-
11	associated neutrophils (TANs) [24]. Furthermore, tumor-associated macrophages
12	(TAMs) which originate from peripheral macrophages, are also important component of
13	the TME [25]. TANs and TAMs have similar effect on tumor progression, such as tumor
14	growth, extracellular matrix remodeling, angiogenesis, and immunosuppression, but
15	they have some differences in signaling pathways [25]. These differences may have
16	clinical implications, according to the results of our study. In our previous study, the

1	ratio of CD3 ⁺ and CD68 ⁺ cells in HCC sections (as shown by immunohistochemical
2	analysis) were significantly associated with LMR values [26]. This is a rationale for the
3	relationship between peripheral blood cell analysis and inflammation and immune status
4	in the TME.
5	We found NLR to have no significant impact on DFS after surgery for MF-
6	ICC. This negative result—especially considering the appearance of the Kaplan-Meier
7	curve—may be due to the small sample size, which is this study's main limitation.
8	We could not show significance for PLR as a predictor for long-term outcome
9	in MF-ICC patients, although a previous report showed PLR to be significantly
10	associated with long-term outcomes in ICC [9]. Our study included only MF-ICC,
11	which is reportedly relevant to hepatitis and liver cirrhosis [11, 12, 27, 28]. In our
12	cohort, 56% had hepatitis (hepatitis B, hepatitis C, alcoholic hepatitis, and non-alcoholic
13	steatohepatitis) and 13% had cirrhosis. Notably, the low PLR group tended to have high
14	prevalence of hepatitis (low-PLR: 68%, high-PLR: 44% [P=0.10]) and a significantly
15	high prevalence of cirrhosis (low-PLR: 28%, high-PLR: 0% [P=0.0036]). These may
16	have affected the platelet counts and our results.

1	There were several limitations to this study. This was a retrospective analysis
2	from a single center. Because we limited the cases to only MF-ICC without bile duct
3	reconstruction, we had a small sample size. As cases with bile duct reconstruction may
4	include those with hilar cholangiocarcinoma, we excluded them to eliminate possible
5	unfavorable variability. We analyzed only MF type, but not PI type, IG type, and MF+PI
6	type, because the latter three types are relatively rare and we were not able to collect
7	adequate number of cases to conduct valid analyses. The intention of this limitation was
8	to curb the heterogeneity due to different macroscopic types. Previous report revealed
9	that NLR and LMR had significant impact on ICC, which had similar result as our study
10	[10]. However, previous study did not consider the difference of macroscopic types. Our
11	study shows that inflammatory biomarkers significantly affect MF-ICC, but may have
12	different results for other macroscopic ICC types. As PI-ICC tended to have high PLR
13	compared with MF-ICC, the usefulness of PLR may differ between MF-ICC and PI-
14	ICC.
15	As for another limitation, some factors, such as cirrhosis in NLR and PLR,

16 tumor size in NLR, and AJCC classification stage in LMR, were uneven between high

1	and low value groups, which reflects this study's retrospective design. Therefore, a
2	larger-scale, multi-center prospective study would be necessary to strengthen the
3	statistical validity and power.
4	We used cutoff values derived from ROC curves. Similar previous reports on
5	cholangiocarcinoma that used ROC curves to determine cutoff values had values for
6	NLR [8, 10, 29] and LMR [10, 30, 31] that were consistent with ours, but our study's
7	PLR had a lower cutoff [9, 32]. A possible reason for the low PLR cutoff value was that
8	the ROC AUC was small for PLR and the cutoff value for optimal sensitivity and
9	specificity can be unstable. A larger-scale study is needed to decide the optimal cutoff
10	value of each parameter and validate their wider applicability.
11	In conclusion, our study showed that the scoring system based on
12	inflammatory biomarkers may predict long-term outcomes after surgery for ICC.
13	Moreover, as its predictive value is independent of tumor stage, it may be helpful in
14	identifying high-risk patients.

1 Acknowledgment

- 2 We thank Marla Brunker, from Edanz Group (www.edanzediting.com/ac) for editing a
- 3 draft of this manuscript.
- 4
- 5 Conflict of interest statement: Masafumi Ohira and other co-authors have no conflict of
- 6 interest.
- 7

8

References

2	1.	Ikai I, Arii S, Okazaki M, Okita K, Omata M, Kojiro M, et al. Report of the 17th
3		Nationwide Follow-up Survey of Primary Liver Cancer in Japan. Hepatol Res
4		2007;37(9):676-91.
5	2.	Aljiffry M, Abdulelah A, Walsh M, Peltekian K, Alwayn I, Molinari M.
6		Evidence-based approach to cholangiocarcinoma: a systematic review of the
7		current literature. J Am Coll Surg 2009;208(1):134-47.
8	3.	Bridgewater J, Galle PR, Khan SA, Llovet JM, Park JW, Patel T, et al.
9		Guidelines for the diagnosis and management of intrahepatic
10		cholangiocarcinoma. J Hepatol 2014;60(6):1268-89.
11	4.	Mavros MN, Economopoulos KP, Alexiou VG, Pawlik TM. Treatment and
12		Prognosis for Patients With Intrahepatic Cholangiocarcinoma: Systematic
13		Review and Meta-analysis. JAMA Surg 2014;149(6):565-74.
14	5.	Sharaiha RZ, Halazun KJ, Mirza F, Port JL, Lee PC, Neugut AI, et al. Elevated
15		preoperative neutrophil:lymphocyte ratio as a predictor of postoperative disease
16		recurrence in esophageal cancer. Ann Surg Oncol 2011;18(12):3362-9.

1	6.	Chan JC, Chan DL, Diakos CI, Engel A, Pavlakis N, Gill A, et al. The
2		Lymphocyte-to-Monocyte Ratio is a Superior Predictor of Overall Survival in
3		Comparison to Established Biomarkers of Resectable Colorectal Cancer. Ann
4		Surg 2017;265(3):539-46.
5	7.	Mano Y, Shirabe K, Yamashita Y, Harimoto N, Tsujita E, Takeishi K, et al.
6		Preoperative neutrophil-to-lymphocyte ratio is a predictor of survival after
7		hepatectomy for hepatocellular carcinoma: a retrospective analysis. Ann Surg
8		2013;258(2):301-5.
9	8.	Lin G, Liu Y, Li S, Mao Y, Wang J, Shuang Z, et al. Elevated neutrophil-to-
10		lymphocyte ratio is an independent poor prognostic factor in patients with
11		intrahepatic cholangiocarcinoma. Oncotarget 2016;7(32):50963-71.
12	9.	Chen Q, Dai Z, Yin D, Yang LX, Wang Z, Xiao YS, et al. Negative impact of
13		preoperative platelet-lymphocyte ratio on outcome after hepatic resection for
14		intrahepatic cholangiocarcinoma. Medicine (Baltimore) 2015;94(13):e574.

1	10.	Wu Y, Ren F, Chai Y, Xue Z, Shen C, Zhang X, et al. Prognostic value of
2		inflammation-based indexes for intrahepatic cholangiocarcinoma following
3		curative resection. Oncol Lett 2019;17(1):165-74.
4	11.	Yamamoto M, Ariizumi S, Otsubo T, Katsuragawa H, Katagiri S, Nakano M, et
5		al. Intrahepatic cholangiocarcinoma diagnosed preoperatively as hepatocellular
6		carcinoma. J Surg Oncol 2004;87(2):80-3; discussion 3-4.
7	12.	Aishima S, Kuroda Y, Nishihara Y, Iguchi T, Taguchi K, Taketomi A, et al.
8		Proposal of progression model for intrahepatic cholangiocarcinoma:
9		clinicopathologic differences between hilar type and peripheral type. Am J Surg
10		Pathol 2007;31(7):1059-67.
11	13.	Guglielmi A, Ruzzenente A, Campagnaro T, Pachera S, Valdegamberi A, Nicoli
12		P, et al. Intrahepatic cholangiocarcinoma: prognostic factors after surgical
13		resection. World J Surg 2009;33(6):1247-54.
14	14.	Uchiyama K, Yamamoto M, Yamaue H, Ariizumi S, Aoki T, Kokudo N, et al.
15		Impact of nodal involvement on surgical outcomes of intrahepatic
16		cholangiocarcinoma: a multicenter analysis by the Study Group for Hepatic

1		Surgery of the Japanese Society of Hepato-Biliary-Pancreatic Surgery. J
2		Hepatobiliary Pancreat Sci 2011;18(3):443-52.
3	15.	Yamamoto M, Takasaki K, Yoshikawa T, Ueno K, Nakano M. Does gross
4		appearance indicate prognosis in intrahepatic cholangiocarcinoma? J Surg Oncol
5		1998;69(3):162-7.
6	16.	Morimoto Y, Tanaka Y, Ito T, Nakahara M, Nakaba H, Nishida T, et al. Long-
7		term survival and prognostic factors in the surgical treatment for intrahepatic
8		cholangiocarcinoma. J Hepatobiliary Pancreat Surg 2003;10(6):432-40.
9	17.	Shimada K, Sano T, Sakamoto Y, Esaki M, Kosuge T, Ojima H. Surgical
10		outcomes of the mass-forming plus periductal infiltrating types of intrahepatic
11		cholangiocarcinoma: a comparative study with the typical mass-forming type of
12		intrahepatic cholangiocarcinoma. World J Surg 2007;31(10):2016-22.
13	18.	Meng ZW, Pan W, Hong HJ, Chen JZ, Chen YL. Macroscopic types of
14		intrahepatic cholangiocarcinoma and the eighth edition of AJCC/UICC TNM
15		staging system. Oncotarget 2017;8(60):101165-74.

1	19.	Sakamoto Y, Kokudo N, Matsuyama Y, Sakamoto M, Izumi N, Kadoya M, et al.
2		Proposal of a new staging system for intrahepatic cholangiocarcinoma: Analysis
3		of surgical patients from a nationwide survey of the Liver Cancer Study Group
4		of Japan. Cancer 2016;122(1):61-70.
5	20.	Shimada M, Yamashita Y, Aishima S, Shirabe K, Takenaka K, Sugimachi K.
6		Value of lymph node dissection during resection of intrahepatic
7		cholangiocarcinoma. Br J Surg 2001;88(11):1463-6.
8	21.	Yamashita Y, Taketomi A, Morita K, Fukuhara T, Ueda S, Sanefuji K, et al. The
9		impact of surgical treatment and poor prognostic factors for patients with
10		intrahepatic cholangiocarcinoma: retrospective analysis of 60 patients.
11		Anticancer Res 2008;28(4C):2353-9.
12	22.	Reames BN, Bagante F, Ejaz A, Spolverato G, Ruzzenente A, Weiss M, et al.
13		Impact of adjuvant chemotherapy on survival in patients with intrahepatic
14		cholangiocarcinoma: a multi-institutional analysis. HPB (Oxford)
15		2017;19(10):901-9.

23.	Yao W, He JC, Yang Y, Wang JM, Qian YW, Yang T, et al. The Prognostic Value
	of Tumor-infiltrating Lymphocytes in Hepatocellular Carcinoma: a Systematic
	Review and Meta-analysis. Sci Rep 2017;7(1):7525.
24.	Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of
	tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN.
	Cancer Cell 2009;16(3):183-94.
25.	Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon S.
	Tumor associated macrophages and neutrophils in cancer. Immunobiology
	2013;218(11):1402-10.
26.	Mano Y, Yoshizumi T, Yugawa K, Ohira M, Motomura T, Toshima T, et al.
	Lymphocyte-to-Monocyte Ratio Is a Predictor of Survival After Liver
	Transplantation for Hepatocellular Carcinoma. Liver Transpl 2018;24(11):1603-
	11.
27.	Zhang XF, Chakedis J, Bagante F, Beal EW, Lv Y, Weiss M, et al. Implications
	of Intrahepatic Cholangiocarcinoma Etiology on Recurrence and Prognosis after
	 23. 24. 25. 26. 27.

1		Curative-Intent Resection: a Multi-Institutional Study. World J Surg
2		2018;42(3):849-57.
3	28.	Yamamoto M, Takasaki K, Nakano M, Saito A. Minute nodular intrahepatic
4		cholangiocarcinoma. Cancer 1998;82(11):2145-9.
5	29.	Kumamoto Y, Kaizu T, Tajima H, Nishizawa N, Ei S, Igarashi K, et al.
6		Neutrophil-to-lymphocyte ratio as a predictor of postoperative morbidity in
7		patients with distal cholangiocarcinoma. Mol Clin Oncol 2018;9(4):362-8.
8	30.	Peng D, Lu J, Hu H, Li B, Ye X, Cheng N. Lymphocyte to Monocyte Ratio
9		Predicts Resectability and Early Recurrence of Bismuth-Corlette Type IV Hilar
10		Cholangiocarcinoma. J Gastrointest Surg 2019.
11	31.	Zhang Y, Shi SM, Yang H, Yang LX, Wang Z, Li XD, et al. Systemic
12		inflammation score predicts survival in patients with intrahepatic
13		cholangiocarcinoma undergoing curative resection. J Cancer 2019;10(2):494-
14		503.

1	32.	Hu G, Liu Q, Ma JY, Liu CY. Prognostic Significance of Platelet-to-Lymphocyte
2		Ratio in Cholangiocarcinoma: A Meta-Analysis. Biomed Res Int
3		2018;2018:7375169.
4	Figure	elegends
5	Figure	e 1. A flowchart of patient inclusion and exclusion.
6	Figure	e 2. ROC curves to determine the cutoff values of each inflammatory biomarkers.
7	Figure	e 3. Comparison of overall survival rates between low-value and high-value
8	group	s for each inflammatory biomarker.
9	Figure	e 4. Comparison of disease-free survival rates between low-value and high-value
10	group	s for each inflammatory biomarker.
11	Figure	e 5. Comparison of overall survival rates for each inflammation score group.
12	Figure	e 6. Comparison of disease-free survival rates for each inflammation score group.
13		

Inflammatory biomarkers	MF type	MF+PI type	PI type	IG type
	(<i>n</i> =52)	(<i>n</i> =7)	(<i>n</i> =4)	(<i>n</i> =1)
NLR	2.57 (1.38)	2.59 (1.08)	2.74 (1.81)	4.73
LMR	4.56 (1.85)	4.20 (1.49)	5.33 (2.73)	1.4
PLR	145 (108)	140 (37)	163 (29)	218

Table 1. Values of the inflammatory biomarkers by macroscopic types.

Data are mean (standard deviation).

MF, mass forming; PI, periductal infiltrating; IG, intraductal growth; NLR, neutrophil-to-lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio; PLR, platelet-to-lymphocyte ratio.

Factors	NLR < 1.93 (<i>n</i> =18)	NLR ≥ 1.93 (<i>n</i> =34)	Р
Age, years	64 (44-82)	66 (39-82)	0.48
Sex			1
Male	14 (78%)	27 (79%)	
Female	4 (22%)	7 (21%)	
ICG-R15	13.6 (4.8–28.5)	8.6 (1.9–31.0)	0.061
Hepatitis	8 (44%)	21 (62%)	0.26
Cirrhosis	5 (28%)	2 (6%)	0.041
CEA, ng/ml	2.6 (0.7-41.8)	2.4 (0.4–21.3)	0.20
CA19-9, U/ml	25.4 (6.2–72)	37.0 (0.6–21100)	0.31
Tumor size, mm	30 (5-80)	48 (10-110)	0.015
LN metastasis	2 (11%)	5 (15%)	1
AJCC stage			1
I + II	12 (67%)	23 (68%)	
III + IV	6 (33%)	11 (32%)	
Adjuvant chemotherapy	7 (39%)	9 (26%)	0.37

Table 2. Clinicopathological characteristics of the high-NLR and low-NLR patients

Data are median (range) or n (%)

NLR, neutrophil-to-lymphocyte ratio; ICG-R15, indocyanine green retention 15 minutes after injection;

LN, lymph node; AJCC, American Joint Committee on Cancer.

Factors	LMR > 4.78 (<i>n</i> =20)	LMR \leq 4.78 (<i>n</i> =32)	Р
Age, years	61 (39–82)	67 (44–82)	0.18
Sex			0.082
Male	13 (65%)	28 (88%)	
Female	7 (35%)	4 (13%)	
ICG-R15	10.9 (2.3–28.5)	9.2 (1.9–31.0)	0.76
Hepatitis	9 (45%)	20 (63%)	0.26
Cirrhosis	3 (15%)	4 (13%)	1
CEA, ng/ml	2.35 (0.6–5.6)	2.55 (0.4-41.8)	0.15
CA19-9, U/ml	20.75 (3.3–293.7)	38.7 (0.6–21100)	0.28
Tumor size, mm	30 (16-94)	47 (5-110)	0.18
LN metastasis	1 (5%)	6 (19%)	0.23
AJCC stage			< 0.01
I + II	18 (90%)	17 (53%)	
III + IV	2 (10%)	15 (47%)	
Adjuvant chemotherapy	5 (25%)	11 (34%)	0.55

Table 3. Clinicopathological characteristics of high-LMR and low-LMR patients

Data are shown as median (range) or n (%)

LMR, lymphocyte-to-monocyte ratio; ICG-R15, indocyanine green retention 15 minutes after injection;

LN, lymph node; AJCC, American Joint Committee on Cancer.

Factors	PLR < 98 (<i>n</i> =25)	PLR ≥ 98 (<i>n</i> =27)	Р
Age, years	63 (44-82)	67 (39–82)	0.53
Sex			0.50
Male	21 (84%)	20 (74%)	
Female	4 (16%)	7 (26%)	
ICG-R15	11.5 (4.8–31.0)	9.2 (1.9–27.7)	0.097
Hepatitis	17 (68%)	12 (44%)	0.10
Cirrhosis	7 (28%)	0 (0%)	< 0.01
CEA, ng/ml	2.6 (0.7-41.8)	2.4 (0.4-8.8)	0.11
CA19-9, U/ml	31.3 (0.6–21100)	30.5 (3.3–3532)	0.51
Tumor size, mm	40 (12-100)	45 (5-110)	0.91
LN metastasis	3 (12%)	4 (15%)	1
AJCC stage			0.77
I + II	16 (64%)	19 (70%)	
III + IV	9 (36%)	8 (30%)	
Adjuvant chemotherapy	7 (28%)	9 (33%)	0.77

Table 4. Clinicopathological characteristics of high-PLR and low-PLR patients

Data are median (range) or n (%)

PLR, platelet-to-lymphocyte ratio; ICG-R15, indocyanine green retention 15 minutes after injection; LN, lymph node; AJCC, American Joint Committee on Cancer.

		Univariate analysis	
Factors	HR	95% CI	Р
Age	1.025	0.981-1.071	0.27
Male sex	2.546	0.729–16.064	0.16
ICG-R15 >15 min	2.140	0.742-5.529	0.15
Hepatitis	1.732	0.684–4.934	0.25
Cirrhosis	1.808	0.418-5.499	0.38
CEA >5 ng/ml	1.956	0.557-5.402	0.27
CA19-9 >37 U/ml	1.669	0.672-4.204	0.27
Tumor size > 50mm	2.702	1.090-6.999	0.032
LN metastasis	2.421	0.685–6.750	0.15
AJCC stage III+IV	3.120	1.248–7.911	0.016
Adjuvant chemotherapy	0.693	0.224–1.813	0.47
Absolute neutrophil count \ge 3737	1.760	0.672-5.453	0.26
Absolute lymphocyte count ≤ 1670	1.459	0.578-3.632	0.42
NLR ≥ 1.93	4.391	1.255–27.730	0.018
LMR ≤ 4.36	4.673	1.547-20.165	< 0.01
$PLR \ge 98$	0.912	0.367–2.300	0.84
IS	3.320	1.542-9.121	< 0.01

Table 5. Univariate analyses of possible predictive factors for overall survival (OS).

HR, Hazard ratio; 95% CI, 95% confidence interval; ICG-R15, indocyanine green retention 15 minutes

after injection; LN, lymph node; AJCC, American Joint Committee on Cancer; NLR,

neutrophil-to-lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio; PLR, platelet-to-lymphocyte ratio; IS, inflammation score.

		Multivariate analysis	
	HR	95% CI	Р
With NLR			
AJCC stage III+IV	2.867	1.148–7.263	0.025
$NLR \ge 1.93$	4.007	1.144–25.324	0.028
With LMR			
AJCC stage III+IV	2.325	0.909-6.047	0.078
$LMR \le 4.36$	3.770	1.198–16.616	0.022
With IS			
AJCC stage III+IV	2.591	1.035-6.580	0.042
IS	3.277	1.454–9.317	< 0.01

Table 6. Multivariate analyses of possible predictive factors for overall survival (OS).

HR, Hazard ratio; 95% CI, 95% confidence interval; AJCC, American Joint Committee on Cancer; NLR, neutrophil-to-lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio; IS, inflammation score.

