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Abs t rac t .  This contribution addresses the problem of detection and 
tracking of moving vehicles in image sequences from traffic scenes recorded 
by a stationary camera. By replacing the low level vision system com- 
ponent for the estimation of displacement vectors by an optical flow 
estimation module we are able to detect all moving vehicles in our test 
image sequence. By replacing the edge detector and by doubling the 
sampling rate we improve the model-based object tracking system sig- 
nificantly compared to an earlier system. The trajectories of vehicles are 
characterized by motion verbs and verb phrases. Results from various 
experiments with real world traffic scenes are presented. 

1 I n t r o d u c t i o n  

The quality of trajectories which are now available as an output of the system 
reported by [Koller e ta l .  93] gives us the opportunity to associate motion verbs 

with trajectory segments which are extracted from image sequences. Therefore, 
object movements are described not only geometrically but  also conceptually. 

So far, only few approaches towards the extraction of conceptual descriptions 

from image signals exist. A survey of literature can be found in [Nagel 88]. The 

NAOS system, for instance, creates a retrospective natural language description of 

object movements in a traffic scene [Neumann & Novak 86], but it has so far only 

been tested with synthetic image data. [Mohnhaupt ~ Neumann 90] use natural  
language utterances for a top-down control in traffic scene analysis. The SOCCER 

system simultaneously generates running reports for short sections from soccer 
games [Andr~ etal. 88], which serve as a basis for recognition of intentions and 

interactions of multiple agents [Retz-Schmidt 91]. [Nagel 91] proposes transition 

diagrams to represent admissible sequences of actions used in a system for visual 
road vehicle guidance and shows how more complex actions can be hierarchically 
formMized by means of approaches used in formal language theory and how 

sequences of actions can be visualized. Transition diagrams are also presented by 
[Herzog 92] as a means for an incremental generation of motion descriptions. He 

shows how motion descriptions can be constructed automatically from interval- 
based event representations using temporal  constraint propagation techniques. 

Recently, [Birnbaum etal. 93] report on the BUSTER system which explains 
why stacked block structures are not moving. However, their system is restricted 
to simple static scenes and 2-D image analysis. In order to develop a traffic 
surveillance system by means of image sequence analysis, [ToM g: Buxton 92] 
used spatio-temporal reasoning to analyze occlusion behavior. In their approach, 
temporarily occluded vehicles are correctly relabeled after re-emerging rather 

than being treated as completely independent vehicles. 
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Our system with 67 motion verbs links directly to the evaluation of real world 

image sequences and extracts conceptual descriptions for vehicle movements in 
a greater variety. In contrast to the cited papers [Neumann & Novak 86; Mohn- 
haupt ~ Neumann 90; Andr6 et al. 88; gerzog 92; Retz-Schmidt 91] we do not 
use synthetic data to extract conceptual descriptions. The problems which arise 
by the analysis of real and noisy data are not yet covered in literature. It is one 
of our main intentions to extract the conceptual descriptions from trajectory 
data obtained by object tracking in real image sequences. 

The system reported by [Koller et al. 93] works as follows: Starting from 
a token-based estimation of a displacement vector field, hypotheses for object 
image candidates are created. By means of an off-line calibration, these vehi- 
cle hypotheses can be backprojected into the 3-D world which results in pose 

estimates to initialize a Kalman-Filter. By projecting an hypothesized 3-D poly- 
hedral vehicle model into the image plane, 2-D model edge segments are obtained 
which are matched to straight-line edge segments, so called data segments, ex- 
tracted from the image. This feeds into a state MAP-update step. Kalman-Filter 
prediction is performed by using a motion model. 

Compared with the system built by [Koller et al. 93] we substituted both 
low-level image analysis modules. First~ the blob feature based component for 
the estimation of displacement vectors (see [Koller el al. 91]) was replaced by 
an optical flow estimation module (see [Otte ~5 Nagel 94]). The optical flow field 
is denser so that a redesigned clustering algorithm enables us now to obtain 
significantly better initial pose estimates for object candidates. This facilitates 

to tighten the thresholds and Kalman-Filter parameters which in turn stabilizes 
the tracking process. Second, the straight line segment detection process used by 

[Koller el al. 93] has been supplanted by the edge detector reported by [Otte 

Nagel 92a + 92b], which provides more data segments based on image structures 
which improves the matching process. This in turn contributes to an enhanced 
a-posteriori state estimation in the Kalman-Filter update step. Moreover, by 
interpolating the interlaced half-frames we doubled the sampling rate from 25 
Hz to 50 Hz. As a consequence of all these improvements, all vehicles in our test 
image sequence can be tracked with the same Kalman-Filter parameter set. 

In order to associate motion verbs and verb phrases with the notably better 
trajectory segments, a complete rework of previously published methods [Koller 
et al. 91; Heinze et al. 91] was necessary. The set of German verbs was translated 
into English wherever translation was possible. Fuzzy sets instead of the former 
threshold decision approach are used to associate trajectory attributes and verbs 
in order to cope with the inherent vagueness of natural language descriptions. 
As a consequence, the automata for incremental occurrence recognition had to 

be redesigned. Moreover, the conceptual descriptions are visualized in the image 
which enables us to more thoroughly inspect the system output. 

This paper is organized as follows: A brief overview regarding related work on 
object recognition is presented in Section 2. The improvements of our detection 
and tracking system are described in Sections 3 and 4. The subsequent Sections 
5 - 7 deal with the extraction of conceptual descriptions from image signals. The 
results of our experiments are illustrated in Section 8. 

2 O b j e c t  s e g m e n t a t i o n  a n d  p o s e  e s t i m a t i o n  a p p r o a c h e s  

A review of relevant literature can be found in [Koller el al. 93]. Here we confine 
ourselves to recent publications. [Zhang el al. 93] propose a view-independent 
relational model (VIRM) for 3-D object recognition. The VIRM of an object is 
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represented as a hypergraph with attached weights to represent the eovisibility 
of model features and with associated procedural constraints to represent view 
independent relationships between model features, e. g. parallelism or relative 
size. Given a CAD-wireframe model, their system constructs off-line a view- 
independent relationM model, which can be applied for pose estimation without 
the need for information about the position and orientation of the camera (due 

to the VIRM). 

[Tan e ta l .  92] propose a non-statistical linear algorithm for object pose es- 

timation. They have no motion model and no prediction. The correspondences 
between data and model segments are established interactively. In [Tan e~ aL 

93] the matching is performed automatically by histogram voting based on a 
generalized Hough transform. This pose estimation approach is used to extend 
their traffic vision system to multiple cameras and to track articulated objects, 
such as a lorry and a trailer. First results are reported by [Worrall etal .  93]. 

In contrast to interpretation-tree matching approaches, where the resulting 
computational costs can be reduced, for instance, by using a best-first search 
[Lowe 92], [Duet al. 93] establish the 3-D grouping of line segments by monoton- 

ically improving compliance with a viewpoint consistency constraint. By means 
of an experimental study they illustrate that their approach is more robust than 
Lowe's in the presence of errors of data segments. 

[Liu & Huang 93] propose a vehicle centered motion model by representing a 

3-D motion as a rotation around an axis through the vehicle center followed by a 
translation. By adding several constraints on the rotation and translation, they 
obtain different motion types. However, their 3-D motion estimation approach 
has so far only been tested on five image frames containing one vehicle. 

In comparison with the above described approaches, our scenes are more 
complex. By exploiting the information from optical flow, we obtain a good 
initial guess and therefore avoid trying all possible angles for the positions of 

the model. Although our trajectory data are not computed in real-time, they 
are more densely sampled - 50 Hz - compared with 0.48 Hz [Tan et aI. 92] and 
5 ttz [Tan etal .  93; Worrall e ta l .  93]. Moreover, we do not restrict ourselves to 
a single aspect of image sequence analysis but present a system that covers all 

analysis steps from the gray value data up to conceptual descriptions. 

3 Explo i t ing  the  information of a segmented  optical flow 

field to initialize a model -based  tracking system 

The displacement vectors in the approach reported by [Koller et aL 91] were 
obtained by matching blobs generated by the monotonicity operator [Kories & 
Zimmermann 86] in two consecutive frames. In lots of experiments in which we 
exercised the system described by [Koller et al. 93], it turned out that the blob- 
based motion segmentation step used in their approach did not provide a very 
exact initial guess for each object nor detected it every object. 

Reporting problems by using a similar displacement vector estimation mod- 
ule, [Gong &; Buxton 93] improve the segmentation and 2-D tracking of moving 
objects by incorporating more contextual knowledge about the scene even at 
the earliest stages of visual processing. In contrast, we are able to simplify the 
cluster analysis by improving the low-level image analysis module. 

We replaced this module by a more time consuming optical flow vector esti- 
motion module related to the approach of [Campani & Verri 92], which has been 
extended to include partial derivatives with respect to time by [Otto & Nagel 
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94]. This optical flow field estimation enables us to compute better initial pose 

estimates and thus more appropriate object hypotheses. 

The optical flow field restricted to vectors exceeding a minimum magnitude, 

which, moreover, survived a singular value threshold, is juxtaposed to the dis- 
placement vector field used by [Koller et al. 91; Koller et aL 93] in Figure 1. 

Details of the clustering analysis originally developed by [Sung 88] and subse- 
quently improved significantly by [Koller 92] can be found in Appendix A. The 

resulting optical flow field is significantly denser than the displacement vector 
field and overlaps each moving vehicle to such an extent that  the subsequent 

cluster analysis step is significantly simplified: neighboring vectors with approx- 

imately the same magnitude and orientation are grouped into object image can- 

Fig. 1. Improvements in the initialization step: The first row shows the results of the 
displacement vector field estimation module used by [Koller et al. 91; Koller et al. 

93] and the clustered vectors; each cluster is marked by a circumscribed rectangle. A 
section from the lower right part of the upper left quadrant in the first row is given 
on the right hand side of the first row. The displacement vectors are the results of 
tracking blob features along four consecutive frames. The second row shows the output 
of the clustering step applied to an optical flow vector field related to the approach of 
[Campani & Verri 92], extended and implemented by [Otte &= Nagel 94]. The smaller 
optical flow vectors show the gray value displacements in one half-frame. 
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didates. Moreover, the detection rate increases significantly, too. In contrast to 
the approach of [Koller et aL 93], the information from the optical flow estima- 
tion is not just exploited to obtain initial values for position and orientation of 
a vehicle, but also to estimate the magnitude of the velocity v for each object. 
Therefore, our initialization is more homogeneous than that of [Koller et at. 93] 
whose displacement vector field could only be used to separate moving regions 
from the static image background. Their bootstrap phase was performed using 

the first two or three frames in order to estimate initial magnitudes of the trans- 
lational and angular velocities v and w, respectively. Since our initial estimates 
are more reliable, we have been able to tighten the tolerances which in turn 

resulted in a more efficient exclusion of outliers. 

4 Comput ing  data segments  
[Koller er al. 93] extracted line segments fitted to thresholded edge elements 
which in turn are detected as local maxima of the gray-value gradient mag- 
nitude in gradient direction. In low contrast image regions, thresholding the 
gradient magnitude may suppress not only noise, but also edge elements which 

are part of a significant image structure and may thus result in the fragmenta- 
tion or total loss of edge segments. In contrast to the traditional pixel oriented 
gradient magnitude thresholding, [Otte ~c Nagel 92a + 92b] proposed to chain 
edge elements to edge element chains and vertices without any thresholding. 
The evaluation of chain properties such as average gradient magnitude, length 
of chains and second moments of gradient direction change rates allows to either 
reject edge element chains as noisy or to accept them as a structure underlying 
the original image. Edge element chains include much more global information 
as compared to the information about a single edge element. The extraction of 
line segments, therefore, can be improved. For this reason, we replaced the line 

extraction process by the novel approach of [Otte • Nagel 92b]. 
Furthermore, instead of selecting uncertainties of data segments interactively 

(as e.g. [Tan el aL 93; Deriche & Faugeras 90]), we estimate them from the image 
data and, therefore, we are able to reduce the set of free parameters. Using the 
midpoint representation of line segments as described in [Deriche & Faugeras 90], 
we calculate the smaller eigenvalue in an eigenvector line fitting process to a set 
of edge elements to estimate the uncertainties perpendicular to a line segment. 

5 Trajectory attr ibutes  based on fuzzy sets 

In the following, fuzzy sets are used to abstract from quantitative details in 

geometrical descriptions obtained by automatic image sequence analysis. 
For every object its world coordinates (x(tk), y(tk)), its speed v(tk), orienta- 

tion O(t~) and its angular velocity w(tk) are extracted from an image sequence, 
sampled with 50 Hz. These trajectory data are characterized by attributes mod- 
eled by fuzzy sets. For example, the attribute A_Speed that characterizes the 
speed of the agent is modeled by the fuzzy membership functions shown in Fig- 
ure 2, where the speed limit of 50km/h on German downtown roads is taken into 
account. Other attributes are described in [Nagel & Kollnig 94]. The changing, 
increasing, decreasing, staying equal, or becoming unequal of the attribute val- 
ues, below defined as monotonicity conditions, are depicted by fuzzy membership 
functions, too. 

6 Discourse  world and definition of occurrences 
Human beings describe important occurrences by verbs. However, the exact 
meaning of a verb often depends on the subjective impression of the speaker. 
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Table  1. Definitions of 
agent reference occur- 
rences. A dash ' - - '  de- 
notes the irrelevance of 
the attribute in the oc- 
currence definition. 

occurrences 

be standing 
drive off 

accelerate 
drive slowly 

drive at regular speed 

run fast 

run very fast 

drive at constant speed 

brake 

agent reference attributes 
A_Speed 

Pre_C [ Mon_C 

zero 
zero increasing 

_>small increasing 

sIna]l 

normal 

fast 

very fast 
_>small staying equal 

_>small decreasing _ 

] Post_C 

zero 
>small 
> s m a l l  

small 

normal 

fast 

very fast 
_>smaJl 

>small 
stop >small decreasing zero 

To avoid ambigui ty  we describe occurrences detected m an image sequence not  

just  by mot ion  verbs but  also by verb phrases. Scanning a G e r m a n  dict ionary 

with 150,000 entries yielded about  9,200 verb entries. Using a set of criteria - 

for instance, our occurrences should be elementary, i.e. not  composed of other 

occurrences - all those verbs are selected f rom this set of 9,200 verbs which 

describe vehicle mot ions  for downtown roads and road intersections. After the 

removal  of  synonyms,  our sys tem retains 67 verbs, listed in Appendix  B. 

Each occurrence is defined by three predicates, a precondition (Pre_C) tha t  

determines the a t t r ibu te  constellation necessary for the beginning of  the oc- 

currence, a monotonicity condition (Mon_C) tha t  indicates the direction and 

amoun t  of  change during the validity of the occurrence, and a postcondition 
(Post_C), defining the end of the occurrence. We divided the occurrences with 

respect to their reference into four classes: 

- A g e n t  R e f e r e n c e :  the occurrence refers only to the agent (i.e. ~to brake') ,  

- L o c a t i o n  R e f e r e n c e :  in addi t ion to the agent, the occurrence refers to a 

locat ion (i.e. ' to  arrive at a locat ion '), 
- R o a d  R e f e r e n c e :  in addit ion to the agent, the occurrence refers to the road 

or lane (i.e. ' to  leave a driving lane') ,  

- O b j e c t  R e f e r e n c e :  in addi t ion to the agent, the occurrence refers to another  

object  (i.e. ' to  follow a car ') .  

By combining several at tr ibutes,  we obta in  an occurrence definition scheme. For 

example,  the agent reference occurrences are tabula ted  in Tab. 1. 

7 A u t o m a t a  for incremental  occurrence recognit ion 
To be able to extend our sys tem to react to evaluated image sequence da ta  in 

real-t ime, we prefer an incremental  scene analysis instead of  an retrospective or 

a-posteriori  analysis where the mot ion  descriptions are extracted on completed 

trajectories.  Therefore,  at each half-frametime during the evaluat ion of  an image 

sequence, the a t t r ibu te  values are determined.  For each occurrence, the values 

of Pre ~, Mort_C, and Post_C are determined.  Multiple entries are combined 

1.0"-] / r ~ / / "  1 

# tZ~mall \ "" ~norrnat / " ]*Just / 
x I 
\ /  " I 

0.5- .'\ ," 

\ "'. / #very fast  
' 

o.o I 1 I I 7 > 

1 2 3 10 20 30 4 0  50  6 0  v [ ~ ]  
Fig.  2. Fuzzy membership functions of the attribute values zero, small, normal, fast 
and very fast for A_Speed as a function of the estimated vehicle speed. 
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by choosing the minimum of the attribute values, irrelevant entries are set to 

1. The automata  for incremental occurrence recognition are divided into four 
classes according to the aspect of the occurrences: details about the extraction 

of description of mutative, perpetuative, resultative, and inchoative occurrences 

can be found in [Kollnig & Nagel 93]. Each one of our occurrence descriptions 

contains a start frame number, an end frame number, and a degree A of estimated 

validity (0 < A _< 1). 

8 E x p e r i m e n t s  a n d  r e s u l t s  
As an experiment we used an image sequence of about 50 frames of a multi-lane 
street intersection in Karlsruhe. The size of the images of the moving vehicles 
varies from 25• to 30• (apart from the bus: 110 x 110) pixels in a frame. The 

smallest car images are even smaller than the 20 • 40 pixels in [Koller et al. 93]. 
The state vector xk at time t~ used by our KMman-Filter tracking module 

(for details see [Koller et al. 93]) is a five-dimensional vector consisting of the 

position (P~ ,Pvk )  and orientation r of the model as well the magnitudes vk 
and wk of the translational and angular velocities. Due to our more precise 

initiMization, we were able to decrease - -  compared with [Koller et aL 93] - -  

the entries in the start covariance matr ix by a factor 100. We used the initial 

vMues o'p~ ~ = crpyo = 0.05 m, crr 0.01 rad, o-vo = 0.032 m/frame,  c%o = 0.032 

rad/ f rame (apart from the 3 times larger bus: (rp, ~ = (rpv ~ = 0.16 m, crr  

0.032 rad). We use a process noise of cry = 10 -a (m/frame) and ~r~o = 10 -4 

( tad/frame).  The threshold dT for the computed Mahalanobis distance used for 

establishing correspondences between model and data segments could be doubled 

- -  compared with [Koller et al. 93] - -  due to the more robust initialization and 

better  data segments. The values of our estimated errors perpendicular to the 
data segments are often only one half of the value which was interactively chosen 

by [Koller et al. 93]. We set d T =  10. To track the bus - despite the fact that  

it is partially occluded by a street-lamp post - we were forced to use d,  = 12. 

IIereby, we compensate for the fact that  wheels and doors of the bus are not 

yet modeled and, therefore, only comparatively long line segments are expected 

according to our very simple box model of the bus. 
The computed trajectories for each moving car are given in Fig. 3. There still 

remain some problems. Obj. # 1  can be correctly tracked only 40 half-frames 
due to its partial occlusion by a road sign. Obj. ~3  cannot be tracked because it 

emerges from a tunnel underneath the intersection on a not yet calibrated lane. 
Obj. #11  cannot be tracked because its image is not correctly covered by the 

initially detected moving region due to the street-lamp post; obj. #12  has almost 
left the field of view before the tracking could stabilize. Fig. 4 shows an enlarged 

section of the image shown in Fig. 3. The results of the conceptual description 
extraction module for this image area are given in Fig. 5. To be able to verify 

the system output,  the agent trajectory is colored depending on the extracted 
occurrences. The degree of estimated validity for each occurrence associated with 
a trajectory segment is visualized by the thickness of the trajectory. If more 
than one description is valid at one half-frametime, the translated trajectories 
are projected with different colors. Fig. 6 shows the visualization of the contents 

of Fig. 5. 
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A C l u s t e r i n g  ana lys i s  o f  o p t i c a l  f l o w  v e c t o r s  

[Koller et aL 93] used the following cluster analysis, originally developed by [Sung 88]: First of all, 
each optical flow vector is considered as a cluster seed. Around such a seed, all vectors are clustered 
for which the conjunction of the following three predicates is satisfied. 
- Two vectors satisfy the n e i g h b o r i n g  predicate, if the Euclidean distance of their footpoints does 

not exceed a threshold tn. 
- Two vectors satisfy the p a r a l l e l  predicate, if the absolute difference of their orientations does 

not exceed a threshold tp. 
- Two vectors satisfy the same_ leng th  predicate, if their relative length difference with respect 

to the first vector does not exceed a threshold tz. 
Second, we create maximal disjoint clusters by merging recursively all clusters with a non-empty 
intersection. Third, the footpoints of all vectors in each cluster are enclosed by a rectangle. Again, 
it is tested if one rectangle contains a vector of another rectangle. In this case, these ctusters are 
merged and the enclosing rectangle for the merged clusters is determined. In our experiments we 
used t~ ---- 1, tp = 15 ~ tz -- 15%. Due to the now available dense optical flow fields, the threshold t,~ 
could be set to one, compared to tn = 15 in [Koller et al. 93] (see first row in Fig. 1). 

B List  o f  o c c u r r e n c e s  in t he  d i scour se  wor ld  
A g e n t  R e f e r e n c e :  be standing, drive off, accelerate, drive slowly, drive at regular speed, run fast, 
run very fast, drive at constant speed, brake, stop, run straight ahead, turn right, turn left, revolve 
around a vertical axis, slide, skid, reverse, run forward (18 occurrences). 
L o c a t i o n  R e f e r e n c e :  drive to location, pass location, arrive at location, depart from location, run 
over location~ stop at location, park at location, leave location, leave location behind (9 occurrences). 
Road  Reference:  leave driving lane, enter lane, turn, change section, drive on lane, cross a lane (6 
occurrences). 
Ob jec t  Reference:  catch up with obj, fall behind, follow, follow closely, run into obj, pull out from 
behind obj, get out of the way of obj, cut in in front of obj, slip in in front of obj~ pull up to, flank, 
move past, let run into, pass, drive in front of, lose a lead on, draw ahead of obj, approach oncoming 
obj, make way for oncoming obj, leave an obj driving off in opposite direction, approach crossing 
obj, close up to obj, merge in front of obj, leave crossing obj, move towards stationary obj, stop 
behind stationary obj, be standing near stationary obj, start  in front of stationary obj, pull out 
behind stationary obj, drive around stationary obj, pass stationary obj, merge in front of stationary 
obj, move away from stationary obj, collide with obj (34 occurrences). 
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F i g .  3. T h e  e s t i m a t e d  t r a j ec to r i e s  of  each m o v i n g  vehicle of  our  t e s t  i m a g e  sequence  

and  a p r o j e c t i o n  of  t he  e s t i m a t e d  t r a j ec to r i e s  in to  t h e  s t r ee t  plane,  s u p e r i m p o s e d  to  a 

digi t ized i m a g e  of  an  official m a p  for  th i s  in te r sec t ion .  T h e  vehicles are  re fe r red  to  by  

n u m b e r s  ind ica t ed  in t h e  left f r ame .  
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F ig .  4. Enlarged section of the image shown in 

Fig. 3. Obj. # 5 was selected as agent and two 

locations are marked as ' +  Loc # 1 '  and ' +  Loc 

#2 ' .  An interactively created road model is super- 

imposed, representing road sections as polygons. 

F ig .  6. The t rajectory of agent 

4~5 shown in Fig. 4 is colored by 

location occurrences involving lo- 
cation # 1  shown in Fig. 5. 
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9~ ! drive_on_l~ne(obj_5). 7. i 
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drive_to_location(obj_5, loo_l). % I 
arrive_at_locatic~(obj_5, ioc_I). ~ 0.85 
arrlve_at_locatlon(obJ_5, loc_1). % 0.74 
arrivc_at_Iccatic~(obj_5. Ioc_I). ~ 0.8/ 
arrive_at_looatic~(obj_5, loc 1) .  ~ 0.86 
arrlve_at_Iocatien(ohj_5, lot_l). Z 0.87 
run ovee_Ioca~lon(obJ_5, foe_l). ;C 0.91 
run ovm" location(oh j_5, Io=./). I 0.9 
run_ovee_lccaticn(obj_5, lot_l). % 0.82 
run_ova" Iocation(obj_5, lot_l). 7. 0.81 
r~_ov~-_1ocation(obj_5, lot_l). ~ 0.74 
run_ov(~_]ooation4objS, ]ocJ.}. ~ 032 
run_ov~_location(obj_5~ 1oc_i). 7. 0.85 
run over' location(obj_5, loc_IL X 0.62 
run_over_iocat~on(obj_5, io~,I). 7. 0.58 
run over_Iccatlon(obj~5, Ioo.i). 7. 0.54 
run ove~ locationfobj~5, Io0~1). 7. 0.53 
run_ov~ locatl~rE(obJ_5, foe_l). ;C 0~45 
run over_Iccation(obj_5, Io~_I). X 0.44 
run_over_locatton(ohd_5, loo_l). 7. 0.~8 
run_oveT" locatton{obj_5, 1o=.1). X 8.K5 
run_ove~_looatlon(obJ_5, Ioc,I). X 0.27 
run ovor location(obj,5, Ioc_1). 7. 0.24 
depar~_~rom_1ocation(obj_5, [ocfi.). 2 0.76 
depart_from_Iocatlon(obj_5, toe_l). Z O.BI_ 
depart_from_lccation(obj_5, lee_l). ~; 0.9 
depar~_Grom_locatio,(ob~_5. Loc_i). X 0.99 
depart_From_Iocation(obJ_~. Loc_s Z 1 
leave_Iocation_be~tnd(obj_5, l oc~ ) ,  ~ 1 

drive_to~locaticn(obJ_5, Io0_2). % I 
acs~locati(~'%(obj_5, Ioc_2). 7. 0.26 
ass l~cation(cbj 5, Ioc_2). 7. 0.34 
~_l~atic~(obj_5, Ioc_2). 7. 0.42 
,a~s_location[obj_5, Io0_2). 7. 0.45 
,~s_Iocati~Cobj_5, ioc_2). 7. 0.49 
,ass_locatlon(obJ_5, lot_2), g 0.56 
,ass_]oc~tion(obj_5. I~_2). ;( 0.61 
ac~_location(obj_5, 1:)c_2). ~ O.S? 
,ass_locati~(obj_5. loc_2). 2 0.72 
,~s_Icc~tic~(~bj_5, ioc_2), t 0.77 
~ass_location(obj_5, lot_2). 2 0.84 
,a~s_|(~atioc1[obj_5. loc_2). 2 0.9 
.ass lceat~on(obj_5, 1Do_2). Z 0.9 
,a~_l~cetion(obj_5, loc_2). 7. 0.95 
~ass_]ooation~o~j_5. 1or ~ 1 
,~~locatio~(ObjmS, Ioc_2). ~ 1 
leave_locatlon_b~ntnd(obj 5, Ioc_2). 7. 1 

Fig. 5. The output of the computed occurrence descriptions after selecting object 
#5  as agent. The descriptions contain a time interva/(before the exclamation mark), 
the involved objects and locations (in round brackets as arguments) and the fuzzy 
membership degree (following the percent symbol). 
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