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Association of Pre-ESRD Serum Calcium With
Post-ESRD Mortality Among Incident ESRD Patients:
A Cohort Study
Yoshitsugu Obi,1 Christina Park,1 Melissa Soohoo,1 Keiichi Sumida,2 Takayuki Hamano,3 Connie M Rhee,1

Csaba P Kovesdy,2,4 Kamyar Kalantar-Zadeh,1,5,6 and Elani Streja1

1Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine,
Orange, CA, USA

2Division of Nephrology, University of Tennessee Health Science Center, Memphis, TN, USA
3Department of Comprehensive Kidney Disease Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
4Nephrology Section, Memphis VA Medical Center, Memphis, TN, USA
5Fielding School of Public Health at UCLA, Los Angeles, CA, USA
6Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, CA, USA

ABSTRACT
Albumin-corrected serum calcium (cSCa) decline at late stages of chronic kidney disease and rise after dialysis initiation. Although
hypercalcemia is associated with higher mortality in end-stage renal disease (ESRD), there are scarce data on the impact of pre-ESRD
cSCa on post-ESRD mortality. Therefore, we used a large national cohort of 21,826 US veterans who transitioned to dialysis in all US
Department of Veterans Affairs health care facilities over 2009 to 2014 to examine the associations with all-cause and cause-specific
post-ESRD mortality of (1) cSCa concentrations averaged over the last 6 months and (2) its rate of decline during the last 12 months
before dialysis initiation. Mean concentrations and median rate of decline of cSCa were 9.3� 0.7mg/dL and �0.15 (interquartile
range�0.39 to 0.07) mg/dL/year, respectively. A total of 9596 patients died during the follow-up period (mean 1.9 years; total 41,541
patient-years) with an incidence rate of 23.1 per 100 patient-years. There was an independent linear association between higher
cSCawith highermortality (ptrend< 0.001). Themortality risk associatedwith cSCa�9.0mg/dLwas attenuated among active vitamin
D users (pinteraction< 0.001). Patients with faster decline in cSCa showed lowermortality irrespective of baseline cSCa concentrations.
These cSCa-mortality associations were stronger for noncardiovascular versus cardiovascular death. In conclusion, lower pre-ESRD
cSCa and faster decline in cSCa were consistently and linearly associated with better post-ESRD survival among US veterans,
especially for noncardiovascular death. Further studies are needed to determine if correcting hypocalcemia is beneficial or harmful
and which intervention is preferred when indicated among patients transitioning to ESRD. © 2018 American Society for Bone and
Mineral Research.

KEY WORDS: EPIDEMIOLOGY; DISORDERS OF CALCIUM/PHOSPHATE METABOLISM; STATISTICAL METHODS; DISEASES AND DISORDERS
OF/RELATED TO BONE

Introduction

Calcium plays pivotal physiological and biochemical func-
tions, including signal transduction, muscle contraction,

neurotransmitter release, contribution to the coagulation
cascade, and electrophysiologic stabilization of cell membranes,
and therefore require tight regulation of levels in the body. In
advanced chronic kidney disease (CKD), elevated fibroblast
growth factor-23 and reduced functioning renal mass result in
blunted activation of vitamin D in the kidney, leading to
impaired intestinal calcium absorption and diminished renal
tubular reabsorption.(1–4) Serum calcium concentrations are

relatively maintained due to compensatory elevation of
parathyroid hormone (PTH), which enhances bone resorption,
but start declining at late stages of CKD.(3–5) Decreased serum
calcium concentrations then rise after hemodialysis initia-
tion,(6,7) likely because of positive calcium flux during dialysis,
active vitamin D treatment, calcium-based phosphate binders,
and/or secondary hyperparathyroidism.

In the dialysis population, serum calcium concentrations
generally show a U- or J-shaped association with mortality.(8–10)

Elevated extracellular calcium, along with hyperphosphatemia,
are among established risk factors for vascular calcification and
cardiovascular events,(11–13) the leading cause of death among
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patients with CKD.(14) Meanwhile, a previous study of predialysis
patients with stage 3–4 CKD showed a linear association
between higher serum calcium concentrations and higher
mortality risk.(15) Furthermore, there are no prior studies on the
impact of pre-ESRD serum calcium concentrations in later stages
of CKD, when hypocalcemia is most prevalent, upon post-ESRD
mortality, largely because of the lack of large databases linking
pre-ESRD transition data to post-ESRD registries.(16) The impact
of therapeutic interventions that correct hypocalcemia upon
post-ESRD outcomes also remains unclear. Therefore, we aimed
to examine the interactions between pre-ESRD serum calcium
concentrations, their rate of decline, related drugs (ie, calcium
supplement and active vitamin D agents), and post-ESRD all-
cause, cardiovascular, and noncardiovascular mortality in a
large, nationally representative cohort of US veterans with
incident ESRD.

Subjects and Methods

Study population and data source

The Transition of Care in CKD (TC-CKD) study is a historical
cohort of US veterans with incident ESRD.(17–20) We included
64,930 veterans derived from the United States Renal Data
System (USRDS) who transitioned to dialysis treatment from
April 1, 2009, through March 30, 2014. In the current study, we
included 24,227 patients with available data on serum calcium
within 6 months before developing ESRD (Supplemental Fig. 1).
We excluded 2434 patients who did not have serum calcium and
albumin levels measured concomitantly and then 17 patients
with errors in follow-up time. Our final analytical cohort
consisted of 21,826 patients. This study was approved by the
Institutional Review Boards of the Memphis and Long Beach
Veterans Affairs Medical Centers. The requirement for written
informed consent was waived because of the large sample size,
patient anonymity, and nonintrusive nature of the study.

Demographic, clinical, and laboratory measurements

Baseline patient characteristics of the study cohort (including
age, sex, race, and ethnicity) were drawn from a composite of
USRDS Patient and Medical Evidence files, Veteran Affairs (VA)
databases, and Centers for Medicare and Medicaid Services
(CMS) databases, with the exception of marital status, which
was collected from VA records. Preexisting comorbidity status
was ascertained from VA and CMS data. For information on
medication use, we collected data from CMS Medicare Part D
files and VA pharmacy dispensation records. Individual
medications were categorized into broad groups by clinician
assessment. We defined 6-month medication ever-use as
having a prescription filled within 6 months before dialysis
initiation.

Data on the estimated glomerular filtration rate (GFR) at
transition was primarily obtained from USRDS records and were
supplemented with serum creatinine data obtained from the VA
Corporate Data Warehouse (CDW) LabChem file and calculated
with the CKD Epidemiology Collaboration formula.(21) Other
laboratory data, including serum calcium and albumin measure-
ments, were obtained from the Decision Support System
National Data Extracts Laboratory Results file. Data on body
mass index were obtained from the VA CDW Vital Signs file. In
the present study, laboratory measurements were averaged
over the 6-month period before ESRD transition and were
considered to be baseline levels.

Exposure measurement

Our primary exposure was 6-month pre-ESRD (prelude) aver-
aged cSCa. We computed cSCa with the following formula:
corrected serum calcium¼ serum calciumþ 0.8� (4.0 – serum
albumin) [if serum albumin <4.0 g/dL]. Concentrations of cSCa
were then averaged over the 6-month prelude period and
categorized into six groups:<8.0, 8.0 to<8.5, 8.5 to<9.0, 9.0 to
<9.5, 9.5 to <10.0, and 10 or more mg/dL. In a sensitivity
analysis, we examined uncorrected serum calcium as the
exposure of interest including patients without data on
simultaneously measured serum albumin.

The secondary exposure was the rate of change in cSCa over
the period of 1 year before ESRD. The rate of change cSCa was
calculated usingmixed-effects models (ie, random intercept and
random slope model) among 16,349 patients with �2 measure-
ments during the 1-year pre-ESRD prelude period, in which the
latest measurement had to be in the 6-month prelude period
and at least 90 days after the first measurement. We divided
cSCa slope into the following subgroups: <–0.4mg/dL/year,
–0.4 to <–0.2mg/dL/year, –0.2 to <þ0.2mg/dL/year, and
�0.2mg/dL/year.

Outcome assessment

The main outcomes of interest for the retrospective cohort
population were all-cause, cardiovascular, and noncardiovas-
cular mortality after transition to dialysis. We extracted data for
cause of death from USRDS records and categorized them into
cardiovascular and noncardiovascular death. Information on
censoring events, including death, were obtained from VA, CMS,
and USRDS records. Follow-up started at the initiation of dialysis
and continued until death, kidney transplantation, loss to
follow-up, or the date of final follow-up assessment for all
patients (September 2, 2014, for all-cause mortality [n¼ 9596]
and June 30, 2014, for cardiovascular and noncardiovascular
mortality [n¼ 2913 and 6284, respectively]).

Statistical analysis

Baseline characteristics of the study population were presented
according to cSCa groups. We reported means� standard
deviation (SD) or median [interquartile range] for continuous
variables, where appropriate, and percentages for categorical
variables. Linear trends for baseline patient characteristics were
tested across cSCa groups. Comparisons of baseline demo-
graphic, clinical, laboratory, and medication characteristics
between patients with and without cSCa were done using
standardized differences and are presented in Supplemental
Table S1.

Potential confounders were included in four hierarchal
models of adjustment: (1) model 1, unadjusted; (2) model 2
included age, sex, race, ethnicity, and marital status; (3)
model 3 included all covariates in model 2 plus Charlson
comorbidity index, diabetes, prior history of ischemic heart
disease, congestive heart failure, atrial fibrillation, cerebro-
vascular disease, chronic pulmonary disease, depression, and
cancer, serum albumin, body mass index, and estimated GFR;
and (4) model 4 included all covariates in model 3 plus
baseline medications, which were composed of calcium
supplements, active vitamin D, nutritional vitamin D (either
ergocalciferol or cholecalciferol), calcium-containing phos-
phate binders, erythropoiesis-stimulating agents, RAAS
inhibitors, sodium bicarbonate, and loop and/or thiazide
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diuretics. In analyses including slope as the predictor
variable, the first available cSCa measurement in the 1-year
period before ESRD transition was added as a covariate
across all adjustment models. We defined model 3 as the
primary model of interest.
Multinomial logistic regression models were used to assess

the associations of demographic, clinical, and laboratory
variables and medication use with the outcomes hypocalcemia
defined as <8.5mg/dL in relation to hypercalcemia defined as
>10.0mg/dL, and vice versa, 8.5 to 10.0mg/dL (reference
group), with adjustment for covariates in model 3. We examined
mortality using Cox proportional hazards models. We also
assessed whether the association between 6-month prelude
cSCa concentrations and post-ESRD mortality varied by
medication use (calcium supplement and active vitamin D
agents) in adjustment model 3, using 12 combination groups of
6-month prelude medication ever- and never-use with six cSCa
groups compared with the reference group (medication never-
use and cSCa levels of 8.5 to<9.0mg/dL). Restricted cubic spline
functions were used to assess the associations between cSCa
and slope modeled as continuous variables and post-ESRD all-
cause, cardiovascular and noncardiovascular mortality, and
across strata of race, medication use, and first available cSCa in
adjustment model 3. Knots were placed at the 5th, 35th, 65th,
and 95th percentiles. Formal tests for interaction were done
using the Wald test.
We applied a mixed-effects regression model to evaluate the

trajectory of monthly population mean cSCa concentrations
over the period of 1-year pre- and post-dialysis initiation.
Missing data on demographics, including marital status, were

less than 0.2% and were handled using a dummy category. For
missing data (4.0% and 2.0% for body mass index [BMI] and
estimated GFR, respectively), we employed the multiple
imputation method where five data sets were created by using
multivariate normal regression with all available data. In a
sensitivity analysis, we examined uncorrected serum calcium as
the exposure of interest including patients with data on cSCa
but not on serum albumin (n¼ 24,256 versus 21,826 in the main
cohort). For all analyses in this study, a two-tailed p value of less
than 0.05 was considered statistically significant. Survival and
logistic regression analyses were conducted with the use of SAS
Enterprise Guide, version 7.1 (Cary, NC, USA). Restricted cubic
spline functions and mixed-effects regression were conducted
with STATA version 14.2 (StataCorp, College Station, TX, USA).

Results

Baseline demographic, clinical, and laboratory
characteristics

A total of 21,826 US veterans with ESRD transitioning to dialysis
were included in this study. The median time interval between
the last pre-ESRD serum calcium measurement and the date of
dialysis initiation was 19 (interquartile range 3 to 69) days.
Compared with excluded patients who did not have available
data on albumin-corrected serum calcium (cSCa), included
patients were younger; less likely to be female, white, and
married; more likely to be black and divorced; and had higher
prevalences of diabetes and depression (absolute standardized
difference >0.1; Supplemental Table S1).
Among included patients, the mean prelude 6-month

averaged cSCa was 9.3� 0.7mg/dL. Patients with higher cSCa
were older; more likely to be white and married; had higher

Charlson comorbidity index scores; and had higher prevalences
of cardiovascular diseases, chronic pulmonary diseases, and
cancer (Table 1). They also had higher levels of estimated GFR,
hemoglobin, and serumbicarbonate, and had lower prevalences
of calcium supplement, nutritional vitamin D, erythropoiesis-
stimulating agent, and sodium bicarbonate use in the 6-month
prelude period. There was a U-shaped or reversed U-shaped
association of cSCa with active vitamin D, renin-angiotensin-
aldosterone system inhibitors, and calcium-containing phos-
phorus binders.

Predictors of low (<8.5) and high (>10.0mg/dL)
corrected serum calcium concentrations

After adjustment for demographics, Charlson comorbidity
index, comorbidities, BMI, and estimated GFR, factors associated
with low cSCa were younger age; male sex; non-white races;
Hispanic ethnicity; lower levels of estimated GFR, hemoglobin,
and serum bicarbonate; higher serum albumin; and the baseline
use of calcium supplement, active vitamin D, erythropoiesis-
stimulating agents, and sodium bicarbonate (Table 2). Married
status, history of ischemic heart disease, cancer, and the use of
renin-angiotensin-aldosterone system inhibitors were associ-
ated with lower likelihood of hypocalcemia. Many of those
variables showed an inverse association with high cSCa, but the
associations of black race, estimated GFR, and the use of renin-
angiotensin-aldosterone system inhibitors were not significant
for hypercalcemia. Diabetes, nutritional vitamin D, and diuretics
showed lower likelihood of having high cSCa but was not
associated with low cSCa, whereas active vitamin D use was
associated with both low and high cSCa.

Trajectories of corrected serum calcium before and after
dialysis initiation

In the pre-ESRD period, patients who had lower prelude 6-
month averaged cSCa showed a steeper decreasing trend in
cSCa, whereas those with 6-month pre-ESRD averaged cSCa of
�10.0mg/dL had an increasing trend (Fig. 1). There was a rapid
correction in cSCa toward the normal range after dialysis
initiation, and the differences in cSCa across groups were
attenuated but maintained in the post-ESRD period.

Pre-ESRD corrected serum calcium and post-ESRD
mortality

A total of 9596 patients died during the follow-up period (mean
1.9 years; total 41,541 patient-years) with an incidence rate of
23.1 per 100 patient-years. There was an incremental mortality
risk among patients with higher cSCa, which was slightly
attenuated but robust across adjustment models (ptrend < 0.001
for all adjustments; Fig. 2 and Supplemental Table S2);
the adjusted hazard ratios (aHRs [95% CI]) of the lowest
(<8.0mg/dL) and highest (�10.0mg/dL) cSCa groups were 0.82
(0.72, 0.94) and 1.28 (1.18, 1.38), respectively, in the primary
adjustmentmodel (ie, model 3). The trend inmortality risk across
cSCa levels persisted for both cardiovascular and noncardio-
vascular death (ptrend < 0.01 in all models), but appeared
stronger for noncardiovascular death; the corresponding aHRs
(95% CI) for the lowest and highest cSCa groups were 1.03 (0.82,
1.27) and 1.14 (0.99, 1.32) for cardiovascular death, respectively,
and 0.72 (0.61, 0.86) and 1.35 (1.23, 1.49) for noncardiovascular
death, respectively. Uncorrected calcium showed similar
associations after adjustment for serum albumin (ie, models 3
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and 4; Supplemental Fig. S2). Cox models using restricted cubic
spline functions showed consistent results between white and
black patients for all-cause, cardiovascular, and noncardiovas-
cular death (Supplemental Fig. S3). Similarly, the association of
cSCa with all-cause mortality was consistent across subgroup
analyses based on age, diabetes, estimated GFR at dialysis
initiation, history of ischemic heart disease, history of congestive
heart failure, serum albumin, and body mass index (Supplemen-
tal Fig. S4).

To evaluate the effect modification by calcium-raising drugs,
we included the interaction terms of sSCa with calcium
supplement and active vitamin D together in the primary
model for all-cause mortality. The interaction term was

significant for active vitamin D (pinteraction < 0.001) but not for
calcium supplement (pinteraction¼ 0.48). These findings were
consistent with stratified analyses based on either calcium
supplement or active vitamin D use. Higher cSCa concentrations
were associated with higher all-cause mortality irrespective of
calcium supplement use (ptrend < 0.001 for both; Fig. 3A and
Supplemental Table S3). In contrast, themortality risk associated
with cSCa ranges exceeding 9.0mg/dL was attenuated with
active vitamin D use (Fig. 3B). These findings were further
supported by the stratified analyses according to (1) calcium
supplement but no active vitamin D, (2) active vitamin D but no
calcium supplement, (3) both calcium supplement and active
vitamin D, and (4) none of them (Supplemental Fig. S5).

Table 1. Baseline Demographic and Clinical Characteristics of 21,826 US Veterans With ESRD Transitioning to Dialysis Stratified by
Prelude 6-Month Averaged Corrected Serum Calcium

Corrected serum calcium (mg/dL)

Variable Total <8.0 8.0 to <8.5 8.5 to <9.0 9.0 to <9.5 9.5 to <10.0 �10.0

n (%) 21,826 930 (4) 1279 (6) 3987 (18) 8079 (37) 5467 (25) 2084 (10)
Age (years) 68� 11 63� 11 66� 11 68� 11 68� 11 68� 11 69� 11
Female (%) 2 1 1 1 2 3 3
Race (%)

White 64 46 55 63 66 66 69
Black 31 46 38 31 29 30 28
Other races 5 8 7 6 5 4 3
Hispanic (%) 8 11 11 10 8 6 5

Marital status (%)
Single 9 14 11 9 9 8 8
Married 53 41 48 52 53 55 58
Divorced 28 36 31 29 28 27 24
Widowed 10 9 10 10 10 9 10
Charlson comorbidity index 4 (2, 5) 3 (1, 4) 3 (2, 5) 4 (2, 5) 4 (2, 5) 4 (2, 6) 4 (2, 6)

Comorbidities (%)
Diabetes 70 65 70 71 70 71 66
Ischemic heart disease 53 33 44 51 55 56 58
Congestive heart failure 50 34 42 49 52 53 54
Atrial fibrillation 14 6 11 12 15 15 16
Cerebrovascular disease 28 18 24 27 29 29 29
Chronic pulmonary disease 38 25 32 37 39 41 42
Cancer 22 15 18 21 22 23 27
Depression 28 24 26 27 28 29 26
Body mass index (kg/m2) 30.2� 6.8 30.0� 6.9 29.9� 6.9 29.9� 6.7 30.2� 6.8 30.5� 6.9 30.3� 7.1
Estimated GFR (mL/min/1.73m2) 10 (7, 13) 7 (5, 9) 8 (6, 11) 9 (7, 12) 10 (7, 13) 10 (7, 14) 10 (7, 13)

Laboratory tests
Hemoglobin (g/dL) 10.5� 1.6 9.6� 1.5 9.9� 1.4 10.2� 1.5 10.5� 1.6 10.7� 1.7 10.8� 1.7
Albumin (g/dL) 3.4� 0.6 3.4� 0.5 3.4� 0.6 3.4� 0.5 3.4� 0.6 3.3� 0.7 3.3� 0.7
Corrected serum calcium (mg/dL) 9.3� 0.7 7.4� 0.5 8.3� 0.1 8.8� 0.1 9.3� 0.1 9.7� 0.1 10.4� 0.5
Bicarbonate (mEq/L) 23� 4 20� 4 21� 4 22� 4 23� 4 24� 4 24� 4

Baseline medication use (%)
Calcium supplement 19 46 32 21 17 15 14
Active vitamin D 32 41 37 33 29 31 37
Nutritional vitamin D 27 27 32 30 28 26 21
Non-calcium-containing phosphate
binders

19 21 20 19 18 20 23

Erythropoiesis stimulating agents 30 36 37 34 28 27 26
RAAS inhibitors 45 35 39 43 46 48 44
Sodium bicarbonate 27 38 35 32 26 24 22
Loop diuretics and/or thiazide 75 72 76 74 75 75 72

GFR¼glomerular filtration rate; RAAS¼ renin-angiotensin-aldosterone system.
Values are expressed as mean� SD, median (IQR), or percentage, as appropriate. SI conversion factors: To convert hemoglobin to g/L, multiply by 10;

albumin to g/L, multiply by 10; calcium to mmol/L, multiply by 0.25; bicarbonate to mmol/L, multiply by 1.0.
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These associations appeared consistent and even stronger for
noncardiovascular death than for cardiovascular death
(Fig. 3D–F and Supplemental Table S3). For cardiovascular
mortality, there was an association with cSCa among patients
without the use of either calcium supplement or active vitaminD
(Ptrend¼ 0.003 and 0.002, respectively), and no significant
association was observed across cSCa concentrations among
their counterparts (Ptrend¼ 0.47 and 0.39, respectively).

Pre-ESRD change in corrected serum calcium and post-
ESRD mortality

A total of 16,349 patients (75%) had available data for calculating
slope in cSCa concentrations during the pre-ESRD period. Median
rateofdecline in cSCawas–0.15 (interquartile range–0.39 to0.07)

mg/dL/year. In the unadjustedmodel, patientswith faster decline
in cSCa showed lower mortality overall and irrespective of first
available cSCa concentrations during the 1-year prelude period
(pinteraction¼ 0.66; ptrend < 0.001 for all; Fig. 4 and Supplemental
Table S4). The relationship between faster cSCa decline and lower
mortality was robust against adjustment among patients with
first available cSCa levels of 9.0 to <9.5mg/dL and �9.5mg/dL
(ptrend < 0.01 for both), whereas it was gradually attenuated and
lost its significance, but not reversed, by the hierarchical
adjustments if the first available cSCa was <9.0mg/dL. Cox
models using restricted cubic spline functions confirmed
consistent results for noncardiovascular mortality, but there
was no significant association between the rate of decline in cSCa
and cardiovascular mortality (Supplemental Fig. S6). When
stratifying patients by medication use, faster decline in cSCa

Table 2. Adjusted Odds Ratio for Having Low (<8.5mg/dL) and High (>10.0mg/dL) Prelude 6-Month Averaged Corrected Serum
Calcium (Reference, 8.5 to 10.0mg/dL) among 21,826 US Veterans With Late-Stage Chronic Kidney Disease Transitioning to Dialysis in
Model 3

Low (<8.5mg/dL) High (>10.0mg/dL)

Variable OR (95% CI) p Value OR (95% CI) p Value

Age (per 10 years) 0.87 (0.83–0.91) <0.001 1.13 (1.07–1.20) <0.001
Female 0.31 (0.20–0.47) <0.001 1.75 (1.34–2.29) <0.001
Race
White Reference Reference
Black 1.39 (1.25–1.54) <0.001 0.93 (0.83–1.04) 0.22
Other races 1.40 (1.15–1.69) <0.001 0.65 (0.49–0.86) 0.002
Hispanic 1.57 (1.34–1.84) <0.001 0.63 (0.51–0.79) <0.001

Marital status
Married Reference Reference
Single 1.25 (1.07–1.46) 0.004 0.91 (0.76–1.09) 0.28
Divorced 1.18 (1.06–1.31) 0.002 0.82 (0.73–0.93) 0.001
Widowed 1.33 (1.13–1.57) <0.001 0.81 (0.69–0.96) 0.01
Charlson comorbidity index 0.98 (0.95–1.02) 0.36 0.99 (0.96–1.03) 0.74

Comorbidities
Diabetes 1.12 (0.99–1.26) 0.07 0.79 (0.70–0.89) <0.001
Ischemic heart disease 0.80 (0.72–0.90) <0.001 1.13 (1.01–1.26) 0.04
Congestive heart failure 0.93 (0.83–1.05) 0.22 1.02 (0.91–1.15) 0.75
Atrial fibrillation 1.01 (0.86–1.19) 0.88 1.01 (0.88–1.15) 0.92
Cerebrovascular disease 0.93 (0.82–1.05) 0.22 0.96 (0.85–1.08) 0.52
Chronic pulmonary disease 0.99 (0.88–1.11) 0.85 1.01 (0.91–1.13) 0.82
Cancer 0.86 (0.74–1.00) 0.04 1.20 (1.04–1.38) 0.01
Depression 0.91 (0.82–1.02) 0.09 0.94 (0.84–1.05) 0.26
Body mass index (per 5 kg/m2) 0.97 (0.93–1.00) 0.08 1.04 (1.00–1.08) 0.04
Estimated GFR (per 5mL/min/1.73m2) 0.56 (0.52–0.59) <0.001 1.01 (0.98–1.04) 0.38

Laboratory tests
Hemoglobin (g/dL) 0.75 (0.72–0.77) <0.001 1.16 (1.13–1.20) <0.001
Albumin (g/dL) 1.23 (1.13–1.33) <0.001 0.69 (0.63–0.74) <0.001
Bicarbonate (mEq/L) 0.85 (0.84–0.87) <0.001 1.08 (1.07–1.10) <0.001

Baseline medication use
Calcium supplement 2.72 (2.46–3.01) <0.001 0.75 (0.65–0.86) <0.001
Active vitamin D 1.24 (1.13–1.36) <0.001 1.44 (1.31–1.59) <0.001
Nutritional vitamin D 1.08 (0.97–1.19) 0.15 0.72 (0.64–0.81) <0.001
Non-calcium-containing phosphate binders 0.93 (0.83–1.04) 0.19 1.42 (1.27–1.59) <0.001
Erythropoiesis stimulating agents 1.28 (1.17–1.41) <0.001 0.91 (0.82–1.01) 0.08
RAAS inhibitors 0.73 (0.67–0.81) <0.001 0.94 (0.85–1.03) 0.17
Sodium bicarbonate 1.34 (1.22–1.48) <0.001 0.81 (0.72–0.90) <0.001
Loop diuretics and/or thiazide 1.09 (0.98–1.22) 0.13 0.89 (0.80–1.00) 0.04

OR¼ odds ratio; CI¼ confidence interval; GFR¼glomerular filtration rate; RAAS¼ renin-angiotensin-aldosterone system.
SI conversion factors: To convert hemoglobin to g/L, multiply by 10; albumin to g/L, multiply by 10; calcium tommol/L, multiply by 0.25; bicarbonate to

mmol/L, multiply by 1.0.
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was associated with lower mortality risk among patients without
the use of calcium supplement or active vitaminDbut not among
their counterparts in the primary model (Supplemental Fig. S7;
pinteraction¼ 0.03 and 0.001, respectively).

Discussion

In this large, contemporary, and national cohort of VA patients
with incident ESRD, we found a linear relationship between
lower pre-ESRD cSCa and greater post-EDSR survival, even in
lower than normal cSCa concentrations. Consistent findings
were observed between white versus black races and between
patients with versus without calcium supplement use. However,
the risk associated with higher cSCa concentrations were
attenuated among active vitamin D users. Faster decline in
cSCa was also associated with lower mortality among patients
with the first available cSCa �9.0mg/dL during the 1-year pre-
ESRD period. These relationships between decline in cSCa and
mortality were not observed among calcium supplement users
or active vitamin D users. Both serum levels and decline rates of
cSCa consistently showed a stronger association with for
noncardiovascular rather than cardiovascular mortality.

Few studies have examined the association between cSCa and
mortality innon-dialysis-dependentpatients. Findingshavebeen
mixed, in part because of varying study populations, adjustment
covariates, and statistical modeling approaches; in addition,
varying degrees of kidney function across the study cohorts may
have contributed to heterogeneous results. For example, one
study showed a U-shaped association among patients with
estimated GFR >60mL/min/1.73m2.(22) Another cohort study,
where the median estimated creatinine clearance was
45mL/min, found no association between cSCa andmortality.(23)

In contrast, Kovesdy and colleagues found an increased long-
term mortality risk associated with higher cSCa among patients
with mean estimated GFR of 33mL/min/1.73m2.(15) A similar
tendency was noted among patients with stage 4–5 CKD,(24)

albeit not significant because of the limited statistical power. We
examined a large cohort of patients with incident ESRD and
demonstrated the consistent association between higher pre-
ESRD cSCa and higher post-ESRD mortality. These observations

were further supported by the mortality risk associated with
increasing cSCa.

Main mechanisms underlying hypercalcemia and mortality in
CKD have been suggested, including vascular calcification,
which may eventually lead to cardiovascular death.(11–13)

Fig. 1. Trajectories of monthly population mean corrected serum
calcium concentrations during the pre- and post-end-stage renal disease
12 months across six groups based on averaged values over the prelude
6 months.

Fig. 2. Association between 6-month averaged corrected serum
calcium concentrations before dialysis initiation and (A) all-cause, (B)
cardiovascular, and (C) noncardiovascular mortality with hierarchical
adjustments for demographics, comorbidities, medications, body mass
index, estimated glomerular filtration rate, serum albumin, and
medications.
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Indeed, non-calcium-containingphosphorousbinders, compared
with calcium-containing binders, have been shown to lower risk
of the development of hypercalcemia,(25) progression of arterial
calcification,(26–30) hospitalization,(31) and mortality(25,26) among
dialysis patients. A small randomized clinical trial also suggested
the survival benefit of non-calcium-containing versus calcium-
containing phosphorous binders in non-dialysis-dependent
CKD.(32) However, several meta-analyses have pointed out that
evidence supporting the cardiovascular benefit of non-calcium-
basedphosphatebinders are lacking in termsof clinical outcomes
such as hospitalization and mortality.(25–27) Our results provided
further evidence that the association betweenpre-ESRD cSCa and
mortality may be stronger for noncardiovascular versus cardio-
vascular death after dialysis initiation. This is plausible given that

cardiovascular events are among causes of protein-energy
wasting in this population, leading to various adverse con-
sequences including cardiorenal syndrome, infection, decreased
physical function, and loss of residual kidney function.(33–35)

Additionally, macrocalcification (ie, medial artery calcification),
which is frequently observedamongpatientswith advancedCKD,
can develop without occlusion of vasculature; hence, increased
vascular stiffness due to vascular calcification in CKD may not
necessarily result in cardiovascular events.

Hypocalcemia adversely affects cardiac function and rhythm,
possibly leading to death through heart failure and arrhyth-
mias,(36,37) and previous studies have shown the relationship
between low cSCa and high mortality in various popula-
tions.(8,16,22) However, clinical symptoms depend on both the

Fig. 3. Adjusted association of 6-month averaged corrected serum calcium before dialysis initiation with all-cause, cardiovascular, and
noncardiovascular mortality in model 3, stratifying patients into 12 groups according to six corrected serum calcium levels and the use of either
calcium supplement (A, C, and E) or active vitamin D (B, D, and F).
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severity and chronicity of hypocalcemia. Even very low ionized
calcium levels can be asymptomatic in chronic hypocalcemia,(38)

and cSCa gradually declines along with kidney function in the
later stages of CKD as shown in our study. Also, calcium status
may be underestimated in late-stage CKD because the fraction
of ionized calcium increases according to metabolic acido-
sis.(39–41) These factors observed in late-stage CKDmay diminish
the mortality risk of hypocalcemia, resulting in the incremental
association between cSCa and mortality. Additionally, time-
dependent Cox models may be preferred to evaluate the short-
term association with mortality if repeated cSCa measurements
were available during the follow-up period.(15)

The proportion in the final analytical cohort was low
(n¼ 21,826; 34%) when compared with the original cohort of
64,930 patients, which may raise a concern about selection bias.
However, the number of patients with available data on pre-
ESRD estimated GFR was also limited in the administrative VA
database (n¼ 26,209; 40%), suggesting that many veterans
primarily received pre-ESRD care outside of the VA health care
system. A total of 24,227 patients (37%) had available data on
pre-ESRD serum calcium (Supplemental Fig. S1), and the
difference in the numbers of patients with available pre-ESRD
eGFR (n¼ 26,209) versus those included in this study
(n¼ 21,826) was primarily attributable to our definition of
corrected serum calciumwhere serum calcium and albumin had
to be measured concomitantly. Therefore, our cohort is
considered a majority of veterans receiving care within the VA
health care system during the pre-ESRD period.

The baseline use of active vitamin D attenuated the
mortality risk associated with higher cSCa concentrations in

this study, particularly for noncardiovascular death. Vitamin D
is suggested to have various pleiotropic effects against various
nonskeletal diseases including CKD, diabetes, malignancies,
infectious diseases, and cardiovascular diseases,(2,42–44) and
several observational studies have shown the association of
active vitamin D treatment with favorable clinical outcomes
among patients with CKD and ESRD.(45–50) The attenuation in
the risk of noncardiovascular mortality by baseline active
vitamin D use was observed only among patients with pre-
ESRD cSCa levels >9.0mg/dL but not among those with lower
cSCa levels. This observation may be explained by older age
and higher Charlson comorbidity index among patients with
higher pre-ESRD cSCa levels because these factors are
associated with both vitamin D deficiency and adverse clinical
events. Although randomized clinical trials failed to demon-
strate the cardiovascular benefit from active vitamin D in CKD
in terms of left ventricular mass and diastolic function,(51,52) a
recent observational study found that the association between
active vitamin D treatment and mortality was stronger for
noncardiovascular than cardiovascular death,(53) which is
consistent with our results. However, there might be survivor
bias because we defined the medication use based on the
baseline period (ie, prevalent users), not the initial period after
dialysis initiation (ie, new users). Baseline serum cSCa levels
had also been increased to some extent by active vitamin D
among prevalent users, and hence, the relative effects of
active vitamin D, compared with other calcium-raising drugs
such as calcium supplements, still need to be evaluated in
clinical trials among patients with advanced CKD with a focus
on noncardiovascular adverse events.

Fig. 4. Distributions and restricted cubic splines comparing all-causemortality risk associated with 12-month change in corrected serum calcium (cSCa)
before dialysis initiation across adjustment models (models 1–4), stratified by the first available cSCa during the 1-year pre-ESRD period (A, overall;
B, <9.0mg/dL; C, 9.0 to <9.5mg/dL; and D, �9.5mg/dL).
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We acknowledge several other limitations in this study. By
nature of this being an observational study, we could not make
definitive statements about the causal associations of cSCa and
medications with mortality. We are also not able to exclude the
possibility of residual confounding and the presence of
unmeasured confounders. We did not include serum phospho-
rus because of the inverse or reciprocal correlation between
serum calcium and phosphorus and because of the high degree
of missing data. This is likely bias toward the null leading to the
underestimation of risk-associated higher cSCa given the
established relationship between higher serum phosphorus
and higher mortality in CKD.(54) Additionally, there are likely to
be misclassifications of cause of death in the administrative
records, which would have diluted the difference between the
associations of serum calcium with cause-specific deaths.
Furthermore, recent studies have shown that the correlation
between cSCa and ionized calcium is inadequate among both
dialysis patients and non-dialysis-dependent patients with
CKD.(40,55,56) More accurate assessment of calcium status may
alter the strength in the associations for cardiovascular and
noncardiovascular mortality.(57) We also cannot exclude the
possibility of selection bias resulting from our inclusion criteria
of patients who survived the pre-ESRD to post-ESRD transition
periods. Lastly, this study cohort mainly consisted of non-
Hispanic white males or non-Hispanic black males, and hence,
our findings may not be extrapolated to females, Hispanics, or
other races.
In conclusion, our study demonstrated an incremental linear

association of higher pre-ESRD cSCa with higher post-ESRD
mortality among patients with incident ESRD, especially for
noncardiovascular death. The mortality risk associated with
higher cSCa was attenuated among active vitamin D users.
These observations are in contrast to the current clinical practice
guidelines suggesting maintaining total serum calcium con-
centrations within the normal range across stages 3–5D CKD.
Our findings are hypothesis generating, and further studies are
necessary to explore the optimal management of serum calcium
in late-stage CKD.
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