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IMPORTANCE Antihypertensive treatments benefit cerebrovascular health and cognitive
function in patients with hypertension, but it is uncertain whether an intensive blood
pressure target leads to potentially harmful cerebral hypoperfusion.

OBJECTIVE To investigate the association of intensive systolic blood pressure (SBP) control vs
standard control with whole-brain cerebral blood flow (CBF).

DESIGN, SETTING, AND PARTICIPANTS This substudy of the Systolic Blood Pressure
Intervention Trial (SPRINT) randomized clinical trial compared the efficacy of 2 different
blood pressure–lowering strategies with longitudinal brain magnetic resonance imaging (MRI)
including arterial spin labeled perfusion imaging to quantify CBF. A total of 1267 adults 50
years or older with hypertension and increased cardiovascular risk but free of diabetes or
dementia were screened for the SPRINT substudy from 6 sites in the US. Randomization
began in November 2010 with final follow-up MRI in July 2016. Analyses were performed
from September 2020 through December 2021.

INTERVENTIONS Study participants with baseline CBF measures were randomized to an
intensive SBP target less than 120 mm Hg or standard SBP target less than 140 mm Hg.

MAIN OUTCOMES AND MEASURES The primary outcome was change in whole-brain CBF from
baseline. Secondary outcomes were change in gray matter, white matter, and periventricular
white matter CBF.

RESULTS Among 547 participants with CBF measured at baseline, the mean (SD) age was 67.5
(8.1) years and 219 (40.0%) were women; 315 completed follow-up MRI at a median (IQR) of
4.0 (3.7-4.1) years after randomization. Mean whole-brain CBF increased from 38.90 to 40.36
(difference, 1.46 [95% CI, 0.08-2.83]) mL/100 g/min in the intensive treatment group, with
no mean increase in the standard treatment group (37.96 to 37.12; difference, –0.84 [95% CI,
–2.30 to 0.61] mL/100 g/min; between-group difference, 2.30 [95% CI, 0.30-4.30; P = .02]).
Gray, white, and periventricular white matter CBF showed similar changes. The association of
intensive vs standard treatment with CBF was generally similar across subgroups defined by
age, sex, race, chronic kidney disease, SBP, orthostatic hypotension, and frailty, with the
exception of an indication of larger mean increases in CBF associated with intensive
treatment among participants with a history of cardiovascular disease (interaction P = .05).

CONCLUSIONS AND RELEVANCE Intensive vs standard antihypertensive treatment was
associated with increased, rather than decreased, cerebral perfusion, most notably in
participants with a history of cardiovascular disease.
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H ypertension is a major risk factor for cardiovascular and
cerebrovascular diseases including stroke, small ves-
sel disease, and dementia.1-3 While stroke occurs in the

setting of acute and severe hypoperfusion, chronic hypoper-
fusion of lower severity underlies small vessel ischemic dis-
ease and contributes to cognitive decline.4-6 Antihyperten-
sive therapies to lower elevated blood pressure (BP) are a key
management strategy to prevent cardiovascular and cerebro-
vascular disease, but there is uncertainty concerning the op-
timal target BP, primarily owing to concerns that aggressive BP
reduction could cause organ hypoperfusion, including in the
brain.7,8 The Systolic Blood Pressure Intervention Trial
(SPRINT) was a multicenter randomized clinical trial compar-
ing intensive BP control, targeting a systolic BP (SBP) less than
120 mm Hg, to a standard treatment target (SBP <140 mm Hg).
The trial showed an overall benefit for intensive treatment on
cardiovascular morbidity and mortality9 and cerebrovascu-
lar health, including a reduced incidence of adjudicated cog-
nitive impairment.3 Additionally, among a subset of trial par-
ticipants who underwent brain magnetic resonance imaging
(MRI), participants randomized to the intensive SBP target had
a smaller increase in white matter lesions (WMLs) but greater
reduction in total brain volume over approximately a median
of 4 years’ follow-up.10

Cerebral blood flow (CBF) is the volume of blood flowing
through brain parenchyma per unit time. CBF is relatively stable
over a wide range of perfusion pressure changes through the
constriction and dilation of blood vessels, a physiological phe-
nomenon known as cerebral autoregulation.11 Below and above
this range cerebral autoregulation is thought to fail and ex-
pose the brain to ischemia or hypoperfusion injury. Un-
treated or poorly controlled hypertension shifts the range of
CBF autoregulation toward higher BP12 and causes reduced
CBF.13-16 Standard antihypertensive treatments have been
shown to lower the autoregulatory BP limits, coupled with in-
creased CBF17-19; however, there has been concern that more
aggressive treatment may lower BP below the lower autoregu-
latory limit and lead to cerebral ischemic injury.20 Two prior
studies with small sample sizes and short duration (approxi-
mately 3 months) suggest a stable CBF in response to inten-
sive treatment (SBP <125 mm Hg),21,22 although long-term ef-
fects are unknown.

The MRI substudy in SPRINT included arterial spin la-
beled (ASL) perfusion MRI, which provides noninvasive quan-
tification of regional CBF, to assess the association of inten-
sive SBP lowering with cerebral perfusion. In this study, we
evaluated longitudinal ASL data to test the hypothesis that
long-term intensive treatment does not reduce CBF com-
pared with standard treatment.

Methods
Study Participants
The trial design and the primary outcomes have been
described previously,3and the trial protocol is available in
Supplement 1. Briefly, 9361 participants with hypertension
who were 50 years or older with SBP of 130 to 180 mm Hg

were randomized in a 1:1 ratio by the SPRINT coordinating
center to an SBP goal of less than 120 or less than 140 mm
Hg between November 2010 and March 2013. Trial partici-
pants were recruited from a variety of clinic settings (eg, pri-
mary care, nephrology/hypertension, geriatrics) or from the
local community. Participants also had at least 1 risk factor
for heart disease: prior cardiovascular disease, chronic kid-
ney disease (defined by estimated glomerular filtration rate
of <60 mL/min/1.73 m2), a 10-year Framingham cardiovas-
cular disease risk of 15% or more, or 75 years or older. Indi-
viduals with diabetes, with history of stroke, residing in a
nursing home, or carrying a diagnosis of dementia or
treated with medications primarily used for dementia were
excluded. The trial and the MRI substudy were approved by
the institutional review board at each study site and each
participant provided written informed consent.

Brain MRIs were obtained at 7 MRI sites using 3T scan-
ners (3 Philips and 4 Siemens). Exclusion criteria for the MRI
substudy included presence of an implanted electrical de-
vice, ferromagnetic or unknown cerebral aneurysm clip, oto-
logic implant, unknown metallic foreign bodies, exposure to
metal fragments in or around the eyes, or severe claustropho-
bia. Of 1267 individuals screened for the MRI substudy, 793
were eligible and 622 had a baseline ASL scan that passed qual-
ity control (Figure 1). ASL data from 1 Siemens site were ex-
cluded owing to a technical issue at the follow-up scan.

MRI Study and Acquisition
Multimodal MRI scans were obtained at baseline and
planned at 48 months postrandomization. Each participant
was scanned on the same scanner at both time points. The
MRI protocol included ASL to measure CBF, fluid-
attenuated inversion recovery T2-weighted MRI to measure
WML volumes and T1-weighted structural MRI to measure
brain volume and segment regions of interest (ROIs). ASL
data were obtained using pseudo-continuous labeling with
1.5/1.5-second labeling/postlabeling delay at 90 mm below
the center of the imaging volume or 30.5 mm below the
inferior slice in Siemens and Philips scanners respectively.
Forty label/control image pairs were obtained using
2-dimensional echo-planar imaging with repetition time of

Key Points
Question Is intensive antihypertensive treatment associated with
increased risk of cerebral hypoperfusion compared with standard
treatment?

Findings In a magnetic resonance imaging substudy within
SPRINT of 547 patients, at 4-year follow-up, an intensive systolic
blood pressure target of less than 120 mm Hg was associated with
a significantly larger increase in cerebral blood flow compared with
a standard blood pressure target of less than 140 mm Hg among
adults with hypertension. This association was most pronounced
among participants with a history of cardiovascular disease.

Meaning Compared with a standard blood pressure target, an
intensive blood pressure target was associated with increased,
rather than decreased, cerebral perfusion in this study.
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4000 milliseconds; echo time, 11 milliseconds; field of view,
220 mm; and voxel size, 3.4 × 3.4 × 5 mm3 with a 20% dis-
tance factor, 20 slices. Fluid-attenuated inversion recovery
acquisitions had repetition time/echo time of 6000/285 mil-
liseconds; inversion time, 2200 milliseconds; field of view,
258 mm; slices, 160; and native resolution, 1 mm isotropic.
T1-weighted magnetization-prepared rapid acquisition with
gradient echo images were obtained using repetition time/
echo time of 1900/2.89 milliseconds; field of view, 250 mm;
slices, 176; and native resolution, 1 mm isotropic.

MRI Processing
MRI data were processed at the University of Pennsylvania
using automated pipelines. All image analysts were blinded
to treatment group and other nonimaging study data. ASL
data processing pipeline was developed in-house in MAT-
LAB version 2016b (MathWorks) with Statistical Parametric
Mapping 12 and FSL following the recommendation by
Alsop et al23 and consisted of motion correction of raw
label/control time series, CBF quantification using a single
compartment model, and subsequent denoising based on a
structural correlation with robust bayesian criteria.24-26 The
quality of the CBF maps for each participant was evaluated
using an automated quality evaluation metric,27 which out-

puts a numerical score with range (0, 1) where higher values
indicate a better CBF map. CBF maps with quality evalua-
tion metric less than 0.35, a predefined threshold for global
CBF measures, were excluded from the analysis. The
remaining CBF maps were coregistered to participants’ T1
space using a transform obtained with a boundary-based
approach. Gray matter (GM) and white matter (WM) were
segmented from T1-weighted images using a multi-atlas
label fusion method,28 with the sum of the 2 tissue types
defining the whole brain (WB) ROI. Mean CBF in WB, GM,
and WM were extracted and used for analysis. Additionally,
we considered the mean CBF in a functionally defined peri-
ventricular WM ROI, which was constructed based on sub-
threshold CBF in a group mean CBF map generated from
middle-aged healthy participants in the Coronary Artery
Risk Development in Young Adults study.24,29 The periven-
tricular WM ROI is a small portion of the WM ROI that
includes the most weakly perfused brain parenchyma sup-
plied exclusively by the terminal distributions of long arteri-
oles less than 100 microns in diameter30 and represents the
region where the earliest age-associated WMLs occur.24

WMLs were segmented from fluid-attenuated inversion
recovery T2-weighted images using a previously described
deep-learning–based segmentation method.31

Figure 1. Eligibility, Randomization, and Follow-up for Participants
in the Magnetic Resonance Imaging (MRI) Substudy

1267 Participants randomized

639 Randomized to intensive treatment
and screened for eligibility

515 Willing to participate

168 Completed follow-up ASL MRI

628 Randomized to standard treatment
and screened for eligibility

412 Eligible for MRI study
326 Completed baseline ASL MRI
286 At sites that performed

follow-up ASL MRI

483 Willing to participate

147 Completed follow-up ASL MRI

381 Eligible for MRI study
296 Completed baseline ASL MRI
261 At sites that performed

follow-up ASL MRI

124 Excluded
55 Not interested

13 Too busy

14 Fearful of MRI procedure
14 Transportation issues

28 For other reasons

105 Excluded
48 With metal fragments

3 With cerebral aneurysm clip,
neurostimulator, or implant

33 Claustrophobic
8 With a pacemaker

11 For other reasons

118 Excluded
28 Unwilling to participate

15 Ineligible

15 Withdrew consent or lost to
follow-up

15 Died

45 For other reasons

145 Excluded
72 Not interested

12 Too busy

19 Fearful of MRI procedure
18 Transportation issues

24 For other reasons

102 Excluded
42 With metal fragments

38 With cerebral aneurysm clip,
neurostimulator, or implant

31 Claustrophobic
10 With a pacemaker

11 For other reasons

114 Excluded
44 Unwilling to participate

14 Ineligible

14 Withdrew consent or lost to
follow-up

10 Died

32 For other reasons

The total randomization number
indicates the number of participants
in the Systolic Blood Pressure
Intervention Trial (SPRINT) magnetic
resonance imaging substudy who
were located in proximity to a study
MRI scanner. ASL indicates arterial
spin labeling.
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Clinical Measures
BP measurements were obtained with Professional Digital
Blood Pressure Monitor (Omron Healthcare; model 907XL).
Visit BP was recorded as the mean of 3 seated measurements
after 5-minute rest periods. During the rest and BP measure-
ment periods, participants were prohibited from completing
questionnaires, talking, or texting. Blood and urine samples
were analyzed at a central laboratory located in Minneapolis,
Minnesota.

Duration of Follow-up
On August 20, 2015, based on a recommendation by the data
and safety monitoring board to inform the investigators and
participants of the favorable cardiovascular outcome results
with intensive treatment, the process to end the trial inter-
vention was initiated early. As a result, most of the follow-up
MRI scans used in this study (298 [94.6%]) occurred during a
closeout period (from August 20, 2015, to July 1, 2016) when
the participants were transitioning to having their hyperten-
sion managed by their primary care clinician, although the
study still provided antihypertensive medications. The me-
dian (IQR) interval between August 20, 2015, and the fol-
low-up MRI scans completed during the closeout period was
192 (124-245) days, which was 4.0 (3.7-4.1) years after
randomization.

Outcomes
The primary outcome of this substudy was the change in mean
WB CBF from baseline to follow-up. Secondary outcomes in-
cluded the mean CBF in GM, WM, and the periventricular WM.

Subgroups of Interest
Prespecified subgroups for the trial’s primary outcomes in-
cluded age (<75 years vs ≥75 years), sex, race (not Black [ie,
those who reported being American Indian/Alaskan Native;
Asian; Native Hawaiian/Pacific Islander; Spanish, Hispanic, or
Latino origin but not Black; White; or other] vs Black), chronic
kidney disease (estimated glomerular filtration rate <60 vs ≥60
mL/min/1.73 m2), history of cardiovascular disease,32 base-
line tertiles of SBP (≤129, 129 to <143, ≥143 mm Hg), and pres-
ence of orthostatic hypotension. We also examined sub-
groups based on frailty status using a previously developed
frailty index.33 Participants self-reported age, sex, cardiovas-
cular disease, and education. Race and ethnicity were col-
lected via self-report using fixed categories to satisfy the Na-
tional Institutes of Health Policy and Guidelines on the
Inclusion of Women and Minorities as Subjects in Clinical
Research.

Statistical Analysis
Baseline correlations between structural brain MRI measures
and CBF were estimated using partial correlation coefficients
adjusting for age, sex, and MRI facility, along with treatment
group in some analyses.34 Linear mixed models, including ran-
dom effects for participant and MRI facility, were used to es-
timate the mean change in CBF between the treatment groups,
including age, sex, and time since randomization as covari-
ates. We also conducted sensitivity analyses to address the in-

fluence of missing follow-up data using multiple imputation
(eMethods and eTable 1 in Supplement 2). Next, because a
growing body of evidence suggests that certain antihyperten-
sive medication classes may have specific direct associations
with the brain independent of their BP-lowering effects, we
conducted sensitivity analyses to examine whether certain
classes of antihypertensive medications modified the esti-
mated association of intensive vs standard treatment with CBF.
For example, antihypertensive medications that stimulate type
2 and 4 angiotensin II receptors, including angiotensin recep-
tor blockers, dihydropyridine calcium channel blockers, and
thiazide diuretics, may have beneficial effects on the brain, pos-
sibly through reduced inflammation, hypoxia, and fibrosis.35-41

For this sensitivity analysis, we repeated the main analysis es-
timating the association of intensive vs standard treatment with
CBF after adjusting for medication use at the visit closest to
the MRI follow-up visit (the number and total dosage of anti-
hypertensive medications did not change substantially after
6 months of follow-up in most participants; eFigure 1 in Supple-
ment 2). We adjusted for the use of the following medications
in separate models: (1) angiotensin II stimulating vs inhibit-
ing vs mixed regimen, (2) angiotensin-converting enzyme in-
hibitors vs angiotensin receptor blocker, (3) angiotensin-
converting enzyme inhibitors vs others, (4) angiotensin
receptor blockers vs others, (5) β-blockers vs others, (6) cal-
cium channel blocker vs others, and (7) thiazide vs others. All
analyses were performed using SAS statistical software ver-
sion 9.4 (SAS Institute) and R version 3.4.2 (R Project for Sta-
tistical Computing). All hypothesis tests were 2-sided, and P
values less than .05 were considered statistically significant.
No adjustments for multiple comparisons were made. Analy-
ses were performed from September 2020 through Decem-
ber 2021.

Results
Of the 547 participants having ASL scans passing the auto-
mated quality control at baseline, 315 participants had fol-
low-up scans that also passed quality control. The demograph-
ics and clinical characteristics of the participants who
completed the baseline and follow-up MRI scans are shown in
Table 1. At baseline, the mean (SD) age of the overall sample
was 67.5 (8.1) years, 219 (40.0%) were women, 176 (32.2%) were
African American, and 35 (6.4%) were Hispanic. The mean (SD)
SBP was 137.8 (15.2) mm Hg at baseline. Figure 2 shows the
baseline association between WB CBF, total brain volume, and
WML volume. Mean WB CBF was weakly correlated with the
total brain volume adjusted for intracranial volume but not with
the burden of WM lesions.

Change in BP and Cerebral Perfusion During Follow-up
Consistent with the larger cohort of participants in the MRI
substudy10 and SPRINT overall, there was a sustained
between-group difference in SBP among this subgroup of
participants with a measured baseline CBF. The mean SBP
through the end of active intervention was 120.5 mm Hg in
the intensive treatment group vs 134.4 mm Hg in the stan-
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dard treatment group (difference, 13.9 mm Hg [95% CI, 12.4-
15.3 mm Hg]). During the transitional closeout period during
which the majority of the follow-up MRI scans occurred, the
mean (SD) SBP in the intensive treatment group increased to
126.9 mm Hg (95% CI, 124.2-129.6 mm Hg), whereas the
standard treatment group increased to 138.2 mm Hg (95%
CI, 135.5-140.9 mm Hg) (difference, 11.3 mm Hg [95% CI, 7.7-
14.9 mm Hg]). At 4 years of follow-up, mean (SD) WB CBF in
the intensive treatment group increased by 1.46 mL/100
g/min (95% CI, 0.08-2.83), while WB CBF decreased in the
standard treatment group, with mean change from baseline
of –0.84 mL/100 g/min (95% CI, –2.30 to 0.61) (Table 2). Fol-
lowing adjustment for age, sex, and days since randomiza-

tion, the increase in mean WB CBF in the intensive treat-
ment group was significantly greater than in the standard
treatment (mean between-group difference: 2.30 mL/100
g/min [95% CI, 0.30-4.30]). Figure 3 shows the longitudinal
change in mean WB CBF by age and treatment group. Mean
WM CBF also increased significantly among participants
randomized to intensive compared with standard treat-
ment, while there were not significant differences in GM
and periventricular WM CBF.

Annualized changes in WB CBF and intracranial volume–
adjusted total brain volume were not correlated in either treat-
ment group (Figure 2). The annualized CBF change was cor-
related (ρ = −0.205; P = .01) with the change in WML volume

Table 1. Baseline Characteristics of Participants in the Magnetic Resonance Imaging Substudy
With a Baseline Assessment of Cerebral Blood Flow

Variable

No. (%)

Completed baseline scan Completed follow-up scan
Intensive
(n = 286)

Standard
(n = 261)

Intensive
(n = 168) Standard (n = 147)

Age, mean (SD), y 67.9 (7.9) 67.1 (8.4) 68.2 (7.6) 66.6 (7.7)

Age ≥75 y 70 (24.5) 58 (22.2) 39 (23.2) 27 (18.4)

Female 119 (41.6) 100 (38.3) 69 (41.1) 52 (35.4)

Male 167 (58.4) 161 (61.7) 99 (58.9) 95 (64.6)

Race and ethnicity

Black 93 (32.5) 83 (31.8) 49 (29.2) 44 (29.9)

Hispanic 14 (4.9) 21 (8.0) 9 (5.4) 13 (8.8)

White 174 (60.8) 152 (58.2) 108 (64.3) 86 (58.5)

Other 5 (1.7) 5 (1.9) 2 (1.2) 4 (2.7)

History of cardiovascular disease 41 (14.3) 42 (16.1) 18 (12.2) 19 (11.3)

Systolic blood pressure, mm Hg

Mean (SD) 138.0 (17.9) 137.8 (15.2) 136.0 (17.9) 138.2 (15.5)

Tertile

≤129 107 (37.4) 79 (30.3) 65 (38.7) 44 (29.9)

>129 to <143 82 (28.7) 91 (34.9) 53 (31.5) 55 (37.4)

≥143 97 (33.9) 91 (34.9) 50 (29.8) 48 (32.7)

Diastolic blood pressure, mean (SD),
mm Hg

76.9 (11.0) 78.1 (11.6) 76.1 (11.2) 78.7 (11.4)

Orthostatic hypotension 24 (8.4) 11 (4.2) 17 (10.1) 8 (5.4)

eGFR, mL/min/1.73 m2a

Mean (SD) 72.2 (19.7) 73.8 (19.9) 71.5 (18.6) 74.9 (19.5)

<60a 78 (27.4) 71 (27.3) 49 (29.2) 36 (24.5)

PHQ-9 score ≥10b 18 (6.3) 17 (6.5) 8 (4.8) 8 (5.4)

Montreal Cognitive Assessment,
median (IQR)c

24 (21-26) 24 (22-27) 24 (21-27) 25 (22-27)

Frailty statusd

Fit (score ≤0.10) 56 (19.6) 47 (18.0) 38 (22.6) 29 (19.7)

Prefrail (0.10< score ≤0.21) 147 (51.4) 145 (55.6) 87 (51.8) 86 (58.5)

Frail (score >0.21) 83 (29.0) 69 (26.4) 43 (25.6) 32 (21.8)

Intracranial volume, mean (SD), cm3 1371.8 (149.6) 1384.9 (145.2) 1375.0 (141.9) 1393.6 (149.4)

Total brain volume, mean (SD), cm3 1124.5 (114.0) 1133.4 (115.7) 1128.2 (110.7) 1141.4 (115.4)

WML volume, median (IQR), cm3 3.0 (1.5 to 6.2) 3.2 (1.6 to 6.0) 2.7 (1.4 to 5.9) 3.0 (1.6 to 6.1)

CBF, mean (SD), mL/100 g/min

WB 38.6 (10.8) 37.5 (9.3) 39.0 (9.8) 37.6 (9.2)

GM 50.2 (13.3) 48.5 (11.4) 50.4 (12.1) 48.7 (11.1)

WM 19.9 (7.2) 19.4 (6.4) 20.5 (6.6) 19.4 (6.3)

Periventricular WM 15.9 (6.6) 15.5 (5.9) 16.6 (6.1) 15.5 (5.7)

Abbreviations: CBF, cerebral blood
flow; eGFR, estimated glomerular
filtration rate; GM, gray matter;
PHQ-9, Patient Health Questionnaire
9-item depression scale; WB, whole
brain; WM, white matter; WML, white
matter lesion.
a eGFR is based on the Chronic

Kidney Disease–Epidemiology study
equation.

b Scores range from 0 to 27. Higher
scores denote greater severity of
depressive symptoms, with �10
indicating moderate to severe
depressive symptoms.

c Scores range from 0 to 30, with
higher scores denoting better
cognitive function.

d Scores range from 0 to 1, with
higher scores indicating a higher
likelihood of frailty.
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in the intensive treatment group but not in the standard treat-
ment arm (Figure 2). Pooling across treatment groups, CBF
changes in GM, WM, and the periventricular WM were
correlated with changes in WML volume (eFigure 2 in
Supplement 2).

In subgroup analysis, there was a significant interaction
between treatment group and baseline history of cardiovas-
cular disease for the change in mean WB CBF (eTable 2 in
Supplement 2). Participants with history of cardiovascular dis-
ease had a larger increase in CBF with intensive treatment than

Figure 2. Baseline and Longitudinal Associations Between Whole-Brain Cerebral Blood Flow (CBF),
Total Brain Volume, and Cerebral White Matter Lesions (WML)
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Table 2. Changes in Cerebral Blood Flow by Treatment Group

Outcome

Cerebral blood flow, (95% CI), mL/100 g/mina

Difference in
change (95% CI) P value

Intensive treatment Standard treatment

Baseline Follow-up Change Baseline Follow-up Change
Whole brain 38.90 (36.64 to

41.17)
40.36 (37.95 to
42.77)

1.46 (0.08 to
2.83)

37.96 (35.67 to
40.26)

37.12 (34.66 to
39.58)

–0.84 (–2.30 to
0.61)

2.30 (0.30 to
4.30)

.02

Gray matter 50.76 (47.01 to
54.52)

52.91 (49.01 to
56.80)

2.14 (0.41 to
3.87)

49.40 (45.61 to
53.19)

49.06 (45.11 to
53.00)

–0.34 (–2.17 to
1.48)

2.49 (–0.03 to
5.00)

.05

White matter 19.86 (18.85 to
20.88)

20.51 (19.35 to
21.67)

0.65 (–0.32 to
1.61)

19.41 (18.36 to
20.46)

18.57 (17.36 to
19.79)

–0.83 (–1.85 to
0.18)

1.48 (0.08 to
2.88)

.04

Periventricular
white matter

15.79 (14.81 to
16.78)

16.11 (15.01 to
17.21)

0.32 (–0.54 to
1.17)

15.48 (14.47 to
16.50)

14.60 (13.45 to
15.76)

–0.88 (–1.80 to
0.04)

1.20 (–0.06 to
2.45)

.06

a Estimates based on a linear mixed model, adjusting for age, sex, and days since
randomization, with random effects for participant and magnetic resonance
imaging facility. Estimates represent least-square means, with follow-up
estimates computed at 1452 days (4.0 years) postrandomization, which was

the median follow-up in both treatment groups. For change estimates,
negative values denote decreases from baseline, while positive values indicate
increases from baseline. Difference in change represents intensive treatment
group minus standard treatment.
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with standard treatment compared with those without base-
line cardiovascular disease. There was no other significant sub-
group interaction (eTable 2 in Supplement 2).

Sensitivity Analyses
Results of analyses based on multiple imputation to address
missing follow-up measurements of CBF are reported in
eTable 3 in Supplement 2. Results were generally unchanged,
showing significant increases in WB and WM CBF associated
with intensive treatment. We also examined if use of certain
classes of antihypertensive medications during the trial po-
tentially explained the association of intensive treatment with
WB CBF. The association of intensive treatment with WB CBF
was generally unchanged after adjustment for use of various
classes of antihypertensive medications at the visit prior to the
follow-up MRI (eTable 4 in Supplement 2).

Discussion
Using perfusion MRI data acquired in the neuroimaging sub-
study of a randomized clinical trial, we found that intensive
treatment was not associated with hypoperfusion, but rather
with a small but significant increase in WB and WM CBF com-
pared with a standard treatment over approximately 4 years
of follow-up. In subgroup analyses, participants with a his-
tory of cardiovascular disease randomized to intensive treat-
ment exhibited the largest increases in WB CBF. Prior reports
have suggested that intensive antihypertensive therapy was
well tolerated in the short term,21,22 with this study demon-
strating that targeting longer-term intensive BP control may
be associated with a subtle but significant increase in CBF.

The mechanistic basis for the observed increase in CBF as-
sociated with intensive treatment remains uncertain but sug-
gests a complex relationship between BP and CBF, beyond sim-
ply static cerebral perfusion pressure and cerebrovascular
autoregulation. One key barrier to implementation of inten-

sive treatment was a concern that intensive treatment might
reduce the BP below the cerebral autoregulatory limit, lead-
ing to cerebral hypoperfusion. Our findings suggest that this
does not occur, at least on a chronic basis. Note that this re-
lates to static cerebral autoregulation rather than dynamic au-
toregulation, which describes CBF changes in response to a
more rapid change in BP. CBF is measured supine, not while
standing, and it remains possible that the CBF changes when
transitioning from sitting to standing pertaining to dynamic
autoregulation with intensive therapy can be lower. The as-
sociation of intensive treatment with brain perfusion stand
somewhat in contrast with association with the kidney, where
intensive treatment resulted in a greater incidence of acute kid-
ney injury speculated to reflect hemodynamic changes in kid-
ney perfusion.42,43 This difference may reflect a greater adapt-
ability of cerebrovascular autoregulation to chronic systemic
changes or greater tolerance to episodic hypotension relative
to the kidney vascular system. There were no appreciable as-
sociations of medication class with the estimated association
of intensive treatment with CBF outcomes, suggesting that our
results were more likely driven by achieved BP rather than any
specific medication effect independent of BP change.

To the extent that increased CBF is beneficial to cerebro-
vascular health,44 intensive treatment seems to be advanta-
geous, adding to the other beneficial effects of intensive treat-
ment detailed in SPRINT. Previously, structural MRI showed
smaller increases in WML volumes but greater decreases in total
brain volume associated with intensive treatment.10 While the
increase in CBF in the intensive treatment group is consistent
with the favorable effect on the progression of WM lesions, we
observed generally weak correlations between the changes in
CBF and WM lesion volumes. Although CBF is believed to be one
factor affecting WML change,45-47 it is possible that other hy-
pertension-related factors affecting WML change, such as vas-
cularremodeling,havecontributed.Additionally,withtheknown
individual variability in CBF measures29 and the slow process
of WML progression, it is possible that the trial did not have suf-

Figure 3. Longitudinal Change in Whole-Brain Cerebral Blood Flow (CBF) by Age and Treatment Group
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ficient sensitivity to detect a more direct association between
these measures. Although baseline CBF and total brain volume
were correlated, there was also no association between changes
in these measures during follow-up. In fact, the absolute change
for these measures at the group level were in opposite direc-
tions, suggesting that hypoperfusion was not likely a factor in
the larger declines in total brain volume associated with inten-
sive treatment.

Limitations
The current study has several limitations. First, the sample size
of the imaging substudy was much smaller than the overall trial
and may not be fully representative of the overall cohort.10 The
completion rate of follow-up MRIs was lower than expected and
it was further reduced in the current study owing to technical is-
sues at 1 site. Second, the trial design incorporated MRI scanning
including ASL at only 2 time points, so the trajectory and stabil-

ity of CBF changes could not be assessed. Third, the study did not
use current state-of-art 3-dimensional pseudocontinuous ASL
with background suppression, which can provide more reliable
CBF measures, although it used pseudocontinuous labeling,
which is the currently recommended labeling strategy.23 More-
over, the ASL MRI protocol used in the trial has been extensively
used in a number of prior studies, including longitudinal studies
and in different patient populations.48-52

Conclusions
Intensive BP control to a target of less than 120 mm Hg com-
pared with a standard target of less than 140 mm Hg was as-
sociated with increased CBF in WB and WM. Increases in CBF
associated with intensive treatment were more pronounced
in participants with a history of cardiovascular disease.
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