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IMPORTANCE Monogenic familial hypercholesterolemia (FH) is associated with lifelong

elevations in low-density lipoprotein cholesterol (LDL-C) levels and increased risk of

atherosclerotic cardiovascular disease (CVD). However, many individuals with

hypercholesterolemia have a polygenic rather than amonogenic cause for their condition.

It is unclear if a genetic variant for hypercholesterolemia alters the risk of CVD.

OBJECTIVES To assess whether a genetic variant for hypercholesterolemia alters the risk of

atherosclerotic CVD and to evaluate how this risk compares with that of nongenetic

hypercholesterolemia.

DESIGN, SETTING, AND PARTICIPANTS In this genetic-association, case-control, cohort study,

individuals aged 40 to 69 years were recruited by the UK Biobank from across the United

Kingdom betweenMarch 13, 2006, and October 1, 2010, and followed up until March 31,

2017. Genotyping array and exome sequencing data from the UK Biobank cohort were

used to identify individuals with monogenic (LDLR, APOB, and PCSK9) or polygenic

hypercholesterolemia (LDL-C polygenic score >95th percentile based on 223

single-nucleotide variants in the entire cohort). The data were analyzed from July 1, 2019,

to December 30, 2019.

MAIN OUTCOMES ANDMEASURES The study investigated the association of genotypewith

the risk of coronary and carotid revascularization, myocardial infarction, ischemic stroke,

and all-cause mortality among the overall study population and among participants

with monogenic FH (n = 277), polygenic hypercholesterolemia (n = 2379), or

hypercholesterolemia with undetermined cause (n = 2232) at comparable levels

of LDL-Cmeasured at study enrollment.

RESULTS For the 48 741 individuals with genotyping array and exome sequencing data,

the mean (SD) age was 56.6 (8.0) years, and 54.5%were female (n = 26 541 of 48 741).

A monogenic FH variant for hypercholesterolemia was found in 277 individuals (0.57%,

1 in 176 individuals). Participants with monogenic FHwere significantly more likely than those

without monogenic FH to experience an atherosclerotic CVD event at 55 years or younger

(17 of 277 [6.1%] vs 988 of 48 464 [2.0%]; P < .001). Compared with the general population,

bothmonogenic and polygenic hypercholesterolemia were associated with an increased risk

of CVD events.Moreover, among individuals with comparable levels of LDL-C, bothmonogenic

(hazardratio,1.93;95%CI,1.34-2.77;P < .001)andpolygenichypercholesterolemia(hazardratio,1.26;

95% CI, 1.03-1.55; P = .03) were significantly associated with an increased risk of CVD events

compared with the risk of such events in individuals with hypercholesterolemia without an

identified genetic cause.

CONCLUSIONS AND RELEVANCE The findings of this study suggest that among individuals

with hypercholesterolemia, genetic determinants of LDL-C levels may impose additional risk

of CVD. Thus, understanding the possible genetic cause of hypercholesterolemia may provide

important prognostic information to treat patients.
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F
amilial hypercholesterolemia (FH) is an autosomal cod-

ominant genetic disorder with an estimated preva-

lence of 1 in 250 people.1,2 This disorder is caused by

pathogenicvariants in theLDLR (OMIM606945),APOB (OMIM

107730), and PCSK9 (OMIM 607786) genes that impair the

clearance of low-density lipoproteins (LDLs) from the blood,

leading to an increased risk of premature atherosclerotic car-

diovascular disease (CVD).3-6 Despite its prevalence, FH re-

mains underdiagnosed and undertreated.7

Compared with patients with elevated LDL cholesterol

(LDL-C) levels and no FH-associated variant, those with a

monogenicFH-associatedvarianthaveanapproximately 2- to

3.5-fold increased risk of CVD.3,6However, inmany individu-

als with a phenotype of clinical FH, a monogenic FH-

associated variant cannot be identified.8-14These individuals

may have a polygenic, environmental, or unknown mono-

genic cause for their hypercholesterolemia.

Polygenichypercholesterolemia isestimatedtoaccount for

approximately20%to30%ofpatientswithclinicalFH.15,16The

risk of CVD for individuals with polygenic hypercholesterol-

emia likely depends on the reference group. Genetic associa-

tion and mendelian randomization studies have highlighted

the important contribution of LDL-C polygenic scores to CVD

risk among the general population.17-21 A recent study re-

ported that amongpatientswithclinicalFH,anelevatedLDL-C

polygenic risk score was associated with increased CVD risk

only in those individualswhoalsohadmonogenicFH.22How-

ever, whether polygenic hypercholesterolemia vs hypercho-

lesterolemia of unknown cause is associated with increased

CVD risk remains unknown. The objective of this study was

to assess howmonogenic and polygenic causes of hypercho-

lesterolemiaareassociatedwith the riskofCVDamongthegen-

eral population and how this risk compares with that in indi-

viduals with nongenetic hypercholesterolemia.

Methods

UKBiobank Cohort

This prospective cohort study included participants from the

UKBiobank cohort studywith genotyping array (n = 478428)

or genotyping array and exome sequencing (n = 48741) data

(Figure 1).23-25 These participants were recruited by the UK

Biobank from across the United Kingdom betweenMarch 13,

2006, and October 1, 2010, and followed up until March 31,

2017. The data were analyzed from July 1, 2019, to December

30, 2019. This studywas approvedby theUKBiobank and the

clinical research ethics board of the University of British Co-

lumbia, Vancouver, Canada. All participants provided writ-

ten informed consent to participate in the UK Biobank study.

Biochemical measurements, physical examination mea-

surements, andmedical historieswere assessed at the timeof

study enrollment unless otherwise stated (eMethods and

eTable 1 in the Supplement). In patients known to be receiv-

ing cholesterol level–lowering medication at the time of en-

rollment, baseline LDL-C levels were estimated by multiply-

ing LDL-C levels during treatment by 1.43, corresponding to

an estimated 30% reduction in the LDL-C level.1,26

Definition of CVD Events

Cardiovascular disease events were defined as coronary and

carotid revascularization, myocardial infarction, ischemic

stroke, and all-causemortality. The CVD events occurring be-

foreandafterenrollmentwere included.Eventsoccurringprior

to enrollmentwere identified by either self-reportedmedical

history and/or previoushospital admissiondocumented in an

electronichealth record. IncidentCVDeventsweredefinedby

hospital admissionwithanelectronichealth recordentryonly.

Cardiovasculardiseaseeventsweredefinedbydiagnosis codes

from the International Classification of Diseases, Ninth

Revision and International Classification of Diseases, Tenth

Revision (eMethods in the Supplement).23 Myocardial infarc-

tion, ischemic stroke, and mortality events were algorithmi-

cally defined by the UKBiobank. Coronary and carotid revas-

cularization procedures were assessed using medical history

andpostenrollment operation codes according to theOffice of

Population Censuses and Surveys Classification of Interven-

tions and Procedures, version 4 codes (eTable 2 in the

Supplement).23 Events were censored on the date of loss-to-

follow-up or if individuals remained event-free up to March

31, 2017.

LDL-C Polygenic Score Construction

A data set of genotyped and imputed variants was obtained

from theUKBiobank. Samples flagged formismatchbetween

reportedsexandgenetic sexorwithmorethan3missingsingle-

nucleotide variants (SNVs) of interest were excluded from

analyses (Figure 1).WeightedLDL-Cpolygenic scoreswere cal-

culated using data from the effect sizes of the 223 indepen-

dent SNVs genome-wide association study discovery sample

performedbytheGlobalLipidsGeneticsConsortium,17,27which

hasbeenpreviouslydescribed (eTable 3 in theSupplement).20

Polygenic scores were calculated using the formula Σ [βx *

SNVx], where βx is the effect size for the cholesterol-

increasing allele and SNVx is the number of LDL-C-increasing

alleles (0, 1, or 2) for SNVx (eMethods in the Supplement).

K-means clusteringwas appliedwithk = 3on the first 20prin-

cipal componentsof genetic ancestry togroup individuals into

Key Points

Question Does the risk of atherosclerotic cardiovascular disease

(CVD) differ between individuals with monogenic hyper-

cholesterolemia vs those with polygenic hypercholesterolemia?

Findings In this cohort study of 48 741 adults recruited by theUK

Biobank, amonogenic cause for hypercholesterolemiawas found in

277participants (0.57%) and apolygenic cause in 2379participants

(4.9%). Both polygenic andmonogenic causes of hypercholesterol-

emia appeared to be associatedwith an increased risk of CVD

comparedwith hypercholesterolemiawith an unknowngenetic

cause; however,monogenic hypercholesterolemiawas associated

with the greatest risk of CVD.

Meaning The findings of this study suggest that among

individuals with comparable levels of low-density lipoprotein

cholesterol, monogenic hypercholesterolemia may be associated

with the greatest risk of CVD followed by polygenic

hypercholesterolemia.
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African, East Asian, and European superpopulations (eFig-

ure 1 in theSupplement).An individual’sLDL-Cpolygenic score

percentile was ascertained relative to their respective UK

Biobank superpopulation.

Annotation of UK Biobank Exome Sequencing Data

forMonogenic FH-Associated Variants

Apopulation-level functionallyequivalentvariantdata setwas

available from the UK Biobank in PLINK format.25 Variant fil-

tering for this data set used a genotype depth filter of greater

than 7 for SNVs and greater than 10 for indels and required at

least 1variantgenotype topassanallelebalance (AB) filter (het-

erozygous SNV AB filter >0.15, heterozygous indel <0.20).

PLINK, version 1.9, was used to generate a project-level

variant call file.28Weused SnpEff to annotate the variant call

file against the GRCh38.86 reference genome and provide

gene-based functional predictions.29 We used SnpSift to add

dbNSFP30,31 and ClinVar32 annotations to variants.33

Definitions ofMonogenic FH, Polygenic

Hypercholesterolemia, and Nongenetic

Hypercholesterolemia

The LDLR, APOB, and PCSK9 variants that were annotated in

ClinVar as pathogenic or likely pathogenic for FH were con-

sideredmonogenicFH-associatedvariants.3,32TheLDLRvari-

ants that were not annotated or had conflicting interpreta-

tionsof pathogenicity annotations inClinVarwere considered

monogenic FH-associated variants if they had a minor allele

frequency of less than 0.001 andwere predicted by SnpEff to

result ina lossofgenefunction(stopgained, frameshift)orwere

missense variants predicted to be pathogenic by at least 5 of 6

bioinformatic tools (MetaSVM, LRT, Protein Variation Effect

Analyzer, MutationTaster, Polyphen2, and Sorting Intolerant

from Tolerant).3,22,34

Participantswith a 223 SNVLDL-Cpolygenic score higher

than the95thpercentileweredefined ashavingpolygenic hy-

percholesterolemia. Participants with nongenetic hypercho-

lesterolemia were identified by a 1:1 matching of individuals

withpolygenichypercholesterolemia to those fromtheexome

sequencing cohort who did not havemonogenic FH based on

LDL-C level, age, sex, the first 4 principal components of ge-

netic ancestry, andgenotyping array andbatch.Matchingwas

completedusing thenearestneighboralgorithmin theMatchIt

package, version3.0.2, ofR statistical software (RCoreTeam).

Statistical Analyses

Data were analyzed from July 1, 2019, to December 30, 2019,

using R version 3.5.1, and χ2 tests were used for contingency

analyses.Forcomparisonof2groups,normallydistributeddata

were analyzed with an unpaired, 2-tailed t test, and non-

normally distributed data were analyzed with a Mann-

Whitney U test. For comparison of more than 2 groups, nor-

mally distributed data were analyzed with 1-way analysis of

variance (withTukeymultiple comparisonposthoc tests), and

non-normally distributed data were analyzed with Kruskal-

Wallis tests (with Dunnmultiple comparison post hoc tests).

Multivariable linear regression models were used to as-

sess thecorrelationbetweenLDL-C levels andpolygenic scores

and were adjusted for age, sex, the first 4 principal compo-

nents of genetic ancestry, and genotyping array and batch.

Time-to-event analyseswere analyzedwith theSurvival pack-

age,version2.43-3, forRwithPetoandPeto tests.Pvalues from

Figure 1. FlowDiagram of UK Biobank Cohort Subgroups Used in the Study

Identify cases of monogenic familial
hypercholesterolemia (FM)

Compare CVD risk between
monogenic FH and no monogenic FH

502 543 UK Biobank cohort

Assess association between LDL-C
polygenic score and measured levels
of LDL-C and risk of cardiovascular
disease (CVD)

478 428 UK Biobank genotyping
array cohort

48 741 UK Biobank genotyping
array and exome
sequencing cohort

24 115 Excluded

14 248 No genotyping array data

9489 >3 SNVs missing from 223 SNV
LDL-C polygenic score

378 Mismatch between genetic and
reported sex

429 687 No exome sequencing data

2232 Hypercholesterolemia 2379 Polygenic hypercholestolemia

Compare CVD risk between genetic and
nongenetic etiology of hypercholesterolemia

at comparable levels of LDL-C

277 Monogenic FH

LDL-C indicates low-density

lipoprotein cholesterol;

SNV, single-nucleotide variant.
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pairwise Peto and Peto tests of more than 2 groups were ad-

justed using the Benjamini-Hochberg correction. Cox regres-

sionmodelswereusedandadjustedforage, sex, the first4prin-

cipal componentsof ancestry, andgenotypingarrayandbatch.

When explicitly indicated, Cox regressionmodels were addi-

tionally adjusted for LDL-C levels. Statistical significancewas

claimed when 2-sided P values were < .05.

Results

Association of LDL-C Polygenic ScoreWith CVD Risk

Individuals with genotyping array data in the UKBiobank co-

hort studywere included in thepresentstudytoassesswhether

LDL-C polygenic scores are associated with measured levels

of LDL-C and risk of CVD (Figure 1 and eTable 4 in the Supple-

ment). For the 478428 individuals with genotype array data

at the time of enrollment, the mean (SD) age was 56.6 (8.1)

years, and54.2%were female (n = 259400of 478428).Other

characteristics are provided in eTable 4 in the Supplement.

There were considerable differences in the distribution of

LDL-C polygenic scores among ancestral superpopulations

(Figure 2A). The LDL-C polygenic scoreswere notably associ-

atedwithbaseline LDL-C levels (inmilligramsper deciliter [to

convert to millimoles per liter, multiply by 0.0259]) for indi-

viduals of African (multiple R2 = 0.04; β [SE] = 17.40 [1.91];

P < .001) (n = 4680), East Asian (multiple R2 = 0.06;

β [SE] = 21.73 [1.25];P < .001) (n = 10640), andEuropean (mul-

tipleR2 = 0.09;β [SE] = 28.01 [0.18];P < .001) (n = 439871) ge-

netic ancestry (Figure 2B). Among the overall cohort, the cor-

relationbetweenLDL-C levels andLDL-Cpolygenic scoreswas

comparablewith the subgroupanalysis restricted to individu-

als of European genetic ancestry (multiple R2 = 0.09;

β [SE] = 27.78 [0.18]; P < .001) (n = 455 191).

The percentage of variance of LDL-C levels explained by

the LDL-C polygenic score was assessed using stepwise addi-

tionof the 223 SNVs intomultivariable linear regressionmod-

els,withLDL-C levelsusedas thedependentvariable.Theper-

centageof variance inLDL-C levels explainedby the inclusion

of SNVsdisplayednotable saturationafter 75SNVs (9.61%vari-

ance explained) (eFigure 2 in the Supplement). An exponen-

tialplateaumodelof thedataestimatedthat themaximumvari-

ance inLDL-C levels explainedwouldbe 10.19%(95%CI, 10.16-

10.24;R2 = 0.97).Similarpredictionsweremadewhenanalyses

were restricted to individuals with European genetic ances-

try (eFigure 2 in the Supplement). These results suggest that

incorporation of a greater number of SNVs in the LDL-C poly-

genic score would be unlikely to provide statistically signifi-

cant improvement to the predictive ability of the LDL-C poly-

genic scores.

Increasing LDL-C polygenic score percentile was associ-

ated with a dose-dependent increase in CVD risk among the

overall cohort (test for trend, P < .001) (Figure 2C). Specifi-

cally, the 10th decile of the LDL-C polygenic score percentile

was associated with the greatest risk of CVD compared with

the first decile of the LDL-C polygenic score (adjusted hazard

ratio [aHR], 1.35; 95% CI, 1.30-1.40; P < .001). These results

were consistent in subgroup analyses consisting of individu-

als of European (test for trend,P < .001; n = 462236) andEast

Asian (test for trend, P = .004; n = 11 220) genetic ancestry

(eFigures 3and4 in theSupplement).However, the cohortwas

Figure 2. Low-Density Lipoprotein Cholesterol (LDL-C) Polygenic Scores

and LDL-C Levels and Risk of Cardiovascular Disease (CVD)

Among all Individuals in the Genotyping Array Cohort
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A, The distribution of LDL-C polygenic scores is depicted for the African, East

Asian, and European ancestral superpopulations. B, The linear association

between LDL-C polygenic scores and LDL-C levels (to convert to millimoles per

liter, multiply by 0.0259) are depicted. Lines depict linear regression analyses

segregated by ancestral superpopulation. C, The adjusted hazard ratios (aHRs)

with 95% CIs for composite CVD events of myocardial infarction, coronary or

carotid revascularization, ischemic stroke, or all-causemortality are depicted for

each decile of LDL-C polygenic score percentile (percentiles are calculated

relative to each individual’s ancestral superpopulation). Hazard ratios were

adjusted for age, sex, genotyping array and/or batch, and the first 4 principal

components of ancestry.
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underpowered to detect an association between the LDL-C

polygenic score and risk of CVD events among individuals of

Africangeneticancestry (test for trend,P = .75;n = 4972) (eFig-

ure 4 in the Supplement).

Estimated Prevalence ofMonogenic FH

in the UK Biobank Cohort

Data from the cohort of 48 741 individuals with genotyping

arrayandexomesequencingdata in theUKBiobankwereused

to compare polygenic and monogenic causes of FH (Figure 1

and eTables 5 and 6 in the Supplement). A predicted FH-

associatedvariantwas identified in277 individuals, represent-

ingaprevalenceof0.57%(1 in176 individuals). Individualswith

monogenic FHhad statistically significantly higher LDL-C lev-

els than those without an FH-associated variant (mean [SD]

LDL-C, 161.15 [49.1] mg/dL vs 140.2 [34.0] mg/dL; P < .001)

(Figure 3A and eTable 6 in the Supplement). The LDL-C levels

were not statistically significantly different between individu-

als carrying a bioinformatically predicted FH-associated vari-

antcomparedwith thosecarryingvariantsannotated inClinVar

as likely pathogenic or pathogenic for FH (mean [SD] LDL-C,

155.6 [39.7] mg/dL vs 167.4 [57.5] mg/dL; P = .38) (Figure 3B).

Furthermore, the risk of premature CVD events (at 55 years or

younger)wascomparable in individuals carryingpredictedFH-

associatedvariantsvs thosecarryingFH-associatedvariants re-

ported in ClinVar (unadjusted HR, 3.05 [95% CI, 1.58-5.89] vs

3.05 [95%CI, 1.52-6.12];P = .002).PairwisecomparisonofPeto

andPeto testswithBenjamini-Hochbergcorrection is shown in

eFigures 5 and 6 in the Supplement.

Overall,monogenic FH-associatedvariantswere found in

LDLR for 257 individuals (92.9%), PCSK9 for 13 (4.7%), and

APOB for 7 individuals (2.5%). A total of 121 unique mono-

genic FH-associated variants were identified, most of which

were in the LDLR gene (110 of 121 [90.9%]) (eTable 5 in the

Supplement). None of the participants had homozygous FH;

however, 2participants carried2differentFH-associatedvari-

ants in LDLR.

Monogenic FH and Premature CVD

Monogenic FH was associated with a statistically signifi-

cantly greater risk of CVD vs individuals without an FH-

associatedvariant (PetoandPeto test, χ2 = 9.7on1df;P = .002)

(eFigure 6 in the Supplement). The aHR for a composite CVD

eventamongthosewithmonogenicFHwas1.78comparedwith

that among those without a monogenic FH-associated vari-

ant (95%CI, 1.28-2.48;P < .001). This differencewasmostno-

table for premature CVD events (at 55 years or younger) in

which there was a statistically significant enrichment for in-

dividualswithmonogenicFHvs thosewithout (17of277 [6.1%]

vs988of48464 [2.0%]) (HR, 3.17; 95%CI, 1.96-5.12;P < .001).

Next,we investigatedwhether thereweredifferences in the

riskofCVDeventsamongparticipantswithmonogenicFH,poly-

genichypercholesterolemia(>95thpercentileofpolygenicscore),

or nongenetic hypercholesterolemia at comparable levels of

LDL-C.For this,participantsweregroupedbasedontheirLDL-C

levels. In thisanalysis,medianLDL-C levelsdidnotsignificantly

differ amongthemonogenic,polygenic, andnongenetichyper-

cholesterolemia groups at study enrollment (Figure 4A). Char-

acteristics of the participants stratified by these subgroups are

providedintheTable.Therewasasignificant, stepwisetrendto-

ward a greater risk of CVD among individuals with nongenetic

hypercholesterolemia, polygenic hypercholesterolemia, and

monogenic FH (Peto and Peto test for trend: HR, 1.93; 95% CI,

1.34-2.77;P < .001) (Figure 4B andC). Participantswithmono-

genicFHhadasignificantlygreater riskofCVDthan thosewith

polygenic hypercholesterolemia (pairwise comparison of Peto

andPeto testswithBenjamini-Hochberg correction: aHR, 1.26;

95% CI, 1.03-1.55; P = .03) (Figure 4B and C). These results

remainedunalteredwhenHRswerealsoadjustedforLDL-C lev-

elsmeasured at study enrollment (Figure 4C). These data sug-

gest thatgenetic contributions tohypercholesterolemiasignifi-

cantly increase CVD risk.

Underdiagnosed and Undertreated Hypercholesterolemia

IndividualswithmonogenicFHwere significantlymore likely

than those without a monogenic FH-associated variant to be

receiving cholesterol-lowering medication at the time of

Figure3.MonogenicFamilialHypercholesterolemia (FH)-Associated

Variants andElevatedLow-DensityLipoproteinCholesterol (LDL-C)Level
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a P < .0001.
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enrollment (36.3% [57 of 157] vs 12.6% [3309 of 26 245];

P < .001).However,among individualswithmonogenicFHand

severe hypercholesterolemia (LDL-C level ≥193.35 mg/dL),

34.3% (12 of 35) of individualswere not receiving cholesterol-

lowering medication and 40.0% (14 of 35) were seemingly

unawareof theirhighcholesterol level at enrollment (highcho-

lesterol level was not reported at enrollment). Undertreat-

ment of severe hypercholesterolemia was evenmore notable

among individualswhodidnothavemonogenicFH,with71.7%

(1426 of 1990) of these individuals not receiving cholesterol-

lowering medication at enrollment and 75.4% (1521 of 1990)

unaware of their high cholesterol level.

Follow-up lipid levels were available for 128 of 1438 indi-

vidualswhohadseverehypercholesterolemiaandwerenot tak-

ing cholesterol-loweringmedication at study enrollment. Af-

ter amean follow-upof 3 years, only 22.7% (29of 128) of these

individuals reported taking cholesterol-lowering medica-

tion. The 99 individualswho remaineduntreated had amean

(SD) follow-up LDL-C level of 257.70 (22.91) mg/dL. In con-

trast, themean (SD) LDL-C level of 29 individualswhohad re-

ceived cholesterol-lowering treatment since enrollment was

130.08 (22.76) mg/dL and all individuals had an LDL-C level

of less than 193.35mg/dL (eFigure 7 in theSupplement). These

real-world data indicate the need for better recognition and

management of severe hypercholesterolemia and FH.

Discussion

Thepresentstudyreports thatamonogenicFH-associatedvari-

ant is present in 1 in 176 (0.57%) participants from the UK

Biobankexomesequencing cohort25 and is associatedwith el-

evated levels of LDL-C and increased risk of premature CVD.

At comparable levels of LDL-C, bothmonogenic FH and poly-

genichypercholesterolemiaappeared tobeassociatedwithsig-

nificantly increased risk of CVDevents comparedwithhyper-

cholesterolemia with no identified genetic cause, with

monogenic FH associated with the greatest risk. These data

suggest that the mechanism underlying hypercholesterol-

emia and themeasured level of LDL-C contribute to CVD risk,

which underscores the importance of ascertaining the causes

of hypercholesterolemia to accurately assess risk.

We found that monogenic FH and polygenic hypercholes-

terolemia are associated with greater risk of CVD than hyper-

cholesterolemia without a known genetic cause. Consistent

with previous studies, we believe our data demonstrated that

an elevated LDL-C polygenic score is associated with amoder-

ate increase in CVD risk in both the overall population and in

individuals with hypercholesterolemia.17,18 These findings are

consistent with those of a previous report that found that

monogenic FH was associated with significantly greater CVD

Figure 4. Monogenic Familial Hypercholesterolemia (FH) vs Polygenic Hypercholesterolemia

and Cardiovascular Disease (CVD) Events
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risk than polygenic hypercholesterolemia at similar levels of

LDL-Cmeasured at study enrollment.22One possible explana-

tion for the increased risk is thatmonogenic hypercholesterol-

emia may manifest earlier in life than either polygenic hyper-

cholesterolemia or hypercholesterolemia with no identified

genetic cause, leading to greater cumulative LDL-C

exposure.3,35 Although it is not possible to directly test this

hypothesis in the UK Biobank cohort because of the absence

Table. Baseline Characteristics of UK Biobank Participants in the Exome Sequencing Cohort Stratified by Cause

of Elevated Low-Density Lipoprotein Cholesterol (LDL-C) Levels

Characteristic

No. (%)a

P Value

Nongenetic
Hypercholesterolemia
(n = 2232)

Polygenic
Hypercholesterolemia
(n = 2379)

Monogenic
Hypercholesterolemia
(n = 277)

Age, mean (SD), y 56.3 (7.8) 56.4 (8.0) 57.1 (7.9) .25

Sex, female 1216 (54.5) 1314 (55.2) 157 (56.7) .74

Ancestry

European 2153 (96.5) 2281 (95.9) 260 (93.9) .10

East Asian 53 (2.4) 60 (2.5) 11 (3.9) .28

African 26 (1.2) 38 (1.6) 6 (2.2) .27

Biochemistry

Total cholesterol, mg/dL,
mean (SD)

237.33 (46.44) 236.35 (48.31) 232.91 (57.43) .08

No. of patients 2232 2237 257 NA

Direct LDL-C, mg/dL,
mean (SD)

155.36 (37.25) 155.71 (37.57) 161.15 (49.14) .40

No. of patients 2232 2232 256 NA

Apolipoprotein B, mg/dL,
mean (SD)

112.62 (25.05) 113.17 (25.73) 110.86 (26.78) .40

No. of patients 2218 2223 253 NA

Triglycerides, mg/dL,
mean (SD)

161.22 (87.15) 158.99 (96.38) 134.55 (75.22) <.001

No. of patients 2228 2233 255 NA

HDL-C, mg/dL, mean (SD) 57.17 (14.58) 57.02 (15.04) 57.40 (14.58) .69

No. of patients 2101 2114 244 NA

Apolipoprotein A1, mg/dL,
mean (SD)

155.82 (27.05) 154.83 (27.14) 152.83 (25.8) .24

No. of patients 2090 2103 244 NA

Lipoprotein(a), mg/dL,
mean (SD)

19.91 (21.25) 18.32 (20.45) 18.86 (18.74) .09

No. of patients 1778 1787 194 NA

Hemoglobin A1c, % 5.43 (0.53) 5.45 (0.60) 5.48 (0.56) .26

No. of patients 2094 2221 257 NA

C-reactive protein, mg/dL,
mean (SD)

0.25 (0.38) 0.23 (0.39) 0.25 (0.44) <.001

No. of patients 2227 2228 255 NA

Physical examination

BMI, mean (SD), kg/m2 27.60 (4.64) 27.40 (4.97) 27.59 (4.97) .04

No. of patients 2230 2375 276 NA

Medical history, No. of
patients/total No. (%)

Angina 37/2230 (1.7) 87/2376 (3.7) 16/275 (5.8) <.001

Myocardial infarction 29/2230 (1.30) 54/2376 (2.3) 17/275 (6.2) <.001

Ischemic stroke 15/2230 (0.7) 34/2376 (1.5) 3/275 (0.1) .04

Hypertension 542/2230 (24.3) 612/2376 (25.8) 73/275 (26.6) .45

Diabetes 85/2228 (3.8) 124/2375 (5.2) 16/277 (5.8) .05

Current smoker 208/2225 (9.4) 217/2373 (9.1) 16/277 (5.8) .14

Medications, No. of
patients/total No. (%)

Cholesterol-lowering
medication

178/1210 (14.7) 247/1307 (18.9) 57/157 (36.3) <.001

Antihypertensives 194/1210 (16.0) 213/1307 (16.3) 34/157 (21.7) .20

Insulin 9/1210 (0.7) 8/1307 (0.6) 0/157 (0) .54

Exogenous hormones 110/1210 (9.1) 148/1307 (11.3) 8/157 (5.1) .20

Abbreviations: BMI, bodymass index

(calculated as the weight in kilograms

divided by height in meters squared);

HDL-C, high-density lipoprotein

cholesterol; LDL-C, low-density

lipoprotein cholesterol; NA, not

applicable; SNV, single-nucleotide

variants.

SI conversion factors: To convert total

cholesterol, LDL-C, HDL-C to

millimoles per liter, multiply by

0.0259; apolipoprotein A1 and

apolipoprotein B to grams per liter,

multiply by 0.01; triglycerides to

millimoles per liter, multiply by

0.0113; to convert lipoprotein(a) to

micromoles to liter, multiply by

0.0357; and C-reactive protein to

nanomoles per liter, multiply by

9.524.

a Individuals were grouped on the

basis of LDL-C levels. Polygenic

hypercholesterolemia is defined as

an LDL-C polygenic score greater

than the 95th percentile within a

genetic superpopulation using a 223

SNV score.
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of longitudinal lipid levels, we noted that 60.0% of individu-

als with monogenic hypercholesterolemia compared with

24.6% of individuals with polygenic hypercholesterolemia

reported a history of high cholesterol at the time of enroll-

ment to the UK Biobank study, which may be consistent with

earlier manifestation of hypercholesterolemia in those with a

monogenic cause. It is also possible that polygenic hypercho-

lesterolemia responds better than monogenic FH to pharma-

cological management strategies such as cholesterol-lowering

medication.

Weestimated that 1 in 176 individuals fromtheUKBiobank

cohort carried an FH-associated variant. This estimate is

slightly higher than in other studies that have estimated the

prevalenceofFHtobe in the rangeof 1 in217 to250people.1,2,36

A reason for potential overestimation of the prevalence of

monogenic FH is the challenge in classifying the pathogenic-

ityofmissensevariants.Wesought tomitigate the riskof over-

classification by requiring at least 5 of 6 bioinformatic tools to

predict that a missense variant was pathogenic. Further-

more, we observed that bioinformatically predicted FH-

associated variants were associated with comparable LDL-C

levels and similar risk of premature CVD comparedwith vari-

ants with likely pathogenic or pathogenic annotations in

ClinVar.37,38Ofnote,we foundthatmany individualswithvari-

ants annotated as pathogenic for FH did not display severe

hypercholesterolemia. The incompletepenetranceofFHvari-

ants we observed in the UK Biobank cohort may reflect the

healthy volunteer selection bias of the participants in this co-

hort comparedwith studies of FHpatients recruited fromcar-

diologyor lipid clinics.39,40The results fromthepresent study

appear tohighlightan important challenge to thediagnosis and

treatment of individuals with monogenic FH. Future re-

searchwill be required to assess howgenetic background and

environmental factors modulate the phenotype of mono-

genic FH. The finding that 2497 individuals from the exome

sequencing cohorthadLDL-C levels greater than 193.35mg/dL

andhadneitheramonogenicnorpolygenicexplanation for this

phenotype suggests the presence of other genetic or gene-

environment causes for severe hypercholesterolemia that

remain to be identified.41

Our findings also support thepossibleneed for routine ge-

netic testing of patients with clinically suspected FH to re-

duce the incidence of premature CVD observed among indi-

vidualswithmonogenicFH.3,6,42,43Theautosomalcodominant

inheritance ofmonogenic FH-associated variants enables cli-

nicians to efficiently screen relatives of probands in a process

known as cascade screening.44-46 Cascade screening facili-

tates early diagnosis and initiation of lifestylemodification47

and cholesterol-lowering medication.4,48,49 Individuals with

monogenic FH have the highest risk of CVD3,50 and are likely

to derive themost benefit from statin and ezetimibe therapy,

and, if needed, more costly cholesterol-lowering medica-

tions such as proprotein convertase subtilisin/kexin type 9

(PCSK9) inhibitors.51-53

Limitations

This study has some limitations. First, data on cholesterol-

loweringmedicationat enrollmentandpretreatment lipidpro-

files were not available for all individuals; therefore, we used

pretreatment LDL-C levels in these individuals.1,26 Further-

more, longitudinal data for lipid levels were not available for

most participants in theUKBiobank cohort. Second, detailed

characteristics needed for deep phenotyping of FH, such as

thorough familyhistoryofCVDandphysical examination find-

ings suggestiveofhypercholesterolemia,werenotavailable for

participants in the UKBiobank cohort. Third, the UKBiobank

cohortwaspredominantly composedof individualswithBrit-

ish white genetic ancestry and individuals of non-European

ancestry were underrepresented. In addition, we did not as-

sess LDLR copy number and larger insertion or deletion vari-

ants,which are believed to be causative for approximately 5%

of clinical FH cases.54-56 We used a polygenic risk score com-

posed of 223 SNVs. Larger, genome-wide scores composed of

millions of SNVs may provide incremental improvements in

risk prediction.21

Conclusions

Monogenic FH and polygenic hypercholesterolemia were as-

sociatedwith an increasedCVDrisk comparedwithhypercho-

lesterolemiawithoutan identifiablegenetic cause,withmono-

genicFHassociatedwiththegreatest risk.Theseresults suggest

that a possible genetic cause of hypercholesterolemia is asso-

ciated with CVD risk and underscores the importance of

genetic profiling to better stratify risk in patients.
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Editor's Note

Opportunities and Challenges for Polygenic Risk Scores in Prognostication

and Prevention of Cardiovascular Disease
Christopher J. O’Donnell, MD, MPH

Lowering low-density lipoprotein cholesterol (LDL-C) levels

remains amainstay of cardiovascular disease prevention, but

gaps in treatment remain, even in persons with hyperchol-

esterolemia and greatly

elevated LDL-C levels. Al-

though well-described gene

variants in the apolipopro-

tein B (APOB), low-density lipoprotein receptor (LDLR), and

proprotein convertase subtilisin/kexin type 9 (PCSK9) genes

explain small but important fractions of monogenic hyper-

cholesterolemia, recent attention has turned to prognostica-

tionof cardiovasculardiseaseusingpolygenic risk scores (PRS)

that incorporate commongenetic variants derived from large-

scale genome-wide association studies of lipid subfractions.

Earlier PRS considered only variants with genome-wide sig-

nificance, and newer studies have focused on methods that

better capture the variance conferred bymillions of variants,

suggesting an ability to identify risk equivalent tomonogenic

mutations.1 There remains a gap in evidence from prospec-

tiveobservational studies or treatment trials regarding the ap-

propriate placement of PRS in risk assessment and lipid treat-

mentdecisions relative to informationonraremonogenicgene

variants, particularly in multiethnic populations.

In this issueofJAMACardiology,Trinderetal2 reportanaly-

ses of large-scale population genomic data, including whole-

exome sequence and individual-level genotypic and lipid-

phenotypicdata from48741participants ofEuropeandescent

in theUKBiobank, inwhich277 individuals (0.57%[1:176])har-

bor a monogenic variant for hypercholesterolemia. In this

European-descent population, relative to the reference group

of individuals with nongenetic hypercholesterolemia, the ad-

justedhazardratios foracardiovasculardiseaseeventwere1.26

(95%CI, 1.03-1.55;P = .03) for individualswithpolygenichyper-

cholesterolemia (>95thpercentileofPRS)and1.93 (95%CI, 1.34-

2.77;P < .001) inparticipantswithfamilialhypercholesterolemia,

perhaps reflecting a stronger association of lifelong exposure

withmonogenic vs polygenic hypercholesterolemia.

EmergingevidencesuggeststhataPRSincorporatingmillions

of gene variants may modify the risk conferred by monogenic

variants.3 A fundamental question unanswered by the current

studyiswhetherrisk levels fromPRS,monogenicrisk,orbothto-

getheroffer incrementalvalueoverandaboveLDL-C levelsand

burden of cardiovascular disease risk. Nevertheless, this study

representsamongthefirstprospectivestudiesofcardiovascular

disease comparing PRS vsmonogenic risk in a populationwith

genome sequences. The modest statistical significance in this

study reflects the small sample sizes examined.

However, the findings point to questions to be addressed

in future genome-sequencing studies in large biobanks.

Which PRS algorithms should be used in risk assessment and
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