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Abstract
Background

Esophageal adenocarcinoma (EAC) remains a leading cause of cancer-related deaths worldwide, and
demonstrates a predominant rising incidence in Western countries. Recently, immunotherapy has
dramatically changed the landscape of treatment for many advanced cancers, the benefit in EAC thus far
been limited to a small fraction of patients.

Methods

Using somatic mutations data of The Cancer Genome Atlas (TCGA) and the International Cancer Genome
Consortium (ICGC), we delineated somatic mutation landscape of EAC patients from US and England.
Bioinformatics algorithms were utilized to perform function annotation, immune cell infiltration analysis,
and immunotherapy response assessment.

Results

We found that RYR2 was a common frequently mutated gene (FMG) in both cohorts, and patients with
RYR2 mutation suggested higher tumor mutation burden (TMB), better prognosis, and superior
expression of immune checkpoints. Moreover, RYR2 mutation upregulated the signaling pathways
implicated in immune response and enhanced antitumor immunity in EAC. Multiple bioinformatics
algorithms for assessing immunotherapy response demonstrated that patients with RYR2 mutation
might benefit more from immunotherapy. In order to provide additional reference for antitumor therapy of
different RYR2 status, we identified nine latent antitumor drugs associated with RYR2 status in EAC.

Conclusions

This study reveals a novel gene whose mutation could be served as a potential biomarker for prognosis,
TMB, and immunotherapy of EAC patients.

Background
Esophageal cancer is the eighth most prevalent malignancy and the sixth leading causes of cancer
related mortality worldwide. The predominant subtype in Western countries

is esophageal adenocarcinoma (EAC), which demonstrated a predominant rising incidence in the last 40
years [1, 2]. Gastroesophageal reflux disease (GERD) is a strong risk factor for EAC, the normal lower
esophageal squamous epithelium is replaced with an intestinal-type columnar mucosa (Barrett’s
esophagus), which can give rise to EAC[1]. Despite advances in multi-modality treatment including
endoscopic treatment, surgery, chemotherapy, and radiotherapy, the overall survival (OS) of EAC remains
unsatisfactory[3]. Thus, novel therapeutic strategies are urgently needed, especially for patients refractory
to conventional therapies.
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In recent years, immunotherapy has made tremendous progress and provided encouraging evidence[4].
Immune checkpoint inhibitors (ICIs) aim to help the immune system recognize and attack cancer cells by
acting on the primary targets including programmed death-ligand 1 (PD-L1), programmed death 1 (PD-1),
and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)[5]. Response to ICIs has been shown to be
more effective in cancers with a high tumor mutation burden (TMB), and EAC is one example of a cancer
type with a high TMB. Recent clinical trials including NCT01928394, NCT01943461, and NCT01772004
demonstrated that PD-L1 expression in EAC is predictive of immunotherapy response[6]. Nevertheless,
accumulating evidences showed PD-L1 alone might not be sufficient to predict immunotherapy response
due to only a minority of patients benefit. Consequently, considering the expensive cost and adverse
reaction of immunotherapy, it is essential to explore novel biomarkers for effective immunotherapy
management in patients with EAC.

Somatic mutations are also predictors of immunotherapy[7]. For instance, POLE mutation in colorectal
cancer tended to respond favorably to immunotherapy[7], mutations in SERPINB3 and SERPINB4 were
associated with immunotherapy response in two independent cohorts of patients with melanoma[8], and
TMB had also been considered as a predictive biomarker of multiple solid tumors[9]. The genetic
landscape of EAC has been well described. The Cancer Genome Atlas (TCGA) and the International
Cancer Genome Consortium (ICGC) have provided large-scale comprehensive genomic characterization
of EAC. Numerous efforts have been made to identify tumor drivers such as TP53, SMAD4, ARID1A,
SMARCA4, and PIK3CA, which play essential roles in the development, progression, drug sensitivity and
resistance, as well as prognosis of EAC[10, 11]. We hypothesize that there are some potential frequently
mutated genes (FMGs) also could identify patients who responded to immunotherapy. Unlike traditional
immunotherapeutic biomarkers such as PD-1/PD-L1, CTLA-4, and TMB, binary gene mutation data do not
require a cutoff value to stratify patients, which conveniently promote clinical translation.

In the present study, we delineated somatic mutations in EAC patients from US and England using TCGA
and ICGC datasets. Then, the common FMGs of two cohorts were identified, and we further explored the
relationship of these FMGs with TMB and OS. Ultimately, RYR2 mutation was found to be significantly
associated with TMB and OS, and indicated an “immune-hot” phenotype and better immunotherapy
response. Finding emerged from this study might identify a novel biomarker for prognosis, TMB, and
immunotherapy of EAC patients.

Materials And Methods
Data acquisition

Somatic gene mutations data for American EAC patients (n =87) and British EAC patients (n =409) were
respectively derived from TCGA (http://portal.gdc.cancer.gov/) and ICGC (http://dcc.icgc.org/). “Level 3”
transcriptome profile (RNA-Seq fragments per kilobase per million reads (FPKM) value) and clinical
information were also retrieved. The FPKM value was converted to transcripts per kilobase million (TPM)
value. Since RNA-seq data is often heavily right-skewed in the linear scale, a further log-2 transformation
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was performed. Patients were excluded if they 1) lacked somatic mutations data; 2) did not have
prognostic information; 3) received neo-adjuvant therapy.

Calculate the tumor mutation burden for each patient

Tumor mutation burden (TMB) was defined as the number of somatic, coding, indels mutations, and base
substitution per megabase (MB) of genome examined. All base substitutions and indels in the coding
region of targeted genes were counted. Silent mutations failing to contribute to an amino acid change
were not counted. The tmb() function of “maftools” R package was applied to calculate the TMB of each
sample[12].

Gene set enrichment analysis

To explore the potential molecular mechanisms significantly associated with RYR2 mutation, gene set
enrichment analysis (GSEA) algorithm was performed to identify enriched dramatically terms related to
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and biological process of gene ontology
(GO). Permutations were set to 1000 to obtain a normalized enrichment score (NES). Gene sets with false
discovery rate (FDR) <0.01 were considered to be significantly enriched.

Single sample gene set enrichment analysis (ssGSEA) was applied to quantify the relative abundance of
28 immune cells in the tumor microenvironment of EAC. The gene set for marking each cell was obtained
from the research of Charoentong, which stored various human immune cell subtypes including activated
CD8+ T cell, activated dendritic cell, natural killer T cell, macrophage et al[13].

Immunotherapy assessments

T cell-inflamed gene expression profile (GEP) proposed by Ayers et al. was used to predict clinical
response to PD-1 blockade[14]. The GEP was composed of 18 inflammatory genes associated with
antigen presentation, chemokine expression, cytotoxic activity, and adaptive immune resistance. The
Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was employed to predict the immunotherapy
response of each patient[15]. TIDE algorithm was a computational method to model two primary
mechanisms of tumor immune evasion: the induction of T cell dysfunction in tumors with high infiltration
of cytotoxic T lymphocytes (CTL) and the prevention of T cell infiltration in tumors with low CTL level.
Next, the Subclass Mapping (SubMap) method was utilized to evaluate the expression similarity between
the two RYR2 phenotypes and the patients with different immunotherapy response[16]. SubMap employs
GSEA algorithm to deduce the extent of commonality of the two groups. An adjust P-value <0.05
suggests the significant similarity between two groups.

Estimation of clinical chemotherapeutic response

To evaluate the drug response, we retrieved the imputed response to 138 anticancer drugs in EAC patients
from a previous study[17]. Drug sensitivity was quantified by half-maximal inhibitory concentration
(IC50), a low IC50 indicates a sensitive response. We planned to identify antitumor drugs with specific



Page 5/17

sensitivity to different RYR2 status: 1) Because the IC50 value of each drug was not normally distributed
(Shapiro-Wilk Normality test P <0.05), the Wilcoxon rank sum tests was utilized; 2) Considering the large
number of drugs, we adopted an FDR <0.05 as the screening criteria. FDR was obtained by Benjamini-
Hochberg (BH) multiple test correction; 3) For each drug of interest, if the Wilcoxon rank sum tests FDR
<0.05 and the sensitivity of one phenotype was significantly higher than that of another phenotype, it was
considered that the drug had specific sensitivity to this phenotype.

Statistical analysis

The gene mutations waterfall plot was visualized with “maftools” R package, and the co-occurrence or
mutually exclusive of gene mutations were evaluated by Fisher exact test. The Shapiro-Wilk Normality
test P-value of TMB, IC50, immune cells infiltration abundance, and immune checkpoints (ICPs)
expression were all less than 0.05. Thus, the comparisons of two groups were conducted by Wilcoxon
rank-sum test. The Chi-squared test or Fisher exact test was used to compare categorical variables. GSEA
was performed by “clusterProfiler” R package[18]. The Kaplan–Meier method was applied to generate
survival curves for prognosis analyses, and the log-rank test was used to define the significance of
differences. The hazard ratios (HRs) for variables were calculated by univariate Cox regression analyses,
and multivariate Cox regression was employed to ascertain independent prognostic factors. All statistical
P values were two-sided, and P <0.05 was deemed as statistically significance. FDR was obtained by BH
multiple test correction. All data processing, statistical analysis, and plotting were conducted in R 4.0.2
software.

Results
Landscape of somatic mutations in EAC

We defined 30 FMGs in American EAC patients from TCGA cohort, and the top five FMGs were TP53
(78%), TTN (49%), MUC16 (29%), SYNE1 (28%), and HMCN1 (23%) (Figure 1A). Meanwhile, we also
defined 30 FMGs in British EAC patients from ICGC cohort, and the top five FMGs were TP53 (72%), TTN
(55%), MUC16 (33%), CSMD3 (22%), and LRP1B (22%) (Figure 1B). Intriguingly, some FMGs were shared
in both American and British patients, including ARID1A, CSMD1, CSMD3, EYS, FAT3, FLG, HMCN1,
LAMA1, LRP1B, MUC16, PCLO, RYR2, RYR3, SMAD4, SPTA1, SYNE1, TP53, and TTN (Figure 1C). Then, we
focused on these common FMGs in subsequent analysis.

RYR2 mutation was associated with TMB and prognosis

The TMB in TCGA cohort ranged from 0.04 to 31.70/MB with a median of 2.1/MB; the TMB in ICGC
cohort ranged from 0.02 to 36.94/MB with a median of 2.3/MB. Among common FMGs, patients with
mutations in ARID1A, CSMD3, EYS, HMCN1, LAMA1, MUC16, PCLO, RYR2, RYR3, SPTA1, SYNE1, and TTN
possessed dramatically higher TMB in both TCGA and ICGC cohorts (Figure 2A). Previous research has
demonstrated that higher TMB suggested a favorable prognosis[19]. Thus, survival analysis was further
performed to identify whether these FMGs associated with increased TMB were also related to the OS of
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patients with EAC. As shown in Additional file 1: Figure S1, patients with RYR2 mutation had a
significantly longer OS (P <0.05). Univariate Cox analysis revealed the HRs of RYR2 mutation was 0.645
[95% confidence interval (CI): 0.433-0.962] (P <0.05) (Figure 2B). After taking into account age, gender,
and mutation of other FMGs, RYR2 mutation still remained statistically significance (P <0.05), suggesting
that RYR2 mutation was an independent protective factor of prognosis in EAC (Figure 2B).

RYR2 mutation promotedantitumor immunity in EAC

According to GSEA analysis, we found plenty of immune-related GO terms were enriched in RYR2
mutation phenotype, such as “Response to chemokine” (NES =2.192, FDR <0.001), “Chemokine-mediated
signaling pathway” (NES =2.180, FDR <0.001), “Interleukin-2 production” (NES =2.177, FDR <0.001),
“Lymphocyte mediated immunity” (NES =2.152, FDR <0.001), and “Granulocyte chemotaxis” (NES =2.180,
FDR <0.001) (Figure 3A). RYR2 mutation was also significantly associated with abundant immune-
related KEGG pathways, such as “Th1 and Th2 cell differentiation” (NES =2.194, FDR <0.001), “Cytokine-
cytokine receptor interaction” (NES =2.185, FDR <0.001), “Natural killer cell mediated cytotoxicity” (NES
=2.157, FDR <0.001), “T cell receptor signaling pathway” (NES =2.140, FDR <0.001), and “IL-17 signaling
pathway” (NES =2.121, FDR <0.001) (Figure 3B). In addition, we further applied the ssGSEA algorithm to
evaluate the relative infiltration abundance of 28 immune cell types. Consistent with the above results,
the abundance of most immune cells infiltration in patients with RYR2 mutation was significantly higher
than patients without RYR2 mutation (P <0.05) (Figure 3C and Additional file 2: Figure S2). Overall, these
results indicated RYR2 mutation might promoted antitumor immunity in EAC, which had important
implications for immunotherapy.

RYR2 mutation suggested better immunotherapy response

Patients with RYR2 mutation had higher expression level of PD-L1, PD-L2, PD-1, and CTLA-4 than patients
without RYR2 mutation (Figure 4A). The T cell-inflamed GEP algorithm was utilized and found a superior
inflamed score in RYR2 mutation phenotype (Figure 4B). We further applied the TIDE algorithm to assess
the TIDE prediction score of each patient and whether a patient would respond to immunotherapy. The
TIDE prediction score was lower in RYR2 mutation phenotype (Figure 4C). In addition, the proportion of
responders to immunotherapy in patients with RYR2 mutation was higher relative to patients without
RYR2 mutation (mutant type vs. wild type: 43% vs. 16%) (Figure 4D). SubMap analysis also revealed the
dramatical expression similarity between the RYR2 mutation phenotype and patients with anti-PD-L1
therapy (FDR <0.05) (Figure 4E). These results indicated that RYR2 mutation suggested better
immunotherapy response.

Identify potential antitumor drugs associated with RYR2 status

We retrieved the imputed response to 138 antitumor drugs in EAC patients from a previous study to
identify potential antitumor drugs with specific sensitivity to each phenotype[17]. As shown in Figure 5A,
the estimated IC50 of nine drugs were significantly differed between two groups. Patients without RYR2
mutation were more sensitive to Lenalidomide, MG-132, and SB216763, while patients with RYR2
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mutation were more sensitive to A-770041, A-443654, CMK, Erlotinib, JW-7-52-1, and Rapamycin. Drugs
were associated with RYR2 wild type mainly targeted protein stability and degradation and WNT
signaling, while drugs were associated with RYR2 mutation mainly targeted EGFR signaling, Kinases, and
PI3K/MTOR signaling (Figure 5B). These results provided additional reference for antitumor therapies of
different RYR2 status.

Discussion
In the present study, we respectively characterized the somatic mutation landscape of 87 American EAC
patients and 409 British patients from TCGA and ICGC datasets. Then, we found RYR2 mutated
frequently in two cohorts, and its mutation was dramatically associated with higher TMB and favorable
prognosis. Meanwhile, patients with RYR2 mutation suggested an “immune-hot” tumor, which enriched
abundant immune-related pathway, numerous immune cells infiltration, and higher expression of ICPs.
These results indicated patients with RYR2 mutation might benefit more from immunotherapy, which was
in line with the immunotherapy assessment results of bioinformatics algorithms.

RYR2 is a major component of the intracellular Ca2+ release channels and is associated with the
endoplasmic or sarcoplasmic reticulum of several cell types, especially in cardiomyocytes[20, 21]. Recent
studies demonstrated that RYR2 was significantly mutated in multiple cancers, and RYR2 was reported to
be a driver gene in cervical cancer, colon cancer, breast cancer, head and neck cancer, and lung
adenocarcinoma [22-26]. Femi et al. demonstrated that mutation in RYR2 was a prognosis biomarker of
cervical cancer and breast cancer[27]. Cimas et al. found that mutation in RYR2 was associated with
favorable outcome in basal-like breast tumors expressing PD-1/PD-L1[22]. Wang et al. reported that RYR2
mutation was a significant biomarker for suggesting high TMB in lung adenocarcinoma[26]. In this study,
we found that RYR2 mutation was an independent protective prognostic factor, and had a positive
relationship with high TMB in EAC. TMB represents the accumulation of somatic mutations in tumors, a
high TMB can give rise to mutation-derived neoantigens and improve immunogenicity of tumor, which is
likely to induce T-cell-dependent immune response[28]. Hence, we speculated that RYR2 mutation might
promote antitumor immunity in EAC.

 Actually, the RYR2 mutation phenotype enriched a multitude of immune-related pathways and displayed
the higher abundance of immune cells infiltration, suggesting the “immune-hot” subtype. Previous study
has demonstrated the “immune-hot” tumors were more sensitive to immunotherapy[29]. Apart from this,
some prevalent biomarkers of immunotherapy such as PD-L1, PD-L2, PD-1, and CTLA-4, their expression
in patients with RYR2 mutation were higher, which was conducive to obtaining an effective
immunotherapy response. Consistent with this, bioinformatics algorithms including T cell-inflamed GEP,
TIDE, and SubMap methods further validated this conclusion. These results indicated patients with RYR2
mutation might be a promising biomarker of immunotherapy. However, the limitation of our study is
evaluating the immunotherapy response using bioinformatics algorithms rather than conducting large-
scale immunotherapy clinical trials. In spite of this, the above results were highly consistent in terms of
functional analysis and predictive results, which indicates that our results are relatively reliable. In
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addition, we identified latent antitumor drugs associated with RYR2 status in EAC, hoping to provide
additional reference for antitumor therapies of different RYR2 status.

Conclusions
Our study identified RYR2 was frequently mutated in EAC, and RYR2 mutation was dramatically
associated with higher TMB and suggested a better prognosis. Moreover, RYR2 mutation upregulated the
signaling pathways implicated in immune response and enhanced antitumor immunity in EAC. This
study reveals a novel gene whose mutation could be served as a potential biomarker for prognosis, TMB,
and immunotherapy of EAC patients.

Abbreviations
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The Cancer Genome Atlas; ICGC: International Cancer Genome Consortium; FMGs: frequently mutated
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Figure 1

Landscapes of frequently mutated genes (FMGs) in EAC. (A-B) Oncoplot depicts the FMGs of EAC in the
TCGA (A) and ICGC (B) cohorts. The left panel shows mutation rate, and genes are ordered by their
mutation frequencies. The right panel presents different mutation types. (C) Venn diagram of FMGs
covered by both TCGA and ICGC cohorts.
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Figure 2

RYR2 mutation was associated with TMB and clinical prognosis. (A) Most gene mutations are associated
with a higher TMB. ns P ≥0.05; * P <0.05; ** P <0.01; *** P <0.001. (B) Univariate and multivariate Cox
regression analysis. WT, wild type; MT, mutant type.
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Figure 3

Functional and immune infiltration analysis. (A) Significantly enriched GO terms associated with RYR2
mutation. (B) Significantly enriched KEGG pathways associated with RYR2 mutation. (C) Assessment of
infiltration abundance of 28 immune cells in patients with and without RYR2 mutation.
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Figure 4

RYR2 mutation suggested better immunotherapy response. (A) Expression distribution of PD-L1, PD-L2,
PD-1, and CTLA-4 between patients with and without RYR2 mutation. (B-C) Distribution of T cell-inflamed
GEP (B) and TIDE prediction score (C) between patients with and without RYR2 mutation. (D) Distribution
of immunotherapy responders predicted by TIDE algorithm between patients with and without RYR2
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mutation. (E) SubMap algorithm evaluated the expression similarity between the two phenotypes and the
patients with different immunotherapy response.

Figure 5

Identify potential antitumor drugs associated with RYR2 status. (A) Distribution of estimated IC50 of nine
drugs between patients with and without RYR2 mutation. (B) The nine drugs and their corresponding
targeted molecules and pathways between patients with and without RYR2 mutation.
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