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What is already known: 
It is well known that high ambient temperatures are associated with increased mortality, even in 

temperate climates, but some important details remain unclear. In particular how heat-mortality 

associations (for example slopes and thresholds) vary by climate has previously been considered 

only qualitatively.. 

What this paper adds 
English regions with hotter climates had higher threshold temperatures at which adverse effects 

started. Specifically, effects were well approximated by threshold-linear models that can be 

predicted from the region’s climate (93
rd

  centile and mean summer temperature). On average 

mortality increased by 2.1% per degree Celsius above the 93
rd

 centile, but the increment was higher 

in hotter regions.  This suggests partial adaption to hotter climates, relevant to estimating impacts 

from future climate change.  

 



Abstract (n=239) 

Background,  

It is well known that high ambient temperatures are associated with increased mortality, even in 

temperate climates, but some important details are unclear. In particular how heat-mortality 

associations (for example slopes and thresholds) vary by climate has previously been considered 

only qualitatively.  

 

Methods 

 We carried out an ecological time-series regression analysis of daily counts of all-cause mortality 

and ambient temperature in summers between 1993 and 2006 in the ten government regions, 

focusing on all-cause mortality and two-day mean temperature (lags 0 and 1). 

 

Results  

All regions showed evidence of increased risk on hottest days, but the specifics, in particular the 

threshold temperature at which adverse effects started, varied.  Thresholds were at about the same 

centile temperatures (the 93
rd

, year-round) in all regions - hotter climates had higher threshold 

temperatures. Mean supra-threshold slope was 2.1%/
o
C (95% CI: 1.6, 2.4), but regions with higher 

summer temperatures showed greater slopes, a pattern well-characterized by a linear model with 

mean summer temperature. These climate-based linear-threshold models capture most but not all 

the association; there was evidence for some nonlinearity above thresholds, with slope increasing at 

highest temperatures. 

 

Conclusion 

Effects of high daily summer temperatures on mortality in English regions are quite well 

approximated by threshold-linear models that can be predicted from the region’s climate (93rd 

centile and mean summer temperature). It remains to be seen whether similar relationships fit other 

countries and climates or change over time, such as with climate change. 

 



INTRODUCTION 

It is firmly established across many countries and areas that mortality increases at times of ambient 

temperatures that are unusually high for the area [1, 2]. It is also widely found that the nature of the 

temperature-mortality relationship varies between places [1, 3-5]. In particular adverse effects of 

heat begin at lower temperatures in climates with lower summer temperatures, suggesting that 

populations adapt to their climate. [6] However, details of temperature-mortality associations (eg 

slope and threshold) need to be freshly identified for each place – a challenge for estimating burden 

of deaths due to heat and for setting alarm thresholds in heat watch warning systems. We have 

sought in this paper to fill this gap by proposing  model in which the temperature-mortality 

association can be deduced from a region’s climate. This has not previously been attempted. 

 

Specifically, we  characterized population temperature-mortality associations in summer in the ten 

government regions of England and Wales in the period 1993-2006. In particular, we aimed to 

identify climatic determinants which would explain any variation in these associations between 

regions and so allow parsimonious models that covered all of England and Wales. Downstream 

uses for this research include informing the Heatwave Plan for England [6], a warning system set 

up in 2004 by the British Government, and the estimation of impacts of climate change. We also 

sought to extend methodology for characterising the associations between mortality and 

temperature across populations with different climates, to facilitate similar research in other parts of 

the world. 

METHODS. 

We carried out an ecological time-series regression analysis of daily counts of all-cause mortality 

and measures of ambient temperature between 1993 and 2006 in the ten government regions of 

England and Wales [7].  

 

Individual death record data were obtained from the ONS, including date of death and postcode of 

residence at time of death. The postcode was used to divide deaths by government region and date 

to make daily series of counts for each region. Here we consider counts of all deaths (including 

those from external causes).  

 

We downloaded from the British Atmospheric Data Centre [8] all available monitoring station data 

on minimum and maximum dry-bulb temperature, from which the daily mean was estimated. From 

9 am and 3pm dewpoint measurements we also estimated daily mean relative humidity and daily 

mean and maximum apparent temperature, an index designed to reflect the combined effect of 

humidity and temperature on heat stress [9].   The data were processed, imputing missing values the 

method of the AIRGENE study[10], to obtain population-weighted mean daily series for each 

region   Further details are given in on-line annex 1.  

 

The temperature series were highly correlated within regions (mean r=0.95, range 0.94-0.98) and 

station means varied little within region (mean SD = 0.7 
o
C range 0.3-1.1).  Correlation between 

RH within regions was lower, on average 0.84. 

 

We did not attempt to estimate daily pollution series because variation of daily series from 

monitors within regions (typically comprising several different urban and rural areas) was expected 

to be too high to provide meaningful single regional series.  

 



Statistical model 
Given the focus in these analyses on heat effects, to avoid complexities of simultaneous modelling 

cold effects we restricted analyses to summer, defined here as June-September (the hottest four 

months). Separate models were fit to each region. The region-specific models followed a fairly 

standard form for season-specific time series regression[1, 11]. Our strategy was to fit and report a 

core confounder model decided a priori and explore the adequacy of this model and sensitivity of 

conclusions from fitting it through supplementary analyses. The models are summarised here and 

described formally in on-line annex 2. 

 

All models assumed Poisson variation with scale overdispersion and residual auto-regression. The 

core confounder model comprised: 

1. Within-summer seasonal variation: 4 degrees of freedom (df) natural cubic splines  

(NCS) in day-of-year (same for all years) 

2. Trend in time over 11 years: linear and quadratic terms in time 

3. 6 day-of week indicators 

4. Relative humidity:3 df  NCS for mean time lags 0-1 day (lag 0-1).  

For sensitivity analyses (because routine incorporation was cumbersome), autoregression was 

allowed for using one of the lagged residual approach described by Brumback [12]. Terms were 

included to order three, which was the highest order with absolute partial autocorrelation of 

residuals above 0.05 in any region.  

 

To describe region-specific temperature-mortality associations we initially used natural cubic 

splines fit to the daily maximum temperature over lags 0-1, essentially equivalent to a distributed 

lag model constrained to have equal parameters for lags 0 and 1 [13]. Maximum temperature was 

chosen as the index providing best fit in exploratory analyses. Focus on lag 0-1 was chosen based 

on previous work in the UK [14, 15]. We used default (equal quantile) knot placing and 4df - the 

number that maximised overall Akaike’s Information Criterion (AIC). Splines were graphed as 

predicted mortality relative to that at the temperature at which mortality was minimum [16]. From 

the fitted spline models we also derived estimated temperature-specific slopes from the analytic 

first derivative of the spline basis terms.  

 

Following description using the spline curves we fitted the simpler  linear threshold (hockey-stick) 

model [13], by which mortality is not related to temperatures below a “threshold” and log-linearly 

related to temperatures above the threshold.  Separate thresholds were initially fit to all regions.  

Distribution of thresholds and slopes  across regions was then explored in a second stage analysis, 

graphically and using standard meta-analytic methods allowing for random effects between 

regions[17]. As will be described in the results section patterns of thresholds and slopes across 

regions suggested more parsimonious models with thresholds and slopes determined by regional 

climate.  

 

In the threshold model deaths attributable to heat were estimated using the method of Bruzzi [18]. 

First daily attributable deaths were calculated from the number of deaths and the model-predicted 

relative risk due to heat on each day, then these were summed over all days, and divided by the 

total number of deaths.  

 

To aid comparison of models, and in particular assess adequacy of the linear-threshold model we 

computed deviance and AIC corrected for over-dispersion (deviance+2pφ, where p=number of 

parameters and φ is the estimated scale overdispersion) as well as overdispersion and various 

summaries of partial autocorrelation of residuals.  Sensitivity analyses were carried out to explore 



robustness of key model features to model assumptions and the use of alternative temperature 

indices (minimum, mean, apparent). 

 

 

RESULTS 

There were on average 145 deaths per day in a region ranging from 72 in the NE to 200 in the SE. 

Figure 1 shows the regional temperature distributions (also summarized in Table 1) and fitted 

spline curves for temperature-mortality associations. In these and subsequent graphs and tables, the 

regions are shown in order of their mean summer daily maximum temperatures (which ranged from 

18.4
o
C (NE) to 21.8

o
C (London)). 



 

Table 1 The conurbations: summer temperature distributions, number of deaths,  increments in relative risk per degree under  

the linear-threshold model, and attributable deaths.  
Region Distribution of summer daily maximum 

temperature  

 Deaths Heat-mortality slope 

(% per degree 

above the threshold)) 

 Deaths attributable 

to heat 

 Mean (min,max) 93
rd

 centile
1 

(threshold) 

 Mean daily Total  percent number 

North East 18.4 (8.9,29.4) 20.7  72.0 122,923 0.8(0.2,1.3)  0.3 398 

N West 19.3 (11.5,32.0) 21.7  189.0 322,820 1.3(1.0,1.6)  0.6 2,067 

Yorkshire & 

Humberside 
19.5 (10.5,30.3) 22.3  131.8 225,044 1.7(1.3,2.1)  0.8 1,820 

Wales 19.6 (12.4,31.6) 21.7  83.8 143,142 2.0(1.5,2.5)  0.8 1,191 

W Midlands 20.3 (9.9,33.8) 23.0  136.2 232,711 2.2(1.9,2.6)  1.1 2,587 

E Midlands 20.3 (9.7,32.3) 23.0  107.0 182,694 2.3(1.9,2.8)  1.2 2,179 

S West 20.1 (12.3,30.9) 22.3  136.1 232,520 2.1(1.7,2.5)  0.9 1,986 

S East 21.0 (10.2,34.0) 23.6  200.4 342,203 2.6(2.2,2.9)  1.2 4,062 

East 21.1 (10.5,34.5) 23.9  132.2 225,749 2.4(2.0,2.8)  1.1 2,568 

London 21.8 (10.7,37.3) 24.7  149.7 255,713 3.8(3.4,4.1)  2.0 5,124 

           

Overall     144.9 2,285,519 2.1(1.6-2.6)
2 

 1.0 23,982 

Notes: 1. 93rd centile of year-round two-day mean temperature distribution. 2. DerSimonian and Laird estimate [19]   
 



 

 

Clear evidence of increased mortality at the highest temperatures was apparent for all regions 

except the cool North-East. The final panel in Figure 1 shows splines for all regions super-imposed 

on the same graph. Although not clearly discernable from the figure, the splines show subtle 

differences between regions beyond that attributable to the regions’ different range of 

temperatures,. more clearly apparent if linear-threshold models are fit. For this  thresholds were 

estimated by maximum likelihood (repeated calculation over a grid of values) in each region. The 

left panel of Figure 2 shows the thresholds and their likelihood-profile confidence interval (CI) by 

region sorted according to mean summer temperature. Although thresholds are estimated 

imprecisely, there is a clear pattern of higher thresholds in regions with higher mean temperatures 

(confirmed significant by meta-regression).   The right panel of Figure 2 shows the same graph, but 

with thresholds expressed as the region-specific percentile of the (year-round) temperature 

distribution rather than as 
o
C. Heterogeneity remains but is reduced compared to that for thresholds 

as 
o
C (I

2
=75% Vs 90%) and  there is no longer any clear pattern by mean summer temperature. The 

best-fitting threshold by maximum likelihood (ML),  if fixed to be at the same centile in each 

region, was at the 93
rd

  centile of (two-day mean) temperatures (95% CI 92
nd

-95
th

) . 

 

We used this model (threshold at the regional 93
rd

 centile) to give a simple quantitative summary of 

the associations in each region that avoids having to rely on estimates made separately for each 

region. The region-specific thresholds (93
rd

 centiles), the estimated slopes (increment in mortality 

per degree above the threshold) and heat-attributable deaths according to this model are given in 

Table 1.   There was a strong association of slopes of these models with mean summer temperature 

(Figure 3), strongly statistically significant even if the obvious influential London region was 

excluded.  This suggested possible a parsimonious model in which slopes were a function of the 

temperature distribution. In particular, we found that slopes were well predicted by regression on 

the mean summer temperature. (slope= -.1284 +0.0074=-× (mean summer temperature)) . We refer 

to this model as a climate-based threshold model.  

 

To recapitulate, thresholds are related to the temperature distribution, approximating reasonably to 

the 93rd percentile in each region. With thresholds so placed, the supra-threshold slopes of the 

mortality-temperature relationships are still related to temperature, the steepest slopes occurring in 

the hottest cities. This suggests a climate-based threshold model, by which dependence of mortality 

on heat can be predicted from the climate of a city.   

 

We additionally explored curvature in the supra-threshold temperature-mortality by adding a 

quadratic term (details not shown). We found that indeed this addition improved fit significantly. 

The direction of curvature varied between regions, but was predominantly positive (higher slopes at 

higher temperatures).  

 

Table 2 shows deviance and AIC for the various models we have described above and some others, 

to allow identification of those that fit the data best. To aid comparison deviance and AIC are 

shown relative to a baseline of the model with all covariates but no temperature terms. Models best 

fitting for prediction are those with lowest (ie biggest negative) AIC.  

 



------------------------------------------------------------------------------------------------------------------------ 

Table 2 Summary of fit of models (lag 01 mean temp) – all regions combined 

 

Model description* df Deviance AIC 

    

No temperature 160.0 0.0 0.0 

     

Spline curves     

  3 df 190.0 -1730.3 -1697.4 

  4 df 200.0 -1766.9 -1712.2 

  5 df 210.0 -1784.3 -1707.4 

  6 df 220.0 -1805.8 -1706.7 

     

Threshold models    

  Linear: separate thresholds & slopes 180.0 -1674.8 -1663.7 

  Linear: thresh at P93%; separate slopes 171.0 -1629.9 -1638.0 

   +quadratic terms 181.0 -1707.6 -1694.7 

  Linear: thresh at P93%; slopes constrained   163.0   -1610.1   -1635.6  

    

Alternative temperature measures (as 4df splines)    

  Max (ie core model) 200.0 -1766.9 -1712.2 

  Min 200.0 -676.7 -595.2 

  Mean 200.0 -1522.4 -1461.9 

  Mean apparent temperature 200.0 -1418.7 -1355.7 

  Max apparent temperature 200.0 -1742.7 -1687.4 

    

Further models with 4 df temp spline:    

  add 4 df spline for minimum temp 240.0 -1955.0 -1814.7 

  Knots placed at equal 
o
C 200.0 -1793.9 -1739.9 

  Lag 0 200.0 -1703.6 -1647.0 

  Lag 1 200.0 1322.0 1256.8 

  Lag 0-2 200.0 -1554.1 -1494.5 

       

All models have the core covariate terms (day-of-year spline, linear-quadratic long term trend, day-

of-week indicators, relative humidity spline) unless otherwise specified. 

Deviance and AIC expressed relative to model with not temperature terms (20695.1 and 21089.0 

resp)  

------------------------------------------------------------------------------------------------------------------------ 

 

The best fitting spline model (with 4 df) as graphed reduced deviance by 1766.9 and AIC by 

1712.2. Some of the simpler models came close to this if number of parameters was penalised (ie 

by AIC) though did not quite match it. Although among linear-threshold models the one with 

region-specific thresholds fitted best, that with thresholds fixed at the 93rd centile came quite a 

close second by AIC.  Constraining slopes to their value predicted by summer mean temperature 

improved fit slightly by AIC, because the loss in deviance terms was outweighed by the reduction 

in parameters, which are penalised by AIC.  



 

 

Comparison based on our prioritised model form (4 df spline for lag 0-1) confirmed daily 

maximum temperature to fit better than (in order of fit) maximum apparent, mean, mean apparent, 

or minimum temperatures. Adding spline terms for minimum temperature to the spline for 

maximum temperature (final block on table 2), improved fit. Replacing the default equal-quantile 

knots by equal-interval knots also improved fit slightly. Replacing the lag 0-1 mean of maximum 

temperatures by lag 0 or  the lag 0-2 mean however reduced goodness of fit by AIC.   

 

We explored sensitivity of key results to model assumptions. To simplify computing, we confined 

these to the linear-threshold model with threshold at the 93rd centile, and compared across models 

the mean slope and degree of heterogeneity between regions as indicated by the range of region-

specific slopes, on the grounds that most substantial sensitivity of other model features would be 

reflected in sensitivity in this simpler model. Though no model modification substantially changed 

results, the modification that was associated with greatest changes was that replacing the time terms 

(linear-quadratic trend and within-year spline terms) with elapsed month indicators (equivalent to a 

case-cross-over analysis with fixed strata).[20]  In this model the mean supra-threshold slope was 

greater (2.4% per 
o
C Vs 2.1)) and there was less variation between areas (range 2.6% Vs 3.0%). 

The pattern of higher slopes in hotter regions remained significant, however.  Using the alternative 

temperature lags and indices shown on Table 2 changed the unit increments more – unsurprisingly 

since this changed the scale, but again not the pattern. More detailed results for the sensitivity 

analyses and model fit statistics are shown in on-line Tables E1 and E2.   

DISCUSSION 

Our finding that mortality is increased at higher temperatures, even in temperate climates such as 

England’s, is not new. However, we have sought new precision in details of this relationship and 

patterns in its variation over regions. The following features were prominent in our findings: 

• Threshold temperatures for heat effects to commence were at about the same centile 

temperatures (the 93rd) in all regions. Thus regions with higher summer temperatures on 

average had higher thresholds.  

• However regions with higher summer temperatures showed greater increments in mortality 

per degree above the 93rd centile threshold (slopes), well-characterized by a linear model 

with mean summer temperature. 

• Linear-threshold models capture most but not all the association. There was evidence for 

nonlinear impacts of temperature even above thresholds, with higher slopes at greater 

temperatures. 

 

These findings suggested a parsimonious model for the pattern of variation in shape of associations 

between summer temperature and mortality, a climate-based threshold model with threshold 

following the 93rd centile and supra-threshold slope determined by a linear function of mean 

summer temperature. Such a parsimonious model has some advantages over region-specific 

estimates of associations: (i) it “borrows strength” from regions with information to more precisely 

estimate the association to allow better estimates for regions with less information; (ii) it allows 

estimation of heat impacts in a region not included in the study, since the relationship is determined 

by the temperature distribution,. (iii) it allows estimation of heat impacts under climate change, if 

adaptation is assumed such as that exhibited by the variation across regions (discussed below).  

 

To achieve sufficient simplicity to characterize patterns of heat-mortality association across regions 

we have however put aside some detail. Perhaps most importantly, we have ignored evidence that 

the supra-threshold dependence of mortality on temperature is not linear (curved upwards). This 



can be accommodated in the above model at some complexity cost, for example by adding a 

quadratic term in supra-threshold temperature as described above.  

 

For the same reason we have also not at this stage incorporated variables which might modify the 

heat impact. These include time in the season (some studies have shown great increment per degree 

earlier in the summer [1, 21], duration of sustained heat (some studies have shown increased impact 

for sustained heat), personal vulnerability factors (many studies have shown older people at higher 

risk, some have shown lower socio-economic status to be at higher risk[22-25]). Similarly, we have 

not attempted to distinguish relationships for different causes of death, which are known to exhibit 

different degrees of sensitivity to heat [1, 21, 26]. Nor have we further evaluated the extent to 

which deaths caused by heat are displaced (“harvesting”) [14, 27].  Most of these factors are similar 

over regions, so lack of allowance for them should not have substantially compromised our goal of 

characterising differences across regions, Deprivation is known to be greater in the (colder) North, 

but in England deprivation has not been found to predict vulnerability to heat. [22]  Nevertheless, 

some residual confounding is likely and could operate differently across regions.  

 

The model we propose is consistent with the observation in several studies that heat thresholds (or 

minimum mortality temperatures in all-year studies) are higher in hotter places [1, 4, 5, 26, 28, 29]. 

Honda [28] further found that minimum mortality temperatures across 47 prefectures in Japan were 

close to 80-85
th
 centile temperatures. Though the centile is different to the 93rd centile we found, 

the finding is similar in the sense that the a key feature of the relationship is at a constant centile 

across regions; the difference in centile could be due to use of all-year data and a spline model 

rather than summer data and a linear-threshold model. Baccini [1] also found higher heat slopes as 

well as higher thresholds in the hotter climates in Europe, though the threshold-climate relationship 

was not explored quantitatively. Anderson also found in US cities that relative risks across centiles 

of temperature distributions were less heterogeneous than were those for absolute temperatures, 

though here there was a tendency for lower heat slopes (RR across 99
th
 to 90 centile) in hotter 

climates. [3]  This difference may be due to the substantial use of air conditioning in the US, in 

particular in its hotter cities.  

 

Of the heat indices considered, maximum temperature fitted the data best, quite closely followed by 

maximum apparent  temperature.. There was some variation between regions in which index fitted 

best, with London for example favouring daily mean dry-bulb temperature. The relatively poor 

performance of minimum (night) temperature was somewhat surprising, but should not be taken to 

imply that these temperatures have no importance. When daily minimum temperature was added to 

a model addition to with daily maximum temperature, this improved model fit significantly, 

suggesting that minimum temperature has some importance independently of the maximum. The 

combination of maximum and minimum temperatures was also found important by Fouillet. [30] 

We have not in this paper sought to characterise this joint effect. Doing so is not trivial because of 

the high correlation of the two.  There was little evidence that humidity was associated with 

mortality.  

 

The implication in our climate-based threshold model of centile thresholds is that cities adapt to 

climate, since the proportion of days affected does not depend on climate. However, the implication 

of higher incremental risk per degree in hotter cities suggests that the adaptation is partial – there 

were higher attributable percentages of deaths in hotter cities (table 1).  We hypothesized the 

possibility of using this partial adaptation model to estimate impacts of future climate change. This 

remains tentative, however. We have observed these patterns cross-sectionally not over time, and 

over a narrow climate range. Evidence from the USA suggests that factors little operating in 

England, perhaps air conditioning, can modify the dependence of heat vulnerability across climates. 



 

In summary, we have shown that effects of high daily summer temperatures on mortality in English 

regions are quite well approximated by threshold-linear models that can be predicted from the 

region’s climate (93rd centile and mean summer temperature). It remains to be seen whether the 

relationship fits other countries and climates. 
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Figure legends 
 

Figure 1 Temperature-mortality associations in each region (natural cubic splines with 4df; equal 

quantile knots) 

 

Figure 2 Heat thresholds estimated by maximum likelihood separately for each region, as degrees 

and as percentiles, plotted against mean summer temperatures 

 

Figure 3. Supra-threshold temperature-mortality slopes (% per degrees) by mean of summer daily 

maximum temperatures (93-2006).  

 

 

 

 

 



0
5

1
0

1
5

%
 o

f 
d

a
y
s
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

0.8

1.0

1.2

1.4

1.6

1.8
  

  
  

  
  
  

  
  

  
  

  
 R

R

10 15 20 25 30 35
Temperature

North East

0
5

1
0

1
5

%
 o

f 
d

a
y
s
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

0.8

1.0

1.2

1.4

1.6

1.8

  
  
  

  
  
  

  
  

  
  

  
 R

R

10 15 20 25 30 35
Temperature

N West

0
5

1
0

1
5

%
 o

f 
d

a
y
s
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

0.8

1.0

1.2

1.4

1.6

1.8

  
  
  

  
  
  

  
  

  
  

  
 R

R

10 15 20 25 30 35
Temperature

Yorks & Hum

0
5

1
0

1
5

%
 o

f 
d

a
y
s
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

0.8

1.0

1.2

1.4

1.6

1.8

  
  
  

  
  
  

  
  

  
  

  
 R

R

10 15 20 25 30 35
Temperature

Wales

0
5

1
0

1
5

%
 o

f 
d
a
y
s 

  
  

  
  

  
  
  

  
  
  

  
  
  

  
  
 

0.8

1.0

1.2

1.4

1.6

1.8

  
  

  
  

  
  
  

  
  
  

  
 R

R

10 15 20 25 30 35
Temperature

W Midlands

0
5

1
0

1
5

%
 o

f 
d
a
y
s 

  
  

  
  

  
  
  

  
  
  

  
  
  

  
  
 

0.8

1.0

1.2

1.4

1.6

1.8

  
  

  
  

  
  
  

  
  
  

  
 R

R

10 15 20 25 30 35
Temperature

E Midlands

0
5

1
0

1
5

%
 o

f 
d
a
y
s 

  
  

  
  

  
  
  

  
  
  

  
  
  

  
  
 

0.8

1.0

1.2

1.4

1.6

1.8

  
  

  
  

  
  
  

  
  
  

  
 R

R

10 15 20 25 30 35
Temperature

S West

0
5

1
0

1
5

%
 o

f 
d
a
y
s 

  
  

  
  

  
  
  

  
  
  

  
  
  

  
  
 

0.8

1.0

1.2

1.4

1.6

1.8

  
  

  
  

  
  
  

  
  
  

  
 R

R

10 15 20 25 30 35
Temperature

S East
0

5
1

0
1

5
%

 o
f 

d
a
y
s
  

  
  

  
  
  

  
  
  

  
  
  

  
  
  

  

0.8

1.0

1.2

1.4

1.6

1.8

  
  

  
  
  

  
  

  
  

  
  
 R

R

10 15 20 25 30 35
Temperature

East
0

5
1

0
1

5
%

 o
f 

d
a
y
s
  

  
  

  
  
  

  
  
  

  
  
  

  
  
  

  

0.8
1.0
1.2
1.4
1.6
1.8

  
  

  
  
  

  
  

  
  

  
  
 R

R

10 15 20 25 30 35
Temperature

London

0.8

1.0

1.2

1.4

1.6

1.8

R
R

10 15 20 25 30 35
Temperature

All



NE

NW

Wales

Yorks

SW

E Mid

W Mid

SE
E

Lon

1
8
.0

2
0
.0

2
2
.0

2
4
.0

2
6
.0

T
h
re

s
h
o
ld

 (
o
C

)

18.0 19.0 20.0 21.0 22.0
Mean summer temperature

NE

NW

Wales

Yorks

SW

E Mid

W Mid
SE

E

Lon

7
0

8
0

9
0

1
0
0

T
h
re

s
h
o
ld

(%
ile

)

18.0 19.0 20.0 21.0 22.0
Mean summer temperature



NE

Yorks

NW

W Mid
E Mid

Wales
SW

E
SE

Lon
0
.0

1
.0

2
.0

3
.0

4
.0

S
lo

p
e

18.0 19.0 20.0 21.0 22.0
Mean summer temp




