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IMPORTANCE With the current opioid crisis, it is important to improve understanding of the
biological mechanisms of opioid use disorder (OUD).

OBJECTIVES To detect genetic risk variants for OUD and determine genetic correlations and
causal association with OUD and other traits.

DESIGN, SETTING, AND PARTICIPANTS A genome-wide association study of electronic health
record–defined OUD in the Million Veteran Program sample was conducted, comprising 8529
affected European American individuals and 71 200 opioid-exposed European American
controls (defined by electronic health record trajectory analysis) and 4032 affected African
American individuals and 26 029 opioid-exposed African American controls. Participants
were enrolled from January 10, 2011, to May 21, 2018, with electronic health record data for
OUD diagnosis from October 1, 1999, to February 7, 2018. Million Veteran Program results and
additional OUD case-control genome-wide association study results from the Yale-Penn and
Study of Addiction: Genetics and Environment samples were meta-analyzed (total numbers:
European American individuals, 10 544 OUD cases and 72 163 opioid-exposed controls;
African American individuals, 5212 cases and 26 876 controls). Data on Yale-Penn participants
were collected from February 14, 1999, to April 1, 2017, and data on Study of Addiction:
Genetics and Environment participants were collected from 1990 to 2007. The key result was
replicated in 2 independent cohorts: proxy-phenotype buprenorphine treatment in the UK
Biobank and newly genotyped Yale-Penn participants. Genetic correlations between OUD
and other traits were tested, and mendelian randomization analysis was conducted to
identify potential causal associations.

MAIN OUTCOMES AND MEASURES Main outcomes were International Classification of
Diseases, Ninth Revision–diagnosed OUD or International Statistical Classification of Diseases
and Related Health Problems, Tenth Revision–diagnosed OUD (Million Veteran Program), and
DSM-IV–defined opioid dependence (Yale-Penn and Study of Addiction: Genetics and
Environment).

RESULTS A total of 114 759 individuals (101 016 men [88%]; mean [SD] age, 60.1 [12.8] years)
were included. In 82 707 European American individuals, a functional coding variant
(rs1799971, encoding Asn40Asp) in OPRM1 (μ-opioid receptor gene, the main biological
target for opioid drugs; OMIM 600018) reached genome-wide significance (G allele:
β = −0.066 [SE = 0.012]; P = 1.51 × 10−8). The finding was replicated in 2 independent
samples. Single-nucleotide polymorphism–based heritability of OUD was 11.3% (SE = 1.8%).
Opioid use disorder was genetically correlated with 83 traits, including multiple substance
use traits, psychiatric illnesses, cognitive performance, and others. Mendelian randomization
analysis revealed the following associations with OUD: risk of tobacco smoking, depression,
neuroticism, worry neuroticism subcluster, and cognitive performance. No genome-wide
significant association was detected for African American individuals or in transpopulation
meta-analysis.

CONCLUSIONS AND RELEVANCE This genome-wide meta-analysis identified a significant
association of OUD with an OPRM1 variant, which was replicated in 2 independent samples.
Post–genome-wide association study analysis revealed associated pleiotropic characteristics.
Recruitment of additional individuals with OUD for future studies—especially those of
non-European ancestry—is a crucial next step in identifying additional significant risk loci.
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O pioid abuse, addiction, and overdose are at epidemic
levels in the United States. Opioids are the leading
cause of overdose deaths, and their use has in-

creased dramatically in recent decades.1 A multifaceted ap-
proach is needed to address the opioid crisis, including im-
proving our understanding of the biological mechanisms of
opioid addiction. Opioids exert their biological effects primar-
ily by binding (mainly in brain and peripheral nervous tis-
sues) to the opioid receptors μ, encoded by OPRM1 (OMIM
600018); κ, encoded by OPRK1 (OMIM 165196); and δ, en-
coded by OPRD1 (OMIM 165195).2 Numerous candidate-gene
association studies of these genes (especially OPRM1) and those
encoding-related proteins have been conducted in the past 2
decades,3,4 but prior studies have failed to consistently dem-
onstrate an association (eg, studies on OPRM1*rs1799971).5

rs1799971 (A118G, encoding Asn40Asp),5,6 a functional
variant, is one of the most studied candidate variants for sub-
stance use traits. Several kinds of evidence support possible
functional effects of this single-nucleotide polymorphism
(SNP): rs1799971 reportedly alters β-endorphin binding and
activity,6 may be associated with cortisol response to nalox-
one blockade,7 may be associated with neurobehavioral func-
tions in a mouse model,8,9 and modulates synaptic function
in human-induced pluripotent stem cell lines; alternate-
allele protein products show differential N-linked
glycosylation.10

Several genome-wide association studies (GWAS) of DSM-
IV–defined opioid dependence (OD) yielded significant
findings11-14; 1 GWAS included internal replication13 but none
reported clear external replication, probably owing to the lim-
ited sample sizes available (the largest study so far included
2015 individuals with OD13). The risk variants identified map
to APBB2 (OMIM 602710), PARVA (OMIM 608120), KCNC1
(OMIM 176258), and KCNC2 (OMIM 176256)11 in African Ameri-
can (AA) samples, and CNIH3 (GenBank 149111)12 and RGMA
(OMIM 607362)13 in European-ancestry samples. There have
also been GWAS of related traits including therapeutic opioid
dose (that identified a genome-wide significant [GWS] vari-
ant upstream of the OPRM1 locus in AA individuals)15 and opi-
oid overdose (which identified 1 variant near MCOLN1 [OMIM
605248] in AA individuals).16 Of these, only the study on opi-
oid dosing15 included external validation. To our knowledge,
no GWAS yet has been sufficiently powered to estimate the
SNP-based heritability (h2) of OD.

We conducted GWAS on individuals with International
Classification of Diseases, Ninth Revision (ICD-9)–diagnosed opi-
oid use disorder (OUD) or International Statistical Classifica-
tion of Diseases and Related Health Problems, Tenth Revision
(ICD-10)–diagnosed OUD and opioid-exposed controls in 79 729
European American (EA) individuals and 30 061 AA individu-
als from the Million Veteran Program (MVP). Then we meta-
analyzed for OUD combining data from the MVP, Yale-Penn,
and the Study of Addiction: Genetics and Environment (SAGE)
samples.17 The latter 2 EA samples were included in a previ-
ous publication,13 but were reanalyzed here as a binary diag-
nostic trait rather than a criterion count for better congru-
ence with available MVP information. rs1799971 was the only
variant that was GWS (P = 1.51 × 10−8) in the meta-analysis of

EA individuals. We then replicated the result in 2 indepen-
dent samples.

Methods
MVP Data Sets
The MVP is a cross-sectional mega-biobank supported by the
US Department of Veterans Affairs (VA). Enrollment in MVP be-
gan January 10, 2011, and is ongoing. Phenotypic data were col-
lected using the VA electronic health record and blood samples
were obtained for genetic studies.18 Two phases of genotypic
data have been released according to their genotyping ep-
ochs and were included in this study. Million Veteran Pro-
gram phase 1 contains 353 948 individuals, of whom 209 020
were defined previously as unrelated EA individuals, and
57 340 unrelated AA individuals.19 Million Veteran Program
phase 2 contains 108 416 individuals. We used the same pro-
cess as in MVP phase 1 for quality control and to define EA in-
dividuals and AA individuals (eAppendix in the Supplement)19;
this process yielded 67 268 unrelated EA individuals and 18 214
unrelated AA individuals. The Central VA Institutional Re-
view Board and site-specific institutional review boards ap-
proved the MVP study. All relevant ethical regulations for work
with human participants were followed in the conduct of the
study, and written informed consent was obtained from all par-
ticipants.

Cases were participants with at least 1 inpatient or 2 out-
patient ICD-9 or ICD-10 codes for OUD (eTable 1 in the Supple-
ment) between 1999 and 2018. In MVP phase 1, there were 6367
EA individuals with OUD (3.0% prevalence, among unrelated
participants) and 3151 AA individuals with OUD (5.5% preva-
lence), and in MVP phase 2, there were 2162 EA individuals with
OUD (3.2% prevalence) and 881 AA individuals with OUD (4.8%
prevalence). Stringent criteria were applied to define inci-
dent opioid-exposed controls.20 In short, we started with all
MVP participants and excluded those with exposure to a pre-
scription opioid for less than 7 consecutive days, with VA fol-
low-up less than 6 months after baseline, with cancer diag-
nosed before or after baseline, with a baseline opioid dosage

Key Points
Question What is the genetic architecture of opioid use disorder,
and how is it associated with other traits?

Findings In this genome-wide association study, meta-analysis of
10 544 individuals of European ancestry with opioid use disorder
and 72 163 opioid-exposed control individuals identified OPRM1
functional variant rs1799971 as associated with opioid use
disorder, with replication in 2 independent samples; no significant
associations were detected for individuals of African ancestry
(n = 32 088). Opioid use disorder was genetically correlated with
83 traits, including risk of tobacco smoking, depression,
neuroticism, worry neuroticism subcluster, and cognitive
performance.

Meaning This genome-wide association study identified a
significant genetic variant as associated with opioid use disorder,
with replication.

Association of OPRM1*A118G With Opioid Use Disorder Original Investigation Research

jamapsychiatry.com (Reprinted) JAMA Psychiatry Published online June 3, 2020 E1073

© 2020 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://omim.org/entry/600018
https://omim.org/entry/165196
https://omim.org/entry/165195
https://omim.org/entry/602710
https://omim.org/entry/608120
https://omim.org/entry/176258
https://omim.org/entry/176256
https://www.ncbi.nlm.nih.gov/nuccore/149111
https://omim.org/entry/607362
https://omim.org/entry/605248
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2020.1206?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.1206
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2020.1206?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.1206
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2020.1206?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.1206
http://www.jamapsychiatry.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.1206


of more than 90 mg morphine equivalent daily dose, or with
OUD diagnosis or OUD treatment at baseline. For the remain-
ing participants, a latent growth mixture model was applied
to identify the major classes of opioid dose (measured by mor-
phine equivalent daily dose) trajectories that assigned each in-
dividual to the trajectory with the highest probability of mem-
bership. Four resultant morphine equivalent daily dose
trajectories were designated as low, moderate, escalating, and
rapidly escalating. To minimize the potential rate of false nega-
tives in the control group (eTable 2 in the Supplement), par-
ticipants assigned to the low-dose trajectory without an inci-
dent OUD diagnosis during follow-up were defined as controls,
yielding 55 429 EA controls and 20 254 AA controls in MVP
phase 1 and 15 771 EA controls and 5775 AA controls in MVP
phase 2.

Genotyping in MVP was performed using a customized Af-
fymetrix Biobank Array. Imputation and quality control met-
rics for MVP phase 1 were as described previously.19 Similar pro-
cesses were used for MVP phase 2 (eAppendix in the
Supplement). Genome-wide association study was then per-
formed on the MVP data sets. We used logistic regression imple-
mented in PLINK, version 1.90b4.421 (https://www.cog-
genomics.org/plink2) for the OUD GWAS, correcting for age,
sex, and the first 10 principal components.

Yale-Penn and SAGE Data Sets
Genome-wide association study for DSM-IV OD criterion counts
in EA individuals were performed previously, including 3
phases of Yale-Penn data, and the SAGE cohort (The Database
of G enotypes and Phenotypes [dbGaP] study id
phs000092.v1.p1).13 We reanalyzed these data using OUD di-
agnosis. For AA individuals, the first 2 phases of Yale-Penn data
were included (because Yale-Penn 3 has only 7 cases and SAGE
has only 105 cases and 158 exposed controls, they were not in-
cluded) (eAppendix in the Supplement).

Meta-analyses
Sample-size–weighted meta-analyses were performed using
METAL considering the differences of race/ethnicity, pheno-
type distribution, association model (linear vs linear mixed),
or other sample characteristics.22 Given the unbalanced ra-
tios of cases to controls in MVP samples, effective sample sizes
were calculated as neffective = 4/[(1/ncase) + (1/ncontrol)].

The calculated effective sample sizes in MVP were used in
meta-analyses and all downstream analyses. Only variants pre-
sent at least in MVP phase 1, which is the largest sample (ap-
proximately 75% of the total EA individuals and approxi-
mately 78% of the total AA individuals), and with heterogeneity
test P > 5 × 10−8 were retained, leaving 6.91 million variants for
AA individuals, 5.07 million variants for EA individuals, and
9.42 million variants for transpopulation meta-analyses.

Replication in Independent EA Samples
We genotyped 4817 recently added Yale-Penn participants who
were not included in any prior analysis. We used the Illumina
Multi-Ethnic Genotyping Array (Illumina Inc), which in-
cludes approximately 1.7 million SNPs. Individuals with mis-
matched genotypic and phenotypic sex were removed, as were

those with excessive heterozygosity. Duplicate individuals with
respect to the Yale-Penn discovery samples were removed. The
remaining individuals were classified into population groups
as for MVP. Among the 2041 genetically classified EA indi-
viduals, 508 received a diagnosis of DSM-IV OD, and 206 were
opioid-exposed controls. GEMMA (Genome-wide Efficient
Mixed-Model Analysis)23 was used for an association test only
for rs1799971 (ie, no other markers were evaluated) and cor-
rected for age, sex, and the first 10 principal components.

In the UK Biobank (UKB), we looked up the association be-
tween rs1799971 (only this marker, as for the other replica-
tion sample) and buprenorphine treatment (mostly used to
treat OUD; treatment or medication code: 20003_1140871732).
We examined GWAS summary data released by the Neale lab
(information available at http://www.nealelab.is/uk-
biobank) for 240 cases and 360 901 controls differentiated
based on buprenorphine treatment.

SNP-Based h2

Linkage Disequilibrium Score Regression (LDSC)24 was used
to estimate the SNP-based h2 using 1000 Genomes Project Eu-
ropeans or Africans25 as the linkage disequilibrium (LD) ref-
erence panel. The major histocompatibility complex region
(chr6: 26-34 Mb [mega base pairs]) was excluded. Effective
sample size was used in LDSC.

Genetic Correlation
We estimated the genetic correlation (rg) between OUD and 715
publicly available traits from LD Hub26 or other resources using
LDSC (eTable 3 in the Supplement).27 Among the tested traits,
232 were published previously (including recent non–LD Hub
studies) and 483 from the UKB were unpublished but inte-
grated in LD Hub. Bonferroni correction was applied and cor-
relation was considered significant at a P value threshold of
6.99 × 10−5.

Mendelian Randomization
We used mendelian randomization (MR) analysis to investi-
gate whether exposures (based on 18 published traits that were
significantly correlated with OUD [rg: P < 6.99 × 10−5]) have a
potential causal association with the liability to OUD (unidi-
rectional). After variant harmonization and filtering, 12 expo-
sures were analyzed. Weighted median,28 inverse-variance
weighted (random-effects model),29 and MR-Egger30 were used
for MR inference. Evidence of pleiotropic effects was exam-
ined by the MR-Egger intercept test30 (eAppendix in the Supple-
ment).

Results
Association Results for OUD in EA Individuals
In this meta-analysis of 8529 individuals with OUD and 71 200
control individuals within the MVP (totaling 79 729 individu-
als; Table), no variant reached GWS (P < 5 × 10−8; eFigure 1 in
the Supplement). The variant with the smallest P value was
rs1799971 in OPRM1 (P = 5.90 × 10−8; neffective = 30 443; the mi-
nor G allele is protective with a β = −0.142 [SE = 0.026]).
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We then meta-analyzed the MVP samples with Yale-Penn
(3 tranches) and SAGE samples, bringing the total sample size
to 82 707 (10 544 cases and 72 163 opioid-exposed controls;
Table). This represents a 23.6% increase in the number of cases.
From the meta-analysis, the SNP-based h2 was 0.113
(SE = 0.018), estimated by LDSC. The association of rs1799971
with OUD was GWS (β = −0.066 [SE = 0.012]; P = 1.51 × 10−8;
neffective = 33 421) (Figure 1; eFigures 2 and 3 in the Supple-
ment). The LD structure around rs1799971 is complex31 (eFig-
ure 3 in the Supplement). The associations were all in the same
direction except for the SAGE sample, which might be owing
to its limited sample size. There were no significant results from
gene-based association and gene-set analyses.

Replication in Independent EA Samples
In total, we analyzed 714 EA individuals (508 individuals with
OD and 206 opioid-exposed controls) from the new Yale-
Penn samples, and rs1799971*G was associated with reduced
OD risk (ie, in the same direction as the discovery meta-
analysis; β = −0.074 [SE = 0.038]; P = .049). In the UKB,
rs1799971*G was negatively associated with buprenorphine
treatment status (240 c ases and 360 901 controls;
β = −1.90 × 10−4 [SE = 9.13 × 10−5]; P = .04), also consistent with

the direction of effect in the discovery sample. A meta-
analysis of discovery and replication cohorts for this variant
yielded P = 7.81 × 10−10 (β = −0.070 [SE = 0.011]).

Genetic Correlations With Other Traits in EA Individuals
Opioid use disorder was significantly correlated with 83 of the
715 traits tested (eTable 3 in the Supplement). Figure 2 de-
picts 18 correlated traits from the published literature (eAp-
pendix in the Supplement). Among the correlated substance
use–related traits, ever smoked regularly showed the highest
correlation with OUD (rg = 0.51 [SE = 0.06]; P = 3.37 × 10−19),
followed by opioid medication use in UKB (rg = 0.48
[SE = 0.07]; P = 1.61 × 10−11). Both alcohol dependence and al-
cohol use quantity (measured by drinks per week) showed high
genetic correlations with OUD. Unable to stop smoking (cur-
rent vs former smoker), and earlier age at smoking initiation
were also correlated with OUD. However, correlations with AU-
DIT-C score (Alcohol Use Disorders Identification Test–
Consumption), total AUDIT score, cigarettes per day, and life-
time cannabis use were not significant after Bonferroni
correction. Several psychiatric traits were correlated with OUD,
including attention-deficit/hyperactivity disorder (rg = 0.36
[SE = 0.07]; P = 6.78 × 10−7), major depressive disorder

Table. Demographic Characteristics: Discovery Sample

Sample

European American individuals African American individuals

No. of cases No. of controls
Age, mean
(SD), y Female, No. (%) No. of cases No. of controls

Age, mean
(SD), y Female, No. (%)

MVP phase 1 6367 55 429 61.2 (13.0) 5775 (9.3) 3151 20 254 57.0 (11.1) 3400 (14.5)

MVP phase 2 2162 15 771 61.2 (13.7) 1739 (9.7) 881 5775 58.0 (11.2) 1029 (15.5)

Subtotal 8529 71 200 61.2 (13.2) 7514 (9.4) 4032 26 029 57.2 (11.1) 4429 (14.7)

Yale-Penn 1 1043 294 36.9 (10.3) 542 (40.5) 831 573 42.2 (7.9) 533 (38.0)

Yale-Penn 2 724 243 36.4 (11.4) 319 (33.0) 349 274 42.3 (10.2) 170 (27.3)

Yale-Penn 3 54 44 33.6 (11.6) 41 (41.8) NA NA NA NA

SAGE 194 382 35.8 (9.1) 195 (33.9) NA NA NA NA

Subtotal 2015 963 36.4 (10.5) 1097 (36.8) 1180 847 42.3 (8.6) 703 (34.7)

Total 10 544 72 163 NA NA 5212 26 876 NA NA

Abbreviations: MVP, Million Veteran Program; SAGE, Study of Addiction: Genetics and Environment.

Figure 1. Associations Between rs1799971*G and Opioid Use Disorder in European American Individuals

–0.4 –0.1 0.2–0.2 0.10
β (95% CI)

–0.3

P value
No. of participants
(No. of cases)Samples Estimate (SE)

1.51 × 10–8Meta-analysisc –0.066 (0.012)82 707 (10 544)

1.14 × 10-461 796 (6367)MVP phase1a –0.116 (0.030)

2.49 × 10-517 933 (2162)MVP phase2a –0.227 (0.054)

.5581337 (1043)Yale-Penn 1b –0.015 (0.025)

.039967 (724)Yale-Penn 2b –0.061 (0.030)

.44098 (54)Yale-Penn 3b –0.080 (0.104)

.698576 (192)SAGEb 0.017 (0.042)

The sizes of the data markers are related to the SE of the estimate. MVP
indicates Million Veteran Program; OR, odds ratio; and SAGE, Study of
Addiction: Genetics and Environment.
a Logistic regression was applied based on unrelated case and control samples

in MVP; log (OR) is presented.

b A linear mixed model was applied on complex family-based samples; β is
presented.

c Effective sample size weighted meta-analysis was applied; β is presented.
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(rg = 0.35 [SE = 0.06]; P = 1.62 × 10−10), schizophrenia (rg = 0.29
[SE = 0.05]; P = 1.93 × 10−8), neuroticism (rg = 0.27 [SE = 0.05];
P = 8.65 × 10−8), and neuroticism subclusters. Opioid use dis-
order was positively correlated with risk-taking behavior and
insomnia, and negatively correlated with cognitive traits and
age of first birth. These findings are consistent with the known
adverse medical, psychiatric, and social consequences of OUD.

Mendelian Randomization for EA Individuals
Using MR, we explored possible causal associations of expo-
sures with OUD (Figure 3). Among the 12 tested exposures, 5
supported a possible causal association with liability to OUD
by at least 1 method and were without evidence of horizontal
pleiotropy (MR-Egger intercept, P > .05): positively with ever
smoked regularly, major depressive disorder, neuroticism, and
worry neuroticism subcluster, and negatively with educa-
tional attainment. There was no significant association be-
tween drinks per week and OUD risk by the inverse-variance
weighted method, but the estimate could be biased owing to
horizontal pleiotropy.

Association Results for OUD in AA Individuals and
Transpopulation Meta-analysis
For AA individuals, 4032 participants with OUD and 26 029
controls within the MVP were meta-analyzed; no variant
reached GWS (Table; eFigure 4 in the Supplement). We then
meta-analyzed the MVP samples with the Yale-Penn sample
(2 tranches), bringing the total sample size to 32 088 (5212 cases
and 26 876 opioid-exposed controls); no association was de-
tected (eFigure 5 in the Supplement). There was insufficient
power for a robust estimate for SNP-based h2 (0.065
[SE = 0.052]).

Transpopulation meta-analysis combining all data sets was
conducted in 114 795 individuals. No significant association was
detected (eFigure 6 in the Supplement).

Discussion
Opioid use is at epidemic levels in the United States and is a
major cause of death and disability worldwide. Understand-
ing the genetic architecture of OUD might provide clinically
useful clues about its biology. However, to our knowledge, only
a few risk variants have been identified by GWAS so far, and
none has had clear external replication. Several factors con-
tribute to this situation: (1) OUD is a complex psychiatric dis-
ease with relatively low heritability, and there is no single vari-
ant with a large effect size that can be detected in small cohorts
(eg, contrary to alcohol dependence32 with ADH1B (OMIM
103720), and nicotine dependence with the chromosome 15
nicotine receptor cluster33); (2) previous OUD GWAS were rela-
tively small compared with those for legal substance use dis-
orders (eg, the number of alcohol use disorder cases reached
57 564 in a large meta-analysis34); and (3) in published work
relevant to opioid use, there was considerable phenotypic
heterogeneity across samples. The ascertainment of OUD cases
(eg, ICD-diagnosed OUD in the electronic health record, DSM-
IV–assessed OD, patients receiving opioid substitution therapy,
and daily injectors of illicit opioids) and controls (eg, opioid-
exposed individuals or random population with unknown opi-
oid exposure status) differ by study. One way to reach a better
understanding of OUD genetics is to increase the sample size
in a homogeneous cohort.

For EA individuals, we conducted a GWAS of OUD in a large
cohort, the MVP, comprising 8529 cases and 71 200 opioid-
exposed controls. Most previously reported variants associ-
ated with a wide range of opioid-related traits were not sig-
nificant in MVP. For some, this reflects a lack of marker
information or LD proxies in the MVP; some associations were
previously reported in African ancestry populations only11; oth-
ers were reported in EA individuals, but relevant variants are
missing in the MVP data (eg, rs12442183 near RGMA reported
by Cheng et al13 was filtered by a low genotype call rate in im-
putation). No variant reached GWS in this largest-ever cohort
individually; OPRM1*rs1799971 was nominally significantly as-
sociated with OUD (P = 5.90 × 10−8). We meta-analyzed MVP
samples with Yale-Penn and SAGE samples (reanalyzed to
match the available phenotype from the MVP more closely),
increasing the total sample size to 82 707 (10 544 cases and

Figure 2. Genetic Correlations Between Opioid Use Disorder (OUD) and
Published Traits

–0.6 0
rg

Tested traits
Substance use

–0.4 –0.2 0.2 0.4 0.6 0.8

Ever smoked regularly

N02A: opioid

PCG alcohol dependence

Current vs former smoker

Drinks per week

AUDIT-P

Psychiatric

ADHD

MDD

Cognitive

Educational attainment

Reproductive

Age at first birth

Cognitive performance

Risk behavior

No. of sexual partners

Sleeping

Insomnia

General risk tolerance

Schizophrenia

Neuroticism

Depressed affect subcluster

Worry subcluster

Age at initiation of smoking

Listed are the 18 published traits significantly correlated with OUD. ADHD
indicates attention-deficit/hyperactivity disorder; AUDIT-P, Alcohol Use
Disorders Identification Test–Problems; Depressed affect subcluster, depressed
affect neuroticism subcluster; MDD, major depressive disorder; N02A, opioid,
self-reported medication-use of opioid drugs (Anatomical Therapeutic Chemical
classification code, N02A) in UK Biobank; PGC, Psychiatric Genomics
Consortium; rg, genetic correlation; and Worry subcluster, worry neuroticism
subcluster.
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72 163 opioid-exposed controls). By adding 4 samples from
Yale-Penn and SAGE, rs1799971 reached GWS. The final meta-
analyzed P value for this marker is 1.51 × 10−8 (excluding in-
dependent replications). rs1799971 was genotyped directly (not

imputed) in all samples, discovery, and replication. No asso-
ciation was detected in AA individuals or in transpopulation
meta-analyses.

Figure 3. Causal Association With Opioid Use Disorder by Mendelian Randomization (MR)
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rs1799971 (A118G) maps to exon 1 of the μ-opioid recep-
tor (OPRM1) gene, causing an amino acid change (Asn40Asp).
Extensive candidate studies of this variant with a wide range
of addictive and other behavioral traits have been conducted
over 2 decades.5,35,36 Associations between rs1799971 and opi-
oid-related traits have been inconsistent.5 We conducted hy-
pothesis-free, genome-wide analyses for OUD and detected as-
sociation at rs1799971 by almost quintupling the number of
cases compared with any previous study.5,13 Our increment in
exposed controls, often even more limiting than affected in-
dividuals with OUD in previous studies, is even greater. Be-
cause many individuals exposed to opioids become depen-
dent, an unassessed control group is not an ideal alternative
to an opioid-exposed control group even if greater numbers
of participants can be achieved, because the former group is
more correctly considered “diagnosis unknown,” including
many individuals genetically predisposed to OUD who would
express that phenotype had they been exposed. We sought rep-
lication in 2 independent EA samples. One included newly
genotyped individuals in the Yale-Penn sample, and the other
was a proxy-phenotype buprenorphine treatment sample from
the UKB. The association was replicated in both of these
samples.

Multiple substance use–related traits including smoking,
alcohol, and opioid use and psychiatric traits were among the
top correlates. Several smoking traits were positively corre-
lated with OUD, consistent with the strong correlation be-
tween nicotine use and OUD.37,38 Mendelian randomization
analysis provided evidence (weak, since it was not supported
by all 3 tested methods) that the genetic liability to substance
use–related traits has a potential causal association with sus-
ceptibility to OUD. Medical opioid use was correlated with OUD,
as expected. Alcohol dependence and quantity of alcohol con-
sumed were also genetically correlated with OUD. Thus, it may
be feasible for prevention or treatment efforts directed at le-
gal substance use to reduce the burden of consequent OD. Psy-
chiatric traits including attention-deficit/hyperactivity disor-
der, major depressive disorder, schizophrenia, and neuroticism
are genetically correlated with OUD, consistent with pheno-
typic evidence.39,40 Weak evidence from MR analyses also in-
dicated possible causal association with OUD risk of major de-
pressive disorder and neuroticism.

Limitations
This study has some limitations. The sample size, although a
major improvement from prior studies, is still not as large as

what can be obtained for legal substance use–related traits, and
this limited power to detect more GWS signals and to obtain
insight into OUD biological mechanisms. Legal substance use
traits are more common, and data pertinent to these traits are
collected more commonly than for illegal traits in biobanks and
electronic health records. Second, the phenotypes in the
samples we studied were not identical. The MVP used ICD-9–
and ICD-10–diagnosed OUD. There may be false negatives in
a sample such as the MVP, owing to stigma and OUD diagno-
ses not recorded by treatment teams concentrating mostly on
medical illness, but few false positives. Third, the replication
samples are small (508 individuals with OD in the new Yale-
Penn sample and 240 individuals receiving buprenorphine
treatment in the UKB), and the associations were only nomi-
nally significant; only a single variant was tested in the repli-
cation samples. The phenotype in the UKB is a proxy pheno-
type—buprenorphine treatment. Buprenorphine is a first-
line drug for OUD treatment, but it could have been used for
other purposes in the UKB population, including pain man-
agement; however, if this is true to any considerable extent,
it should reduce our power to detect an association, rather than
lead to a false-positive finding. Fourth, there has been a lack
of recruitment for non-European populations globally (eg, only
a few GWASs have been conducted in AA individuals11,15 in
smaller cohorts). Meta-analysis of AA individuals combining
MVP and Yale-Penn data was underpowered to detect signifi-
cant signals.

Conclusions
We report here the largest GWAS and the largest meta-
analysis for OUD, to our knowledge. This finding may not have
direct implications for personalized medicine because the rel-
evant gene is already the main physiological target of all opi-
oids, illegal and therapeutic, which provides, at least, a “proof
of principle” of relevance of the finding. Opioid use disorder
was genetically correlated with substance use traits, other psy-
chiatric traits, insomnia, and cognitive performance. Among
these, ever smoking regularly, major depressive disorder, neu-
roticism, and cognitive performance were associated with OUD,
which provides clues for future prevention efforts. Recruit-
ment of additional individuals with OUD—especially those of
non-European ancestry—is a crucial next step.

ARTICLE INFORMATION

Accepted for Publication: March 28, 2020.

Published Online: June 3, 2020.
doi:10.1001/jamapsychiatry.2020.1206

Correction: This article was corrected on October
14, 2020, to fix errors in the Results in the abstract
and text and in Figure 2.

Author Affiliations: Department of Psychiatry, Yale
School of Medicine, New Haven, Connecticut
(Zhou, Cheng, Nunez, Xu, Polimanti, Gelernter);
Department of Psychiatry, Veterans Affairs

Connecticut Healthcare System, West Haven (Zhou,
Rentsch, Cheng, Nunez, Tate, Dao, Xu, Polimanti,
Justice, Gelernter); Department of Internal
Medicine, Yale School of Medicine, New Haven,
Connecticut (Rentsch, Tate, Dao, Justice); Faculty
of Epidemiology and Population Health, London
School of Hygiene and Tropical Medicine, London,
United Kingdom (Rentsch); Department of
Genetics, University of Pennsylvania Perelman
School of Medicine, Philadelphia (Kember);
Crescenz Veterans Affairs Medical Center,
Philadelphia, Pennsylvania (Kember, Kranzler);
Department of Medicine (Biomedical Genetics),

Boston University School of Medicine, Boston,
Massachusetts (Sherva, Farrer); Department of
Biostatistics, Boston University School of Public
Health, Boston, Massachusetts (Farrer);
Department of Epidemiology, Boston University
School of Public Health, Boston, Massachusetts
(Farrer); Department of Neurology, Boston
University School of Medicine, Boston,
Massachusetts (Farrer); Department of
Ophthalmology, Boston University School of
Medicine, Boston, Massachusetts (Farrer); Yale
School of Public Health, New Haven, Connecticut
(Justice); Department of Psychiatry, University of

Research Original Investigation Association of OPRM1*A118G With Opioid Use Disorder

E1078 JAMA Psychiatry Published online June 3, 2020 (Reprinted) jamapsychiatry.com

© 2020 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2020.1206?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.1206
http://www.jamapsychiatry.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.1206


Pennsylvania Perelman School of Medicine,
Philadelphia (Kranzler); Department of Genetics,
Yale University School of Medicine, New Haven,
Connecticut (Gelernter); Department of
Neuroscience, Yale University School of Medicine,
New Haven, Connecticut (Gelernter).

Author Contributions: Drs Zhou and Gelernter had
full access to all of the data in the study and take
responsibility for the integrity of the data and the
accuracy of the data analysis.
Concept and design: Zhou, Rentsch, Cheng, Tate,
Xu, Justice, Kranzler, Gelernter.
Acquisition, analysis, or interpretation of data:
Zhou, Rentsch, Cheng, Kember, Nunez, Sherva,
Dao, Xu, Polimanti, Farrer, Justice, Kranzler,
Gelernter.
Drafting of the manuscript: Zhou, Rentsch, Cheng.
Critical revision of the manuscript for important
intellectual content: All authors.
Statistical analysis: Zhou, Rentsch, Cheng, Sherva,
Polimanti, Justice.
Obtained funding: Justice, Kranzler, Gelernter.
Administrative, technical, or material support:
Nunez, Justice, Gelernter.
Supervision: Xu, Farrer, Kranzler, Gelernter.

Conflict of Interest Disclosures: Dr Tate reported
receiving grants from the National Institutes of
Health during the conduct of the study. Dr
Polimanti reported receiving grants from the
National Institute on Drug Abuse during the
conduct of the study. Dr Kranzler reported being a
member of the American Society of Clinical
Psychopharmacology’s Alcohol Clinical Trials
Initiative, which in the past 3 years was supported
by AbbVie, Alkermes, Ethypharm, Indivior, Lilly,
Lundbeck, Otsuka, Pfizer, Arbor, and Amygdala
Neurosciences and receiving grants and
nonfinancial support from Department of Veterans
Affairs during the conduct of the study and
personal fees from American Society of Clinical
Psychopharmacology’s Clinical Trials Initiative
outside the submitted work; in addition, Drs
Kranzler and Gelernter reported being named as
inventors on Patent Cooperation Treaty patent
application 15/878,640 entitled: “Genotype-guided
dosing of opioid agonists,” filed January 24, 2018.
Dr Gelernter reported receiving grants from US
Department of Veterans Affairs and the National
Institutes of Health–National Institute on Drug
Abuse during the conduct of the study. No other
disclosures were reported.

Funding/Support: This research used data from
the Million Veteran Program, Office of Research and
Development, Veterans Health Administration, and
was supported by award 1I01BX003341 from Office
of Research and Development, Veterans Health
Administration. This study was also supported by a
NARSAD Young Investigator Grant from the Brain &
Behavior Research Foundation (Dr Zhou). Dr
Gelernter was supported by National Institutes of
Health grants RC2 DA028909, R01 DA12690, R01
DA12849, R01 AA11330, and R01 AA017535; the
New England Mental Illness Research Education
and Clinical Center; and by the Department of
Veterans Affairs Medical Research Program. Dr
Polimanti was supported by grant R21 DA047527
from the National Institute on Drug Abuse, National
Institutes of Health. Dr Kranzler was supported by
National Institutes of Health grants R21 DA10242
and R01 DA18432 and both he and Dr Kember are
supported by the Veterans Integrated Service
Networks 4 Mental Illness Research Education and

Clinical Center. Genotyping services for a part of the
Yale-Penn GWAS study were provided by the
Center for Inherited Disease Research and Yale
University (Center for Genome Analysis). The
Center for Inherited Disease Research is fully
funded through a federal contract from the
National Institutes of Health to The Johns Hopkins
University (contract N01-HG-65403).

Role of the Funder/Sponsor: The funding sources
had no role in the design and conduct of the study;
collection, management, analysis, and
interpretation of the data; preparation, review, or
approval of the manuscript; and decision to submit
the manuscript for publication.

Group Information: The Veterans Affairs Million
Veteran Program (MVP) members are as follows:
MVP Executive Committee: Co-Chair: J. Michael
Gaziano, MD, MPH, Co-Chair: Rachel Ramoni, DMD,
ScD, Jim Breeling, MD (ex-officio), Kyong-Mi Chang,
MD, Grant Huang, PhD, Sumitra Muralidhar, PhD,
Christopher J. O’Donnell, MD, MPH, and Philip S.
Tsao, PhD. MVP Program Office: Sumitra
Muralidhar, PhD, and Jennifer Moser, PhD. MVP
Recruitment/Enrollment: Recruitment/
Enrollment Director/Deputy Director, Boston:
Stacey B. Whitbourne, PhD, and Jessica V. Brewer,
MPH. MVP Coordinating Centers: Clinical
Epidemiology Research Center, West Haven,
Connecticut: John Concato, MD, MPH; Cooperative
Studies Program Clinical Research Pharmacy
Coordinating Center, Albuquerque, New Mexico:
Stuart Warren, JD, PharmD, and Dean P. Argyres,
MS; Genomics Coordinating Center: Palo Alto,
California: Philip S. Tsao, PhD; Massachusetts
Veterans Epidemiology Research Information
Center, Boston: J. Michael Gaziano, MD, MPH; MVP
Information Center, Canandaigua, New York: Brady
Stephens, MS; Core Biorepository, Boston,
Massachusetts: Mary T. Brophy, MD, MPH, and
Donald E. Humphries, PhD; MVP Informatics,
Boston, Massachusetts: Nhan Do, MD, and
Shahpoor Shayan; Data Operations/Analytics,
Boston, Massachusetts: Xuan-Mai T. Nguyen, PhD;
MVP Science—Genomics: Christopher J. O’Donnell,
MD, MPH, Saiju Pyarajan PhD, and Philip S. Tsao,
PhD; MVP Science—Phenomics: Kelly Cho, MPH,
PhD; MVP Science—Data and Computational
Sciences: Saiju Pyarajan, PhD; MVP Science—
Statistical Genetics: Elizabeth Hauser, PhD, Yan Sun,
PhD, and Hongyu Zhao, PhD. MVP Local Site
Investigators: Atlanta Veterans Affairs Medical
Center (Peter Wilson); Bay Pines Veterans Affairs
Healthcare System (Rachel McArdle); Birmingham
Veterans Affairs Medical Center (Louis Dellitalia);
Cincinnati Veterans Affairs Medical Center (John
Harley); Clement J. Zablocki Veterans Affairs
Medical Center (Jeffrey Whittle); Durham Veterans
Affairs Medical Center (Jean Beckham); Edith
Nourse Rogers Memorial Veterans Hospital (John
Wells); Edward Hines, Jr. Veterans Affairs Medical
Center (Salvador Gutierrez); Fayetteville Veterans
Affairs Medical Center (Gretchen Gibson); Veterans
Affairs Health Care Upstate New York (Laurence
Kaminsky); New Mexico Veterans Affairs Health
Care System (Gerardo Villareal); Veterans Affairs
Boston Healthcare System (Scott Kinlay); Veterans
Affairs Western New York Healthcare System
(Junzhe Xu); Ralph H. Johnson Veterans Affairs
Medical Center (Mark Hamner); Wm. Jennings
Bryan Dorn Veterans Affairs Medical Center
(Kathlyn Sue Haddock); Veterans Affairs North
Texas Health Care System (Sujata Bhushan);
Hampton Veterans Affairs Medical Center (Pran

Iruvanti); Hunter Holmes McGuire Veterans Affairs
Medical Center (Michael Godschalk); Iowa City
Veterans Affairs Health Care System (Zuhair Ballas);
Jack C. Montgomery Veterans Affairs Medical
Center (Malcolm Buford); James A. Haley Veterans’
Hospital (Stephen Mastorides); Louisville Veterans
Affairs Medical Center (Jon Klein); Manchester
Veterans Affairs Medical Center (Nora Ratcliffe);
Miami Veterans Affairs Health Care System (Hermes
Florez); Michael E. DeBakey Veterans Affairs
Medical Center (Alan Swann); Minneapolis Veterans
Affairs Health Care System (Maureen Murdoch);
North Florida/South Georgia Veterans Health
System (Peruvemba Sriram); Northport Veterans
Affairs Medical Center (Shing Shing Yeh); Overton
Brooks Veterans Affairs Medical Center (Ronald
Washburn); Philadelphia Veterans Affairs Medical
Center (Darshana Jhala); Phoenix Veterans Affairs
Health Care System (Samuel Aguayo); Portland
Veterans Affairs Medical Center (David Cohen);
Providence Veterans Affairs Medical Center (Satish
Sharma); Richard Roudebush Veterans Affairs
Medical Center (John Callaghan); Salem Veterans
Affairs Medical Center (Kris Ann Oursler); San
Francisco Veterans Affairs Health Care System
(Mary Whooley); South Texas Veterans Health Care
System (Sunil Ahuja); Southeast Louisiana Veterans
Health Care System (Amparo Gutierrez); Southern
Arizona Veterans Affairs Health Care System
(Ronald Schifman); Sioux Falls Veterans Affairs
Health Care System (Jennifer Greco); St. Louis
Veterans Affairs Health Care System (Michael
Rauchman); Syracuse Veterans Affairs Medical
Center (Richard Servatius); Veterans Affairs Eastern
Kansas Health Care System (Mary Oehlert);
Veterans Affairs Greater Los Angeles Health Care
System (Agnes Wallbom); Veterans Affairs Loma
Linda Healthcare System (Ronald Fernando);
Veterans Affairs Long Beach Healthcare System
(Timothy Morgan); Veterans Affairs Maine
Healthcare System (Todd Stapley); Veterans Affairs
New York Harbor Healthcare System (Scott
Sherman); Veterans Affairs Pacific Islands Health
Care System (Gwenevere Anderson); Veterans
Affairs Palo Alto Health Care System (Philip Tsao);
Veterans Affairs Pittsburgh Health Care System (Elif
Sonel); Veterans Affairs Puget Sound Health Care
System (Edward Boyko); Veterans Affairs Salt Lake
City Health Care System (Laurence Meyer);
Veterans Affairs San Diego Healthcare System
(Samir Gupta); Veterans Affairs Southern Nevada
Healthcare System (Joseph Fayad); Veterans Affairs
Tennessee Valley Healthcare System (Adriana
Hung); Washington DC Veterans Affairs Medical
Center (Jack Lichy); W.G. (Bill) Hefner Veterans
Affairs Medical Center (Robin Hurley); White River
Junction Veterans Affairs Medical Center (Brooks
Robey); and William S. Middleton Memorial
Veterans Hospital (Robert Striker).

Disclaimer: This publication does not represent the
views of the Department of Veterans Affairs or the
US government.

Additional Contributions: Ann Marie Lacobelle,
MS, and Christa Robinson, BS, Department of
Psychiatry, Yale School of Medicine, provided
technical assistance for the genotyping. They were
compensated for their contributions.

Additional Information: The publicly available data
set of Study of Addiction: Genetics and
Environment (SAGE) used for the analysis was
obtained from dbGaP at https://www.ncbi.nlm.nih.
gov/projects/gap/cgi-bin/study.cgi?study_id=

Association of OPRM1*A118G With Opioid Use Disorder Original Investigation Research

jamapsychiatry.com (Reprinted) JAMA Psychiatry Published online June 3, 2020 E1079

© 2020 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000092.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000092.v1.p1
http://www.jamapsychiatry.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.1206


phs000092.v1.p1. Funding support for SAGE was
provided through the National Institutes of Health
(U01 HG004422). SAGE is one of the genome-wide
association studies funded as part of the Gene
Environment Association Studies (GENEVA) under
Genes, Environment and Health Initiative (GEI).
Assistance with phenotype harmonization and
genotype cleaning, as well as with general study
coordination, was provided by the GENEVA
Coordinating Center (U01 HG004446). The full
summary-level association data from the
meta-analyses are available through dbGaP at
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs001672.v3.p1 (accession
number phs001672.v3.p1).

REFERENCES

1. Jalal H, Buchanich JM, Roberts MS, Balmert LC,
Zhang K, Burke DS. Changing dynamics of the drug
overdose epidemic in the United States from 1979
through 2016. Science. 2018;361(6408):eaau1184.
doi:10.1126/science.aau1184

2. Darcq E, Kieffer BL. Opioid receptors: drivers to
addiction? Nat Rev Neurosci. 2018;19(8):499-514.
doi:10.1038/s41583-018-0028-x

3. Reed B, Butelman ER, Yuferov V, Randesi M,
Kreek MJ. Genetics of opiate addiction. Curr
Psychiatry Rep. 2014;16(11):504. doi:10.1007/
s11920-014-0504-6

4. Mistry CJ, Bawor M, Desai D, Marsh DC, Samaan
Z. Genetics of opioid dependence: a review of the
genetic contribution to opioid dependence. Curr
Psychiatry Rev. 2014;10(2):156-167. doi:10.2174/
1573400510666140320000928

5. Schwantes-An TH, Zhang J, Chen LS, et al.
Association of the OPRM1 variant rs1799971 (A118G)
with non-specific liability to substance dependence
in a collaborative de novo meta-analysis of
European-ancestry cohorts. Behav Genet. 2016;46
(2):151-169. doi:10.1007/s10519-015-9737-3

6. Bond C, LaForge KS, Tian M, et al.
Single-nucleotide polymorphism in the human mu
opioid receptor gene alters β-endorphin binding
and activity: possible implications for opiate
addiction. Proc Natl Acad Sci U S A. 1998;95(16):
9608-9613. doi:10.1073/pnas.95.16.9608

7. Chong RY, Oswald L, Yang X, Uhart M, Lin PI,
Wand GS. The mu-opioid receptor polymorphism
A118G predicts cortisol responses to naloxone and
stress. Neuropsychopharmacology. 2006;31(1):
204-211. doi:10.1038/sj.npp.1300856

8. Zhang Y, Picetti R, Butelman ER, Ho A, Blendy
JA, Kreek MJ. Mouse model of the OPRM1 (A118G)
polymorphism: differential heroin
self-administration behavior compared with
wild-type mice. Neuropsychopharmacology. 2015;
40(5):1091-1100. doi:10.1038/npp.2014.286

9. Robinson JE, Vardy E, DiBerto JF, et al. Receptor
reserve moderates mesolimbic responses to
opioids in a humanized mouse model of the OPRM1
A118G polymorphism. Neuropsychopharmacology.
2015;40(11):2614-2622. doi:10.1038/npp.2015.109

10. Halikere A, Popova D, Scarnati MS, et al.
Addiction associated N40D mu-opioid receptor
variant modulates synaptic function in human
neurons. Mol Psychiatry. Published online September
3, 2019. doi:10.1038/s41380-019-0507-0

11. Gelernter J, Kranzler HR, Sherva R, et al.
Genome-wide association study of opioid
dependence: multiple associations mapped to

calcium and potassium pathways. Biol Psychiatry.
2014;76(1):66-74. doi:10.1016/j.biopsych.2013.08.
034

12. Nelson EC, Agrawal A, Heath AC, et al. Evidence
of CNIH3 involvement in opioid dependence. Mol
Psychiatry. 2016;21(5):608-614. doi:10.1038/mp.
2015.102

13. Cheng Z, Zhou H, Sherva R, Farrer LA, Kranzler
HR, Gelernter J. Genome-wide association study
identifies a regulatory variant of RGMA associated
with opioid dependence in European Americans.
Biol Psychiatry. 2018;84(10):762-770. doi:10.1016/j.
biopsych.2017.12.016

14. Crist RC, Reiner BC, Berrettini WH. A review of
opioid addiction genetics. Curr Opin Psychol. 2019;
27:31-35. doi:10.1016/j.copsyc.2018.07.014

15. Smith AH, Jensen KP, Li J, et al. Genome-wide
association study of therapeutic opioid dosing
identifies a novel locus upstream of OPRM1. Mol
Psychiatry. 2017;22(3):346-352. doi:10.1038/mp.
2016.257

16. Cheng Z, Yang BZ, Zhou H, Nunez Y, Kranzler
HR, Gelernter J. Genome-wide scan identifies
opioid overdose risk locus close to MCOLN1. Addict
Biol. 2020;25(2):e12811. doi:10.1111/adb.12811

17. Edenberg HJ. The collaborative study on the
genetics of alcoholism: an update. Alcohol Res Health.
2002;26(3):214-218.

18. Gaziano JM, Concato J, Brophy M, et al. Million
Veteran Program: a mega-biobank to study genetic
influences on health and disease. J Clin Epidemiol.
2016;70:214-223. doi:10.1016/j.jclinepi.2015.09.016

19. Kranzler HR, Zhou H, Kember RL, et al.
Genome-wide association study of alcohol
consumption and use disorder in 274,424
individuals from multiple populations. Nat Commun.
2019;10(1):1499. doi:10.1038/s41467-019-09480-
8

20. Rentsch CT, Edelman EJ, Justice AC, et al; VACS
Project Team. Patterns and correlates of
prescription opioid receipt among US Veterans:
a national, 18-year observational cohort study. AIDS
Behav. 2019;23(12):3340-3349. doi:10.1007/
s10461-019-02608-3

21. Chang CC, Chow CC, Tellier LC, Vattikuti S,
Purcell SM, Lee JJ. Second-generation PLINK: rising
to the challenge of larger and richer datasets.
Gigascience. 2015;4:7. doi:10.1186/s13742-015-0047-
8

22. Willer CJ, Li Y, Abecasis GR. METAL: fast and
efficient meta-analysis of genomewide association
scans. Bioinformatics. 2010;26(17):2190-2191. doi:
10.1093/bioinformatics/btq340

23. Zhou X, Stephens M. Genome-wide efficient
mixed-model analysis for association studies. Nat
Genet. 2012;44(7):821-824. doi:10.1038/ng.2310

24. Bulik-Sullivan BK, Loh PR, Finucane HK, et al;
Schizophrenia Working Group of the Psychiatric
Genomics Consortium. LD score regression
distinguishes confounding from polygenicity in
genome-wide association studies. Nat Genet. 2015;
47(3):291-295. doi:10.1038/ng.3211

25. Auton A, Brooks LD, Durbin RM, et al; 1000
Genomes Project Consortium. A global reference
for human genetic variation. Nature. 2015;526
(7571):68-74. doi:10.1038/nature15393

26. Zheng J, Erzurumluoglu AM, Elsworth BL, et al;
Early Genetics and Lifecourse Epidemiology

(EAGLE) Eczema Consortium. LD Hub: a centralized
database and web interface to perform LD score
regression that maximizes the potential of
summary level GWAS data for SNP heritability and
genetic correlation analysis. Bioinformatics. 2017;33
(2):272-279. doi:10.1093/bioinformatics/btw613

27. Bulik-Sullivan B, Finucane HK, Anttila V, et al;
ReproGen Consortium; Psychiatric Genomics
Consortium; Genetic Consortium for Anorexia
Nervosa of the Wellcome Trust Case Control
Consortium 3. An atlas of genetic correlations
across human diseases and traits. Nat Genet. 2015;
47(11):1236-1241. doi:10.1038/ng.3406

28. Bowden J, Davey Smith G, Haycock PC,
Burgess S. Consistent estimation in mendelian
randomization with some invalid instruments using
a weighted median estimator. Genet Epidemiol.
2016;40(4):304-314. doi:10.1002/gepi.21965

29. Bowden J, Del Greco MF, Minelli C, Davey
Smith G, Sheehan N, Thompson J. A framework for
the investigation of pleiotropy in two-sample
summary data Mendelian randomization. Stat Med.
2017;36(11):1783-1802. doi:10.1002/sim.7221

30. Bowden J, Davey Smith G, Burgess S.
Mendelian randomization with invalid instruments:
effect estimation and bias detection through Egger
regression. Int J Epidemiol. 2015;44(2):512-525. doi:
10.1093/ije/dyv080

31. Levran O, Awolesi O, Linzy S, Adelson M, Kreek
MJ. Haplotype block structure of the genomic
region of the mu opioid receptor gene. J Hum Genet.
2011;56(2):147-155. doi:10.1038/jhg.2010.150

32. Gelernter J, Kranzler HR, Sherva R, et al.
Genome-wide association study of alcohol
dependence: significant findings in African- and
European-Americans including novel risk loci. Mol
Psychiatry. 2014;19(1):41-49. doi:10.1038/mp.2013.
145

33. Tobacco and Genetics Consortium.
Genome-wide meta-analyses identify multiple loci
associated with smoking behavior. Nat Genet.
2010;42(5):441-447. doi:10.1038/ng.571

34. Zhou H, Sealock JM, Sanchez-Roige S, et al.
Meta-analysis of problematic alcohol use in
435,563 individuals identifies 29 risk variants and
yields biological insights, pervasive pleiotropy and
evidence of causality. Preprint. Posted online
August 16, 2019. bioRxiv 738088. doi:10.1101/
738088

35. Gelernter J, Kranzler H, Cubells J. Genetics of
two μ opioid receptor gene (OPRM1) exon I
polymorphisms: population studies, and allele
frequencies in alcohol- and drug-dependent
subjects. Mol Psychiatry. 1999;4(5):476-483. doi:
10.1038/sj.mp.4000556

36. Ray R, Ruparel K, Newberg A, et al. Human mu
opioid receptor (OPRM1 A118G) polymorphism is
associated with brain mu-opioid receptor binding
potential in smokers. Proc Natl Acad Sci U S A. 2011;
108(22):9268-9273. doi:10.1073/pnas.1018699108

37. Clemmey P, Brooner R, Chutuape MA, Kidorf M,
Stitzer M. Smoking habits and attitudes in a
methadone maintenance treatment population.
Drug Alcohol Depend. 1997;44(2-3):123-132. doi:10.
1016/S0376-8716(96)01331-2

38. Richter KP, Gibson CA, Ahluwalia JS, Schmelzle
KH. Tobacco use and quit attempts among
methadone maintenance clients. Am J Public Health.
2001;91(2):296-299. doi:10.2105/AJPH.91.2.296

Research Original Investigation Association of OPRM1*A118G With Opioid Use Disorder

E1080 JAMA Psychiatry Published online June 3, 2020 (Reprinted) jamapsychiatry.com

© 2020 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000092.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001672.v3.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001672.v3.p1
https://dx.doi.org/10.1126/science.aau1184
https://dx.doi.org/10.1038/s41583-018-0028-x
https://dx.doi.org/10.1007/s11920-014-0504-6
https://dx.doi.org/10.1007/s11920-014-0504-6
https://dx.doi.org/10.2174/1573400510666140320000928
https://dx.doi.org/10.2174/1573400510666140320000928
https://dx.doi.org/10.1007/s10519-015-9737-3
https://dx.doi.org/10.1073/pnas.95.16.9608
https://dx.doi.org/10.1038/sj.npp.1300856
https://dx.doi.org/10.1038/npp.2014.286
https://dx.doi.org/10.1038/npp.2015.109
https://dx.doi.org/10.1038/s41380-019-0507-0
https://dx.doi.org/10.1016/j.biopsych.2013.08.034
https://dx.doi.org/10.1016/j.biopsych.2013.08.034
https://dx.doi.org/10.1038/mp.2015.102
https://dx.doi.org/10.1038/mp.2015.102
https://dx.doi.org/10.1016/j.biopsych.2017.12.016
https://dx.doi.org/10.1016/j.biopsych.2017.12.016
https://dx.doi.org/10.1016/j.copsyc.2018.07.014
https://dx.doi.org/10.1038/mp.2016.257
https://dx.doi.org/10.1038/mp.2016.257
https://dx.doi.org/10.1111/adb.12811
https://www.ncbi.nlm.nih.gov/pubmed/12875050
https://www.ncbi.nlm.nih.gov/pubmed/12875050
https://dx.doi.org/10.1016/j.jclinepi.2015.09.016
https://dx.doi.org/10.1038/s41467-019-09480-8
https://dx.doi.org/10.1038/s41467-019-09480-8
https://dx.doi.org/10.1007/s10461-019-02608-3
https://dx.doi.org/10.1007/s10461-019-02608-3
https://dx.doi.org/10.1186/s13742-015-0047-8
https://dx.doi.org/10.1186/s13742-015-0047-8
https://dx.doi.org/10.1093/bioinformatics/btq340
https://dx.doi.org/10.1038/ng.2310
https://dx.doi.org/10.1038/ng.3211
https://dx.doi.org/10.1038/nature15393
https://dx.doi.org/10.1093/bioinformatics/btw613
https://dx.doi.org/10.1038/ng.3406
https://dx.doi.org/10.1002/gepi.21965
https://dx.doi.org/10.1002/sim.7221
https://dx.doi.org/10.1093/ije/dyv080
https://dx.doi.org/10.1038/jhg.2010.150
https://dx.doi.org/10.1038/mp.2013.145
https://dx.doi.org/10.1038/mp.2013.145
https://dx.doi.org/10.1038/ng.571
https://dx.doi.org/10.1101/738088
https://dx.doi.org/10.1101/738088
https://dx.doi.org/10.1038/sj.mp.4000556
https://dx.doi.org/10.1073/pnas.1018699108
https://dx.doi.org/10.1016/S0376-8716(96)01331-2
https://dx.doi.org/10.1016/S0376-8716(96)01331-2
https://dx.doi.org/10.2105/AJPH.91.2.296
http://www.jamapsychiatry.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.1206


39. Sullivan MD, Edlund MJ, Zhang L, Unützer J,
Wells KB. Association between mental health
disorders, problem drug use, and regular

prescription opioid use. Arch Intern Med. 2006;166
(19):2087-2093. doi:10.1001/archinte.166.19.2087

40. Seal KH, Shi Y, Cohen G, et al. Association of
mental health disorders with prescription opioids

and high-risk opioid use in US veterans of Iraq and
Afghanistan. JAMA. 2012;307(9):940-947. doi:
10.1001/jama.2012.234

Association of OPRM1*A118G With Opioid Use Disorder Original Investigation Research

jamapsychiatry.com (Reprinted) JAMA Psychiatry Published online June 3, 2020 E1081

© 2020 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://jamanetwork.com/journals/jama/fullarticle/10.1001/archinte.166.19.2087?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.1206
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2012.234?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.1206
http://www.jamapsychiatry.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.1206

