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Abstract

In the article, we establish an inequality for Csiszár divergence associated with

s-convex functions, present several inequalities for Kullback–Leibler, Renyi, Hellinger,

Chi-square, Jeffery’s, and variational distance divergences by using particular s-convex

functions in the Csiszár divergence. We also provide new bounds for Bhattacharyya

divergence.
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1 Introduction

A real-valued function ψ : I →R is said to be convex if the inequality

ψ(αξ + βζ )≤ αψ(ξ ) + βψ(ζ )

holds for all ξ , ζ ∈ I and α,β ≥ 0 with α + β = 1. It is well known that ψ : I → R is convex

if and only if

ψ

(

n
∑

i=1

αiξi

)

≤
n

∑

i=1

αiψ(ξi)

for all ξi ∈ I and αi ≥ 0 with
∑n

i=1 αi = 1.

Convex function has wide applications in pure and applied mathematics, physics, and

other natural sciences [1–20]; it has many important and interesting properties [21–37]

such as monotonicity, continuity, and differentiability. Recently, many generalizations and

extensions have been made for the convexity, for example, s-convexity [38], strong con-

vexity [39–41], preinvexity [42], GA-convexity [43], GG-convexity [44], Schur convexity

[45–49], and others [50–54]. In particular, many remarkable inequalities can be found in

the literature [55–67] via the convexity theory.

Chen [68] generalized the convex function to the s-convex function, gave the relation be-

tween the convex and s-convex functions, and established Jensen’s inequality for s-convex

function as follows.
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Let K be a convex subset of a real linear space and s ∈ (0,∞) be a fixed real positive

number. Then the mapping f : K →R is called s-convex on K if

f (αx + βy) ≤ αsf (x) + βsf (y) (1.1)

for all x, y ∈ K and α,β ≥ 0 with α + β .

Lemma 1.1 ([68]) Let ψ : I → R be a convex function defined on interval I . Then the

following statements are true:

(i) If ψ is non-negative, then ψ is s-convex for s ∈ (0, 1].

(ii) If ψ is non-positive, then ψ is s-convex for s ∈ [1,∞).

Theorem 1.2 ([68]) Let i ∈ {1, 2, . . . ,n}, αi ≥ 0, Qn =
∑n

i=1 α
1
s
i > 0, and ψ : I → R be an

s-convex function. Then

ψ

(

1

Qn

n
∑

i=1

α
1
s
i ξi

)

≤
1

Qs
n

n
∑

i=1

αiψ(ξi)

for all ξi ∈ I .

2 Information divergencemeasures

Divergence measure is actually the distance between two probability distributions. Diver-

gence measures have been introduced in the effort to solve the problems related to prob-

ability theory. Divergence measures have vast applications in a variety of fields such as

economics, biology, signal processing, pattern recognition, computational learning, color

image segmentation, magnetic resonance image analysis, and so on.

A class of information divergence measures, which is one of the important divergence

measures due to its compact behavior, is the Csiszár φ-divergence [69] given below:

Iφ(η, ζ ) =

n
∑

i=1

ζiφ

(

ηi

ζi

)

,

where η = (η1,η2, . . . ,ηn), ζ = (ζ1, ζ2, . . . , ζn) are positive real n-tuples.

The Csiszár φ-divergence is a generalized measure of information on the convex func-

tion φ : R+ → R, where the convexity ensures the non-negativity of divergence measures

Iφ(η, ζ ). The following Theorems 2.1 and 2.2 can be found in the literature [70, 71].

Theorem 2.1 If φ : [0,∞)→R is convex, then Iφ(η, ζ ) is jointly convex in η and ζ .

Theorem 2.2 Let φ : R+ → R
+ be convex. Then, for every p,q ∈ R

n
+ with Qn =

∑n
i=1 ζi, we

have

Iφ(η, ζ ) ≥ Qnφ

(
∑n

i=1 ηi
∑n

i=1 ζi

)

. (2.1)

If φ is strictly convex, then equality holds in (2.1) if and only if

η1

ζ1
=

η2

ζ2
=

η3

ζ3
= · · · =

ηn

ζn
.
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Corollary 2.3 Let φ : R+ → R
+ be convex and normalized (φ(1) = 0) with

∑n
i=1 ηi =

∑n
i=1 ζi. Then we have

Iφ(η, ζ ) ≥ 0. (2.2)

Equality holds in (2.2) if φ is strictly convex and
∑n

i=1 ηi =
∑n

i=1 ζi.

Many well-known distance functions or divergences can be obtained for a suitable

choice of function φ, and they are frequently used in mathematical statistics, signal pro-

cessing, and information theory. Some of the divergences are Kullback–Leibler, Renyi,

Hellinger, Chi-square, Jeffery’s divergences, variational distance, and so on. Some brief

introduction to these divergences is given below.

In probability and statistics, observed data is approximated by probability distribution.

This approximation results in loss of information. The primitive object of information

theory is to estimate how much information is in the data. Entropy is used to measure

this information. Approximating a distribution by ζ (x) for which the actual distribution is

η(x) results in loss of information. KL-divergence, although not a true metric, is a useful

measure of distance between the two distributions. The KL-divergence measure is the

insufficiency of encoding the data with respect to the distribution ζ , rather than the true

distribution η. The formula for KL-divergence can be obtained by choosing φ(t) = t log t

in Csiszár divergence

K(η, ζ ) =

n
∑

i=1

ηi log

(

ηi

ζi

)

.

The KL-divergence is non-negative if and only if η = ζ . However, it is not true distance

between distributions, since it is not symmetric and does not satisfy the triangle inequality.

A logical alternative divergence or extension to KL-divergence is Jaffery’s divergence. It

is the sum of the KL-divergence in both directions. It is defined by

J(η, ζ ) =

n
∑

i=1

(ηi – ζi) log

(

ηi

ζi

)

,

which corresponds to φ-divergence for φ defined by

φ(z) = (z – 1) log z, z > 0.

It exhibits the two properties of metric like KL-divergence but is also symmetric; how-

ever, it does not obey the triangle inequality. Its uses are similar to those of KL-divergence.

The Bhattacharyya divergence is defined by

B(η, ζ ) =
√

ηiζi,

which corresponds to φ-divergence for φ defined by

φ(z) =
√
z, z > 0.
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It satisfies the first three properties of metric but does not obey the triangle inequality.

A nice feature of Bhattacharyya divergence is its limited range. Indeed its range is limited

to make it quite attractive for a distance comparison.

The Bhattacharyya divergence is related to Hellinger divergence

H(η, ζ ) =

n
∑

i=1

(
√

ζi –
√

ηi)
2,

corresponding to a φ-divergence for φ defined by

φ(z) = (1 –
√
z)2, z > 0.

Hellinger divergence is in fact a proper metric because it satisfies non-negativity, sym-

metry, and triangle inequality properties. This makes it an ideal candidate for estimation

and classification problems. Test statistics based on Hellinger divergence were developed

for the independent samples drawn from two different continuous populations with a

common parameter. It is used as a splitting criterion in decision trees, which is an effec-

tive way to address the imbalanced data problems. Hellinger divergence has deep roots in

information theory andmachine learning. It is extensively used in data analysis, especially

when the objects being compared are high dimensional empirical probability distribution

built from data.

Another φ-divergence is the total variational distance. The total variational distance is

a distance measure for probability distribution, sometimes called statistical distance or

variational distance, and it is defined by

V (η, ζ ) =

n
∑

i=1

|ηi – ζi|,

which corresponds to a φ-divergence for φ defined by

φ(z) = |z – 1|, z > 0.

Variational distance is a fundamental quantity in statistics and probability which ap-

peared in many diverse applications. In information theory it is used to define strong

typicality and asymptotic equipartition of sequences generated by sampling from a given

distribution. In decision problems it arises naturally when discriminating the results of

observation of two statistical hypotheses. In studying the ergodicity of Markov chains, it

is used to define Dobrushin coefficient and establish the contraction property of transi-

tion probability distributions. Moreover, distance in total variation of probability measure

is related via upper and lower bounds to an anthology of distance and distance metrics.

Another divergence measure is the Renyi divergence defined as

R(η, ζ ) =

n
∑

i=1

ηα
i ζ

1–α
i ,

which corresponds to a φ-divergence for φ defined by

φ(z) = zα , z > 0,
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where α > 1. Renyi divergence is related to Renyi entropy much like KL-divergence is re-

lated to Shannon’s entropy.

Some other important divergences can be obtained from Csiszár divergence which are

given below.

Chi-square divergence. For φ(z) = (z – 1)2 (z > 0) in φ-divergence. The χ2-divergence is

given by

χ2(η, ζ ) =

n
∑

i=1

(ηi – ζi)
2

ζi
,

and χ2(η, ζ ) + χ2(ζ ,η) is known as symmetric Chi- square divergence.

Triangular discrimination. For φ(z) = (z–1)2

z+1
(z > 0), the triangular discrimination is given

by

△(η, ζ ) =

n
∑

i=1

(ηi – ζi)
2

ηi + ζi
.

Relative arithmetic-geometric divergence. For φ(z) = z+1
2

log 1+z
2z

(z > 0), the relative

arithmetic-geometric divergence is given by

G(η, ζ ) =

n
∑

i=1

ηi + ζi

2
log

ηi + ζi

2ηi
.

3 Inequalities for Csiszár divergence

Theorem 3.1 Let φ : R+ → R be an s-convex function, η = (η1,η2, . . . ,ηn) and ζ =

(ζ1, ζ2, . . . , ζn) be two positive real n-tuples, and Qn =
∑n

i=1 ζ
1
s
i . Then one has

Iφ(η, ζ ) ≥ Qs
nφ

(
∑n

i=1 ζ
1–s
s

i ηi
∑n

i=1 ζ
1
s
i

)

. (3.1)

Proof By taking αi → ζi and ξi → ηi
ζi
in Theorem 1.2, we get

1

Qs
n

n
∑

i=1

ζiφ

(

ηi

ζi

)

≥ φ

(

∑n
i=1 ζ

1
s
i ( ηi

ζi
)

Qn

)

,

which is equivalent to (3.1). �

Theorem 3.2 Let η = (η1,η2, . . . ,ηn) and ζ = (ζ1, ζ2, . . . , ζn) be two positive real n-tuples,

and Qn =
∑n

i=1 ζ
1
s
i . Then the following statements are true:

(i) If ηi ≥ ζi for i ∈ {1, 2, . . . ,n} and s ∈ (0, 1], then

K(η, ζ ) ≥ Qs
n

∑n
i=1 ζ

1–s
s

i ηi
∑n

i=1 ζ
1
s
i

log

(
∑n

i=1 ζ
1–s
s

i ηi
∑n

i=1 ζ
1
s
i

)

. (3.2)

(ii) If ηi < ζi for i ∈ {1, 2, . . . ,n} and s ∈ [1,∞), then inequality (3.2) holds.
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Proof (i) If φ(z) = z log z, where z > 0, then φ′′(z) = 1
z

≥ 0, so φ(z) is convex on (0,∞).

Moreover, if z ≥ 1, then φ(z) ≥ 0. Hence, by Lemma 1.1, φ(z) is s-convex for s ∈ (0, 1].

Using φ(z) = z log z in Theorem 3.1, we get

n
∑

i=1

ζi
ηi

ζi
log

(

ηi

ζi

)

≥ Qs
n

∑n
i=1 ζ

1–s
s

i ηi
∑n

i=1 ζ
1
s
i

log

(
∑n

i=1 ζ
1–s
s

i ηi
∑n

i=1 ζ
1
s
i

)

, (3.3)

which is equivalent to (3.2).

(ii) If z ≤ 1, then φ(z) ≤ 0.Hence, by Lemma 1.1, φ(z) is s-convex for s ∈ [1,∞); therefore,

by utilizing Theorem 3.1, we obtain (3.3). �

Theorem 3.3 Let η = (η1,η2, . . . ,ηn) and ζ = (ζ1, ζ2, . . . , ζn) be two positive real n-tuples,

Qn =
∑n

i=1 ζ
1
s
i and s ∈ (0, 1]. Then

H(η, ζ ) ≥ Qs
n

(

1 –

√

√

√

√

√

∑n
i=1 ζ

1–s
s

i ηi
∑n

i=1 ζ
1
s
i

)2

. (3.4)

Proof If φ(z) = (1 –
√
z)2, where z > 0, then φ′′(z) = 1

2z
–

√
z–1

2z
3
2

≥ 0, so φ(z) is convex on

(0,∞). Moreover, if z > 0, then φ(z) ≥ 0. Hence, by Lemma 1.1, φ(z) is s-convex for s ∈
(0, 1]. Using φ(z) in Theorem 3.1, we have

n
∑

i=1

ζi

(

1 –

√

ηi

ζi

)2

≥ Qs
n

(

1 –

√

√

√

√

√

∑n
i=1 ζ

1–s
s

i ηi
∑n

i=1 ζ
1
s
i

)2

,

n
∑

i=1

(ζi + ηi – 2
√

ηiζi) ≥ Qs
n

(

1 –

√

√

√

√

√

∑n
i=1 ζ

1–s
s

i ηi
∑n

i=1 ζ
1
s
i

)2

,

which is equivalent to (3.4). �

Theorem 3.4 Let η = (η1,η2, . . . ,ηn) and ζ = (ζ1, ζ2, . . . , ζn) be two positive real n-tuples,

Qn =
∑n

i=1 ζ
1
s
i and s ∈ (0, 1]. Then

χ2(η, ζ ) ≥ Qs
n

(
∑n

i=1 ζ
1–s
s

i ηi
∑n

i=1 ζ
1
s
i

– 1

)2

. (3.5)

Proof If φ(z) = (z – 1)2, where z > 0, then φ′′(z) = 2 > 0, so φ(z) is convex on (0,∞). Also, if

z > 0, then φ(z) ≥ 0. Hence, by Lemma 1.1, φ(z) is s-convex for s ∈ (0, 1]. Utilizing φ(z) =

(z – 1)2 in Theorem 3.1, we have

n
∑

i=1

ζi

(

ηi

ζi
– 1

)2

≥ Qs
n

(
∑n

i=1 ζ
1–s
s

i ηi
∑n

i=1 ζ
1
s
i

– 1

)2

,

which is equivalent to (3.5). �
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Theorem 3.5 Let η = (η1,η2, . . . ,ηn) and ζ = (ζ1, ζ2, . . . , ζn) be two positive real n-tuples,

and Qn =
∑n

i=1 ζ
1
s
i . Then the following statements are true:

(i) If ηi ≥ ζi for i ∈ {1, 2, . . . ,n} and s ∈ [1,∞), then

K(ζ ,η) ≥ Qs
n log

(
∑n

i=1 ζ
1
s
i

∑n
i=1 ζ

1–s
s

i ηi

)

. (3.6)

(ii) If ηi < ζi for i ∈ {1, 2, . . . ,n} and s ∈ (0, 1], then inequality (3.6) holds.

Proof (i) Let φ(z) = – log z (z > 0). Then φ′′(z) = 1
z2
> 0, so φ(z) is convex on (0,∞). More-

over, if z ≥ 1, then φ(z) ≤ 0. Hence, by Lemma 1.1, φ(z) is s-convex for s ∈ [1,∞). Using

φ(z) = – log z in Theorem 3.1, we get

n
∑

i=1

ζi

(

– log

(

ηi

ζi

))

≥ Qs
n

(

– log

(
∑n

i=1 ζ
1–s
s

i ηi
∑n

i=1 ζ
1
s
i

))

,

which is equivalent to (3.6).

(ii) If z ≤ 1, then φ(z) ≥ 0. Hence, by Lemma 1.1, φ(z) is s-convex for s ∈ (0, 1].

Similarly as above, using the function φ(z) = – log(z) in Theorem 3.1, we obtain (3.6). �

Theorem 3.6 Let η = (η1,η2, . . . ,ηn) and ζ = (ζ1, ζ2, . . . , ζn) be two positive real n-tuples,

Qn =
∑n

i=1 ζ
1
s
i and s ∈ (0, 1]. Then

J(η, ζ )≥

(

n
∑

i=1

ζ
1–s
s

i ηi –

n
∑

i=1

ζ
1
s
i

)

log

(
∑n

i=1 ζ
1–s
s

i ηi
∑n

i=1 ζ
1
s
i

)

. (3.7)

Proof If φ(z) = (z – 1) log z (z > 0), then φ′′(z) = z+1
z2
, so φ(z) is convex on (0,∞). Moreover,

if z > 0, then φ(z) ≥ 0. Hence, by Lemma 1.1, φ(z) is s-convex for s ∈ (0, 1]. Using φ(z) =

(z – 1) log z in Theorem 3.1, we have

n
∑

i=1

ζi

(

ηi

ζi
– 1

)

log

(

ηi

ζi

)

≥ Qs
n

(
∑n

i=1 ζ
1–s
s

i ηi
∑n

i=1 ζ
1
s
i

– 1

)

log

(
∑n

i=1 ζ
1–s
s

i ηi
∑n

i=1 ζ
1
s
i

)

,

⇒
n

∑

i=1

(ηi – ζi) log

(

ηi

ζi

)

≥ Qs
n

(
∑n

i=1 ζ
1–s
s

i ηi –
∑n

i=1 ζ
1
s
i

∑n
i=1 ζ

1
s
i

)

log

(
∑n

i=1 ζ
1–s
s

i ηi
∑n

i=1 ζ
1
s
i

)

,

which is equivalent to (3.7). �

Theorem 3.7 Let η = (η1,η2, . . . ,ηn) and ζ = (ζ1, ζ2, . . . , ζn) be two positive real n-tuples,

Qn =
∑n

i=1 ζ
1
s
i and s ∈ (0, 1]. Then

R(η, ζ ) ≥ Qs
n

(
∑n

i=1 ζ
1–s
s

i ηi
∑n

i=1 ζ
1
s
i

)α

. (3.8)
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Proof For α > 1, the function φ(z) = zα (z > 0) is non-negative and convex. Therefore, by

Lemma 1.1, φ(z) is s-convex for s ∈ (0, 1]. Using φ(z) = zα in Theorem 3.1, we get

n
∑

i=1

ζi

(

ηi

ζi

)α

≥ Qs
n

(
∑n

i=1 ζ
1–s
s

i ηi
∑n

i=1 ζ
1
s
i

)α

,

which is equivalent to (3.8). �

Theorem 3.8 Let η = (η1,η2, . . . ,ηn) and ζ = (ζ1, ζ2, . . . , ζn) be two positive real n-tuples,

Qn =
∑n

i=1 ζ
1
s
i and s ∈ (0, 1]. Then

V (η, ζ ) ≥ Qs
n

∣

∣

∣

∣

∑n
i=1 ζ

1–s
s

i ηi –
∑n

i=1 ζ
1
s
i

∑n
i=1 ζ

1
s
i

∣

∣

∣

∣

. (3.9)

Proof If φ(z) = |z – 1| (z ∈ R), then clearly φ(z) is convex on R. Moreover, for z ∈ R,

φ(z) ≥ 0. Hence, by Lemma 1.1, φ(z) is s-convex for s ∈ (0, 1]. Using φ(z) = |z – 1| in The-

orem 3.1, we get

n
∑

i=1

ζi

∣

∣

∣

∣

ηi

ζi
– 1

∣

∣

∣

∣

≥Qs
n

∣

∣

∣

∣

∑n
i=1 ζ

1–s
s

i ηi
∑n

i=1 ζ
1
s
i

– 1

∣

∣

∣

∣

,

which is equivalent to (3.9). �

Theorem 3.9 Let η = (η1,η2, . . . ,ηn) and ζ = (ζ1, ζ2, . . . , ζn) be two positive real n-tuples,

Qn =
∑n

i=1 ζ
1
s
i and s ∈ (0, 1]. Then

χ2(η, ζ ) + χ2(ζ ,η)≥ Qs
n

((
∑n

i=1 ζ
1–s
s

i ηi
∑n

i=1 ζ
1
s
i

– 1

)2

+

(
∑n

i=1 η
1–s
s

i ζi
∑n

i=1 η
1
s
i

– 1

)2)

. (3.10)

Proof If φ(z) = (z– 1)2 (z > 0), then φ′′(z) = 2 > 0, so φ(z) is convex on (0,∞). Also, if z > 0,

then φ(z) ≥ 0. Hence, by Lemma 1.1, φ(z) is s-convex for s ∈ (0, 1].

From Theorem 3.4, we have

n
∑

i=1

(ηi – ζi)
2

ζi
≥ Qs

n

(
∑n

i=1 ζ
1–s
s

i ηi
∑n

i=1 ζ
1
s
i

– 1

)2

. (3.11)

By interchanging ηi and ζi in Theorem 3.4, we get

n
∑

i=1

(ζi – ηi)
2

ηi
≥ Qs

n

(
∑n

i=1 η
1–s
s

i ζi
∑n

i=1 η
1
s
i

– 1

)2

. (3.12)

Adding (3.11) and (3.12), we get

n
∑

i=1

(ηi – ζi)
2

ζi
+

n
∑

i=1

(ζi – ηi)
2

ηi
≥ Qs

n

(
∑n

i=1 ζ
1–s
s

i ηi
∑n

i=1 ζ
1
s
i

– 1

)2

+Qs
n

(
∑n

i=1 η
1–s
s

i ζi
∑n

i=1 η
1
s
i

– 1

)2

,

which is equivalent to (3.10). �
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Theorem 3.10 Let η = (η1,η2, . . . ,ηn) and ζ = (ζ1, ζ2, . . . , ζn) be two positive real n-tuples,

Qn =
∑n

i=1 ζ
1
s
i and s ∈ (0, 1]. Then

△(η, ζ ) ≥
(
∑n

i=1 ζ
1–s
s

i ηi –
∑n

i=1 ζ
1
s
i )2

∑n
i=1 ζ

1–s
s

i ηi +
∑n

i=1 ζ
1
s
i

. (3.13)

Proof If φ(z) = (z–1)2

z+1
(z > 0), then φ′′(z) = 8

(z+1)3
≥ 0, so φ(z) is convex on (0,∞). Moreover,

if z > 0, then φ(z) ≥ 0. Hence, by Lemma 1.1, φ(z) is s-convex for s ∈ (0, 1]. Using φ(z) =
(z–1)2

z+1
in Theorem 3.1, we have

n
∑

i=1

ζi
( ηi

ζi
– 1)2

ηi
ζi
+ 1

≥ Qs
n

(∑n
i=1 ζ

1–s
s

i ηi

∑n
i=1 ζ

1
s
i

– 1
)2

(∑n
i=1 ζ

1–s
s

i ηi

∑n
i=1 ζ

1
s
i

+ 1
)

,

n
∑

i=1

(ηi – ζi)
2

ηi + ζi
≥ Qs

n

(
∑n

i=1 ζ
1–s
s

i ηi –
∑n

i=1 ζ
1
s
i )2

∑n
i=1 ζ

1
s
i (

∑n
i=1 ζ

1–s
s

i ηi +
∑n

i=1 ζ
1
s
i )

,

which is equivalent to (3.13). �

Theorem 3.11 Let η = (η1,η2, . . . ,ηn) and ζ = (ζ1, ζ2, . . . , ζn) be two positive real n-tuples,

and Qn =
∑n

i=1 ζ
1
s
i . Then the following statements are true:

(i) If ηi ≥ ζi for i ∈ {1, 2, . . . ,n} and s ∈ [1,∞), then

G(η, ζ ) ≥
∑n

i=1 ζ
1–s
s

i +
∑n

i=1 ζ
1
s
i

2
log

∑n
i=1 ζ

1
s
i +

∑n
i=1 ζ

1–s
s

i

2
∑n

i=1 ζ
1–s
s

i ηi

. (3.14)

(ii) If ηi < ζi for i ∈ {1, 2, . . . ,n} and s ∈ (0, 1], then inequality (3.14) holds.

Proof (i) If φ(z) = z+1
2

log 1+z
2z

(z > 0), then φ′′(z) = 1
2z2(z+1)

> 0, so φ(z) is convex on (0,∞).

Moreover, if z ≥ 1, then φ(z) ≤ 0. Hence, by Lemma 1.1, φ(z) is s-convex for s ∈ [1,∞).

Using φ(z) in Theorem 3.1, we have

n
∑

i=1

ζi
ηi + ζi

2ζi
log

ηi + ζi

2ηi
≥ Qs

n

∑n
i=1 ζ

1–s
s

i ηi

∑n
i=1 ζ

1
s
i

+ 1

2
log

1 +
∑n

i=1 ζ
1–s
s

i ηi

∑n
i=1 ζ

1
s
i

2
∑n

i=1 ζ
1–s
s

i ηi

∑n
i=1 ζ

1
s
i

,

which is equivalent to (3.14).

(ii) If z ∈ (0, 1], then φ(z) ≥ 0. Hence, by Lemma 1.1, φ(z) is s-convex for s ∈ (0, 1]. Similar

to part (i), using Theorem 3.1, we obtain (3.14). �

Theorem 3.12 Let η = (η1,η2, . . . ,ηn) and ζ = (ζ1, ζ2, . . . , ζn) be two positive real n-tuples,

Qn =
∑n

i=1 ζ
1
s
i and s ∈ (0, 1]. Then

F(η, ζ ) =
1

2

[

G(η, ζ ) +G(ζ ,η)
]
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≥ Qs
n

[
∑n

i=1 ζ
1–s
s

i ηi +
∑n

i=1 ζ
1
s
i

2
∑n

i=1 ζ
1
s
i

log

√

√

√

√

√

∑n
i=1 ζ

1
s
i +

∑n
i=1 ζ

1–s
s

i ηi

2
∑n

i=1 ζ
1–s
s

i ηi

+

∑n
i=1 η

1–s
s

i ζi +
∑n

i=1 η
1
s
i

2
∑n

i=1 η
1
s
i

log

√

√

√

√

√

∑n
i=1 η

1
s
i +

∑n
i=1 η

1–s
s

i ζi

2
∑n

i=1 η
1–s
s

i ζi

]

.

Proof If φ(z) = z+1
2

log 1+z
2z

(z > 0). Then φ′′(z) = 1
2z2(z+1)

> 0, so φ(z) is convex on (0,∞).

Moreover, if z > 0, then φ(z) ≥ 0. Hence, by Lemma 1.1, φ(z) is s-convex for s ∈ (0, 1].

From Theorem 3.11 we have

n
∑

i=1

ηi + ζi

2
log

ηi + ζi

2ηi

≥ Qs
n

∑n
i=1 ζ

1–s
s

i ηi +
∑n

i=1 ζ
1
s
i

2
∑n

i=1 ζ
1
s
i

log

∑n
i=1 ζ

1
s
i +

∑n
i=1 ζ

1–s
s

i ηi

2
∑n

i=1 ζ
1–s
s

i ηi

. (3.15)

By interchanging ηi and ζi in Theorem 3.11, we get

n
∑

i=1

ηi + ζi

2
log

ηi + ζi

2ζi
≥ Qs

n

∑n
i=1 η

1–s
s

i ζi +
∑n

i=1 η
1
s
i

2
∑n

i=1 η
1
s
i

log

∑n
i=1 η

1
s
i +

∑n
i=1 η

1–s
s

i ζi

2
∑n

i=1 η
1–s
s

i ζi

. (3.16)

Adding (3.15) and (3.16), we obtain

1

2

[

G(η, ζ ) +G(ζ ,η)
]

≥ Qs
n

∑n
i=1 ζ

1–s
s

i ηi +
∑n

i=1 ζ
1
s
i

2
∑n

i=1 ζ
1
s
i

1

2
log

∑n
i=1 ζ

1
s
i +

∑n
i=1 ζ

1–s
s

i ηi

2
∑n

i=1 ζ
1–s
s

i ηi

+Qs
n

∑n
i=1 η

1–s
s

i ζi +
∑n

i=1 η
1
s
i

2
∑n

i=1 η
1
s
i

1

2
log

∑n
i=1 η

1
s
i +

∑n
i=1 η

1–s
s

i ζi

2
∑n

i=1 η
1–s
s

i ζi

,

namely

F(η, ζ ) =

n
∑

i=1

ηi + ζi

2
log

ηi + ζi

2
√

ηiζi

≥ Qs
n

[
∑n

i=1 ζ
1–s
s

i ηi +
∑n

i=1 ζ
1
s
i

2
∑n

i=1 ζ
1
s
i

log

√

√

√

√

√

∑n
i=1 ζ

1
s
i +

∑n
i=1 ζ

1–s
s

i ηi

2
∑n

i=1 ζ
1–s
s

i ηi

+

∑n
i=1 η

1–s
s

i ζi +
∑n

i=1 η
1
s
i

2
∑n

i=1 η
1
s
i

log

√

√

√

√

√

∑n
i=1 η

1
s
i +

∑n
i=1 η

1–s
s

i ζi

2
∑n

i=1 η
1–s
s

i ζi

]

.
�

In the following theorem, we obtain a bound for Bhattacharyya divergence by utilizing

an s-convex function that is not convex.
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Theorem 3.13 Let η = (η1,η2, . . . ,ηn) and ζ = (ζ1, ζ2, . . . , ζn) be two positive real n-tuples,

Qn =
∑n

i=1 ζ
1
s
i and 0 < s ≤ 1

2
. Then

B(η, ζ ) ≥ Qs
n

√

√

√

√

√

∑n
i=1 ζ

1–s
s

i ηi
∑n

i=1 ζ
1
s
i

. (3.17)

Proof First we show that φ(z) =
√
z is s-convex for z > 0 and s ∈ (0, 1/2], namely we show

that

√

λz1 + (1 – λ)z2 ≤ λs√z1 + (1 – λ)s
√
z2 (3.18)

for λ ∈ (0, 1) and s ∈ (0, 1/2].

Squaring both sides, we get

λz1 + (1 – λz2) ≤ λ2sz1 + (1 – λ)2sz2 + 2λs(1 – λ)s
√
z1z2,

which implies that

(

λ2s – λ
)

z1 +
(

(1 – λ)2s – (1 – λ)
)

z2 + 2λs(1 – λ)s
√
z1z2 ≥ 0.

Let λ = 1/p (p > 1). Then

λ2s–1 = p1–2s > 1

for s ∈ (0, 1/2].

Namely,

λ2s – λ > 0 (3.19)

for s ∈ (0, 1/2].

As λ ∈ (0, 1), 1 – λ ∈ (0, 1) and from (3.19), we have

(1 – λ)2s > (1 – λ). (3.20)

From (3.19) and (3.20) we get (3.18), namely φ(z) is s-convex for s ∈ (0, 1
2
].

Now, using φ(z) =
√
z in Theorem 3.1, we obtain

n
∑

i=1

ζi

√

ηi

ζi
≥ Qs

n

√

√

√

√

√

∑n
i=1 ζ

1–s
s

i ηi
∑n

i=1 ζ
1
s
i

,

which is equivalent to (3.17). �
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4 Conclusion

In the literature, there are several results for Jensen’s inequality by using convex func-

tions. Particularly, there are many applications of Jensen’s inequality for convex functions

in information theory. In this paper, we associated the results for s-convex functions with

several divergences and proposed several applications of Jensen’s inequality for s-convex

functions in information theory. We have obtained generalized inequalities for different

divergences by using Jensen’s inequality for s-convex functions. The results obtained in

this paper may also open the new door to obtaining other results in information theory

for s-convex functions.
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