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Abstract： 

Background: Plant traits related to nutrition have an influential role on tree growth, tree 

production and nutrient cycling. Therefore, the breeding program should consider the genetics 

of the traits. However, the measurement methods could seriously affect the progress of 

breeding selection program. In this study, we tested the ability of spectroscopy to quantify the 

specific leaf nutrition traits including Anthocyanins (ANTH), flavonoids (FLAV) and Nitrogen 

balance index (NBI), and estimated the genetic variation of these leaf traits based on the 

spectroscopic predicted data. Live fresh leaves of Sassafras tzumu were selected for spectral 

collection, after which concentrations of ANTH, FLAV and NBI were analyzed by standard 

analytical methods. Partial least squares regression (PLSR), five spectra pre-processing 

methods, and four variable selection algorisms were conducted for the optimal prediction 

model selection. Each trait model was simulated 200 times for error estimation. 

Results: The Standard Normal Variate (SNV) to the ANTH model and 1st derivatives to the 

FLAV and NBI models, combined with significant Multivariate Correlation (sMC) algorithm 

variable selection are finally regarded as the best performance model. The ANTH model 

produced the highest accuracy of prediction with a mean R2 of 0.72 and mean RMSE of 0.10 %, 

mailto:ucjackley@gmail.com


 2 

followed by FLAV and NBI model (mean R2 =0.58, mean RMSE = 0.11 % and mean R2 =0.44, 

mean RMSE = 0.04 %). High heritability was found of ANTH FLAV and NBI with h2 of 0.78, 

0.58 and 0.61 respectively. It shows that it is benefitting and possible of breeding selection for 

the improvement of leaf nutrition traits. 

Conclusions: Spectroscopy can successfully characterize the leaf nutrition traits in living tree 

leaves and the ability to simultaneous multiple plant traits provides a promising and high-

throughput tool for the quick analysis of large size samples and serves for genetic breeding 

program. 

Keyword: spectroscopy; Anthocyanins (ANTH); flavonoids (FLAV); Nitrogen balance index 

(NBI), breeding selection 

Background 

Nitrogen (N) is one of the most essential nutrients in plant growth, which is needed to improve 

grain yield and quality (Cánovas et al., 2018). Excessive N fertilizer application creates severe 

environment problems, while inadequate N availability limits productivity. Hence, precise N 

application in the plant is an important goal (Srinivasan, 2006). The N status of the plant should 

be precisely measured during growth to guide precise fertilization (Payne et al., 2017). N is the 

most common limiting factor for the individual, natural and artificial ecosystems growth of the 

plant. Plants require N to maintain for growth mainly through external and internal sources, 

including soil organic matter, fertilizers, atmospheric deposition and stored N by plant 

themselves (Millard, 1996). Plants, such as  boreal species, store N  seasonally through the 

process of internal cycling and it is a major source of N supplement for tree growth especially 

when the external availability of N is limited (Nambiar and Fife, 1991; Millard  and Proe, 1993). 

Trees store N as proteins mainly in their perennial wood and bark tissues in summer and winter. 

In addition, other parts of foliage trees, like roots and leaves, also store N which provides 

nutrition for young roots and needles development. Tree N remobilisation often occurs during 
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the growth season. The stored N mainly determines the amount of N remobilised and plays an 

important role for the tree seasonal growth (Cooke and Weih, 2005; Villar-Salvador et al., 2015; 

Babst and Coleman, 2018). The dynamics and mobilization of N stored in trees have been 

widely studied (Cyr et al., 1990; Malagoli et al., 2005). The variation of plant species, genotype, 

soil and environment leads to the diversity of leaf nitrogen content (Sinclair and Horie, 1989; 

Famula et al., 2019). It is reported that the chlorophyll content has a strong positive correlation 

with N content which is an estimative index for N status in leaf (Wood et al., 1993). 

Chlorophyll content is measured as a proxy for leaf N status (Evans 1983) and non-destructive, 

spectroscopic, chlorophyll meters have been available for decades (Evans, 1983; Monje and 

Bugbee, 1992; Markwell et al., 1995; Huang and Peng, 2004; Moreau et al., 2004; Hardin et 

al., 2012). In addition to chlorophyll the content of flavonoids (FLAV), one of the main 

polyphenolic components of the plant, is also correlated with the N status of the leaf (Tremblay 

et al., 2012). Evidence shows that the rise of N fertilization will lead to flavonoid content 

decreasing and chlorophyll content increasing (Padilla et al., 2014). Another N status index, N 

balance index (NBI),which is the ratio of chlorophyll to flavonoid, is verified that it has a better 

and more reliable correlation with leaf N concentration than chlorophyll content alone 

(Tremblay et al., 2012). 

Anthocyanins (ANTH) are a group of water soluble flavonoid pigments that occur in all plant 

tissues. Anthocyanins are mostly related to a wide range of plant colour but often appear as red 

(Croft and Chen, 2017). In addition, unfavourable conditions will transiently have an impact 

on anthocyanins accumulation in both juvenile and senescent observable plant leaves (Garriga 

et al., 2014; Naing et al., 2017; Trojak and Skowron, 2017). Thus, Anthocyanins are taken as 

an indicator of plant leaf senescence and stresses (Paul et al., 2017; Liu et al., 2019). 

However, research on plant growth and the variation of N storage and remobilization have 

typically required labour intensive methods to measure the N concentration and index 
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properties (NBI, chlorophyll content, ANTH, and FLAV), such as atomic absorption 

spectrometry (Borges and Holcombe, 2017; Hu et al., 2019), chromatography (Rivero‐Villar 

et al., 2018) and so on. These analytical methods will limit the breeding selection of tree growth 

with a large number of samples. 

Alternatively, Near-infrared spectroscopy (NIRS) is a rapid, high-throughput technique that 

has been used for chemical components analysis in many fields. NIRS is a promising and 

reliable method that can be used for the assessment of a large number of samples (Forina et al., 

2015; Ramirez et al., 2015; Guillemain et al., 2017; Malegori et al., 2017; Li et al., 2018a). 

NIRS relies on the absorption of light at specific wavelengths because of the vibration, 

stretching and bending of molecular bonds, including C–H, N–H and O–H bonds (Bokobza, 

2002), will interact with the specific wavelengths in the NIR spectroscopy.  

Multivariate methods such as partial least squares regression (PLSR) (Wold et al., 2001) will 

be used to create a prediction model between NIR spectra and the independent chemical 

measurements. PLSR holds the advantages of producing reliable coefficients, reducing the bias 

and estimated error, and consuming fewer PLSR components, all of which make it one of the 

most popular methods for chemometric analyses (Bolster et al., 1996; Asner et al., 2011). The 

model will then be applied to unknown samples by their spectra data for independent chemical 

prediction. Our recent research shows that leaf chlorophyll content and colour parameters are 

predictable on fresh leaf samples with field near infrared spectrophotometry (Li et al., 2019). 

The total FLAV and ANTH concentration also have been predicted by a general calibration 

model in Ginkgo biloba leaf and four Indonesian herbal plant species, including Syzigium 

oleana, Piper betle, Jasminum and Graptophyllum pictum with NIR reflectance spectroscopy. 

NIR is a promising tool for tree breeding selection programs due to its robustness and capacity 

to screen large numbers of samples (Gebreselassie et al., 2017; Li et al., 2019). 
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The robustness and reliability of model accuracy are largely determined by the spectra quality 

and feature selection. The combinations vibrations information and noise of the raw NIR 

spectra (Yang et al., 2018) will result in overlapping and difficulty to directly distinguish the 

target plant properties (Inagaki et al., 2018). Spectra pre-processing methods, can efficiently 

reduce the overlapping and noise influence, such as stander normal variation (SNV) (Barnes et 

al., 1989), 1st and 2nd derivatives and so on (Jin et al., 2017; Park et al., 2018). To yield a robust 

and reliable model and avoid the influence of irrelevant variables and noise, it is essential to 

carry out variable selection methods to pick the most relevant variables responding to the target 

properties instead of the full length of spectra (Fernández et al., 2019; Liang et al., 2020).  

The joint analyses of chemometric statistics and variable selection algorithms has recently been 

used to eliminate the irrelevant variables and improve the model accuracy (Caliari et al., 2017; 

Mancini et al., 2018). The most common methods of variable selection are Genetic algorithm 

(Ga) (Zhao and Cao, 2016), Regularized elimination procedure (Rep) algorithm (Mehmood et 

al., 2012), Iterative predictor weighting (Ipw) (Forina et al., 1999) and significant Multivariate 

Correlation (sMC) algorithm (Tran et al., 2014). However, the comparison of variable selection 

algorithms along with PLSR for prediction of multiple leaf nutrition traits is less studied.  

Sassafras tzumu is a deciduous tree species that has colourful leaves in autumn. Zhejiang 

province in China is vigorously promoting the cultivation of colourful species making S. tzumu 

a famous tree species. It has been widely planted in Zhejiang province to develop the urban  

and mountain landscape (Jiang aiping et al., 2016).  

Our latest study addresses whether leaf colour and chlorophyll and variation of leaf nutrition 

traits (NBI, ANTH and FLAV) in S. tzumu are heritable (Li et al., 2019).  

Therefore, the aims of this research are to 1) test the capacity of reflectance spectroscopy to 

characterize the NBI, ANTH and FLAV with PLSR model; 2) find out the most optimal pre-

processing method for these three leaf traits. 3) identify the most important wavelength that 
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related to NBI, ANTH and FLAV by four variable selection methods, including significant 

multivariate correlation (sMC), regularized variable elimination procedure (Rep), iterative 

predictor weighting (Ipw),  and Genetic algorithm (Ga) variable selection; 4) estimate genetic 

parameters and correlations of  NBI, ANTH and FLAV in S. tzumu. 

Methods and materials  

Materials  

50 half-sib families of S. tzumu were selected for our study from 6 different regions. Trees were 

planted in 2016 using a randomised complete block by a 2 m × 3 m spacing in Changle Forest 

Farm Nursery (30°27' N,119°48' E), Hangzhou, Zhejiang, China. Each family replicated 30 

times with 5 replications and 6 individual trees per replication. In total, 1500 trees were planted.   

NIR spectra collection 

Samples spectra data was collected through 5-6 leaves of each tree from the top to bottom with 

similar color on the same side in October 2018.  The NIR spectra data was taken from the 

upside surface of the leaves for three times with a handheld fibre optic contact probe from a 

field-based spectrometer (LF-2500, Spectral evolution, USA). Each spectrum took on average 

32 scans with a range of 1100 to 2500 nm by a 6 nm resolution. All spectra were obtained from 

the leaves of 1500 trees,  500 trees leaves from these 1500 trees were sampled and placed in a 

marked paper bag and transferred to the refrigerator immediately for chemical measurement. 

Leaf FLAV measurement 

Each leaf was ground into powder and being mixed with  methanol for 24hrs. 0.5 ml (1mg/mL) 

extract of each sample was taken to mixed with methanol (1.5 ml), 10% aluminium chloride 

(0.1 ml), 1 M potassium acetate (0.1 ml) and distilled water (2.8 ml). The mixture was being 

placed under room temperature for 30 mins and then measured at 415 nm for the absorbance 
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by UV–Visible spectrophotometer (UV-1280, Shimadzu, Japan). The flavonoid content of the 

sample was accessed by the value of absorbance density (Eom et al., 2007).  

Pigment extraction and NBI estimation 

 
A weighed circular piece cutting from each leaf was place into a mortar by a pestle ground 

with 100% methanol until the colour changed into white. The extract was being centrifuged for 

6 mins by 14,000 rpm at 4 °C and subsequently assayed by a UV–Visible spectrophotometer 

(UV-1280, Shimadzu, Japan). It conducted the equation and specific absorption in the 

wavelength which was reported by Wellburn (1994). The solution was mixed with 3 ml 

acidified methanol (1 % HCl) at 4 °C with moderate shaking for 12 hrs and then being 

centrifuged for 10 mins at 14,000 rpm. The extraction was then placed into the 

spectrophotometer, and it took the absorption at 530 and 657 nm wavelengths to determine the 

ANTH concentration (Strack and Wray, 1989). The NBI index was figured as the ratio of 

chlorophyll to flavonoid content. 

Model calibration and validation 

In total, 500 trees were The original five different types of pre-processing spectra (SNV, 1st, 

2nd derivatives, SNV+1st derivatives, SNV+ 2nd derivatives) combined with  PLSR (Wold et 

al., 2001) algorithm were compared in our study. The Savitzky-Golay smoothing (Press and 

Teukolsky, 1990) with a window size of 15 data points was applied in both 1st and 2nd 

derivatives spectra. PLSR models were generated with leave-one-out cross-validation for the 

prediction of ANTH, NBI, and FLAV content. Data were randomly split 200 times into 

calibration (80%) for model building and validation (20%) for model test respectively. 

Therefore, the PLSR model has been conducted 200 times for the evaluation of model 

performance. Each model combined with four variable selections (sMC, Ipw, Rep and Ga) was 

conducted to find out the most important spectral variables. The coefficient of determination 
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(R2) and root-mean-square error (RMSE) in each model derived from both calibration (Cal) 

and validation (Val) were applied for the evaluation model performance.  

Statistical analysis 

The estimation of genetic parameters were measured by A multivariate restricted maximum 

likelihood (REML) linear mixed model, details can be found in (Li et al., 2018a).The narrow 

sense heritability (ℎ2) of trait 𝑖 and genetic correlations( 𝑟𝑔𝑖𝑗) and phenotypic correlation( 𝑟𝑝𝑖𝑗) 

between trait 𝑖 and trait 𝑗 were calculated as:  

ℎ𝑖2 = 2.5𝜎𝑓𝑖2𝜎𝑓𝑖2 +  𝜎𝑒𝑖2  

𝑟𝑔𝑖𝑗= 𝜎𝑓𝑖𝑓𝑗√𝜎𝑓𝑖 2 +𝜎𝑓𝑗 2   

 𝑟𝑝𝑖𝑗= 𝜎𝑓𝑖𝑓𝑗+𝜎𝑒𝑖𝑒𝑗√(𝜎𝑓𝑖 2 +𝜎𝑒𝑖 2 )(𝜎𝑓𝑗 2 +𝜎𝑒𝑗 2 )                                                                         
where  𝜎𝑓𝑖 2 is the estimated family variance for trait 𝑖, and 𝜎𝑓𝑗 2 is the estimated family variance 

for trait 𝑗, 𝜎𝑒𝑖2  and 𝜎𝑒𝑗2  are the residual variances for trait 𝑖  and 𝑗, and 𝜎𝑓𝑖𝑓𝑗 and 𝜎𝑒𝑖𝑒𝑗  are the 

family and residual covariances between traits 𝑖 and trait 𝑗. The random effects of each family 

were set as breeding values. The realized genetic gain (∆𝐺𝑅) was calculated by the difference 

between the mean breeding values of selected top ratio leaf traits and the total mean of the leaf 

traits. 

R software (version 3.1.2) (R Core Team, 2017) was taken for all of the  data analysis. The pls 

package (Mevik et al., 2015) in R was carried out for PLSR model building, the plsVarSel 

(Mehmood et al., 2012) for variables selection, the prospectr package (Stevens and Ramirez–

Lopez, 2014) for NIR spectra manipulation, the lme4 package (Bates et al., 2015) for 

estimation of genetic parameters, and the ggplot2 package (Wickham, 2016) for visualization 

plot. 
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Results 

Model performance 

Three leaf traits ANTH, FLAV and NBI constructed the NIR spectral PLSR model. The results 

are shown in Figure 1. ANTH model has the highest accuracy, followed by FLAV and NBI 

model. The average of R2 and RMSE for these three models in calibration (Cal) sets is 0.54 

(range: 0.43-0.63), 0.47 (range: 0.35-0.58) and 0.36 (range: 0.26-0.45), in validation (Val) sets  

is 0.54 (range: 0.28-0.75), 0.47 (range: 0.28-0.69) and 0.38 (range: 0.25-0.64) respectively.  As 

for all spectral pre-processing models, SNV+2nd derivative prediction model is found to be the 

highest well-performing for predicting ANTH concentration than the other pre-processing 

methods, with a mean R2
Cal and RMSECal of 0.59 (range: 0.55-0.63), 0.11% (range: 0.11-

0.12%), a mean R2
Val and RMSEVal of 0.57 (range: 0.38-0.72), 0.11% (range: 0.09-0.13%), 

followed by 2nd, SNV+1st, 1st, original with the mean of R2 in Cal is 0.56 (range: 0.42-0.75),  

0.56 (range: 0.51-0.60), 0.53 (range: 0.48-0.59), 0.52 (range: 0.47-0.56), and RMSE 0.11% 

(range: 0.11-0.12%), ), 0.11% (range: 0.11-0.12%), 0.11% (range: 0.11-0.12%), 0.12% (range: 

0.11-0.12), and in Val is 0.57 (range: 0.42-0.75), 0.54 (range:0.30-0.70), 0.53 (range: 0.36-

0.67), 0.52 (range: 0.32-0.72), and RMSE  0.11% (range: 0.09-0.13%), 0.12% (range: 0.10-

0.14%), 0.12% (range: 0.10-0.14%), 0.11% (range: 0.09-0.14%) respectively. SNV shows the 

worst effect with the mean of R2 and RMSE for Cal  and Val 0.49 (range: 0.44-0.54), 0.49 

(range: 0.28-0.63), and 0.13% (range: 0.13-0.14%), 0.13% (range: 0.12-0.16%) respectively. 

However, 1st yields the best PLSR model in the prediction of FLAV and NBI than the other 

pre-processing model, with high mean R2
Cal R2

Val of 0.51 (range: 0.46-0.58), 0.52 (range: 0.29-

0.68), and low mean of RMSECal, RMSEVal of 0.12% (range: 0.11-0.13%), 0.12 (range: 0.10-

0.12%) in FLAV model and high mean R2
Cal, R2

Val of 0.39 (range: 0.33-0.45), 0.41 (range: 

0.26-0.60), and low mean of RMSECal, RMSEVal of 0.05% (range: 0.05-0.05%), 0.05 (range: 

0.04-0.06%) in NBI model respectively. The effect of SNV shows a poor prediction in the 
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FLAV and NBI as well.  The mean of R2
Val is 0.40 (range: 0.26-0.64) and 0.47 (range: 0.29-

0.64) respectively. 

 

Figure 1 Distribution (95% confidence intervals) of calibration and validation statistics from 200 simulations of models 

predicting ANTH, FLAV and NBI with full length NIR spectra. Each model permutation included 80% of the data for internal 

calibration and the remaining 20% for validation. R2: coefficient of determination of cross-validation; RMSE: root-mean-

square error of cross-validation; The black vertical line in each box represents median value, the red colour box represents the 

SNV+ 2nd model. the green colour box represents the 1st model. 

The relationship between the predicted and measured content of Cal and Val datasets by ANTH 

model with SNV+ 2nd derivative spectra, FLAV and NBI model with 1st derivative spectra was 

plotted in Figure 2. The error bar represents the prediction error of 200 times per sample. It 

shows that due to the high accuracy of the ANTH and FLAV models, the predicted values are 

more correlated with the measured values, while the relationship between predicted and 

measured values of NBI model is relatively poor. Although the prediction accuracy of each 

model is different, the prediction error of the Cal and Val data sets is still little. 
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Figure 2 Measured and predicted ANTH, FLAV and NBI contents with full length of NIR spectra. Error bars for predicted 

values represent the standard deviations obtained from the 200 simulated models. 

The residual of the best processing spectra model for each leaf trait shows that all of these three 

models tend to be underpredicted when the measurement value is small. With the rise of the 

measurement value, the prediction value has the tendency of overprediction. The residual value 

of ANTH, FLAV and NBI model is between an acceptable range from -0.3 to 0.3. 

 

Figure 3 Residuals plotted against measured ANTH, FLAV and NBI with full length of spectra. Error bars for predicted values 

represent the standard deviations obtained from the 200 simulated models. 
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Variable selection and model optimization  

Four types of variable selection methods were compared to test the performance of ANTH, 

FLAV, and NBI PLSR models (Figure 4). The prediction accuracy of ANTH, FLAV, and NBI 

PLSR models was enhanced much better than the full-length spectra models by these four 

different variable selection methods. ANTH model still holds the highest R2 and RMSE value 

in both Cal and Val data, followed by the FLAV and NBI model. The highest prediction model 

for ANTH, FLAV and NBI was found through sMC-selected NIR spectra variables with the 

mean R2
Val of 0.72 (ranged: 0.69 to 0.75), 0.58 (ranged from: 0.54 to 0.62), 0.44 (ranged from: 

0.26 to 0.67), and of the mean RMSEVal of 0.10 % (range: 0.09-0.10 %), 0.11 % (range: 0.10-

0.12 %), 0.04 % (range: 0.04-0.05 %) respectively. The sMC_PLSR models reached a more 

stable prediction with less than 16% of full length of spectra on each leaf trait (Figure 5), and 

having a similar residual range to the model with full spectral information (Figure 6).  

 

 

Figure 4 Distribution (95% confidence intervals) of calibration and validation statistics from 200 simulations for models 

predicting ANTH, FLAV and NBI contents using sMC, Rep, Ipw and Ga variable selection. Each model permutation included 
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80% of the data for calibration and the remaining 20% for validation. R2: coefficient of determination of cross-validation; 

RMSE: root-mean-square error of cross-validation; The black vertical line in each box represents median value, the red colour 

box represents the sMC model.  

 

 

Figure 5 Measured and predicted ANTH, FLAV and NBI contents with sMC selected NIR spectra.  Error bars for predicted 

values represent the standard deviations obtained from the 200 simulated models. sMC_V: the total selected number of 

variables. 

 

Figure 6 Residuals plotted against measured ANTH, FLAV and NBI with sMC selected spectra. Error bars for predicted values 

represent the standard deviations obtained from the 200 simulated models. 
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Figure 7 displays the important variable information area selected by sMC variable selection 

method in the ANTH, FLAV and NBI model which conducted 200 times on each model. Even 

the predicted model of three leaf traits was being run 200 times, sMC variable selection brought 

out stability for the selected important variable areas with a few relative spectral region in 

prediction models. The variables at 2060，2180，2270，2330 and 2440nm are considered as 

the vital roles in the construction of ANTH prediction model. As for FLAV, 1070，1235，

1950 and 2220 nm are more important areas. Spectroscopic variables at 1100, 1220, 1465, 

1950 and 2220 nm make a critical difference in the NBI predictive model. 

 

Figure 7 Spectra influence in ANTH, FLAV and NBI models that randomly being conducted 200 times; each line means one 

time of modelling with sMC variable selection. 

Heritability, genetic and phenotypic correlation among traits 

Table 1 shows the correlation (genetic and phenotypic) and heritability of three traits. Leaf 

ANTH produces the highest heritability of 0.78, followed by FLAV and NBI with h2 of 0.58 

and 0.61 respectively. There has no significant genetic and phenotypic correlation between 
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ANTH, FLAV and NBI.  FLAV was found to have the highest positive genetic correlation with 

ANTH of a value of 0.36.  

Table 1 The heritability, genetic (above diagonal) and phenotypic correlation (below diagonal) between ANTH, FLAV and 

NBI traits with standard error between parentheses.  

Traits ANTH FLAV NBI h2 

ANTH  0.36 (0.01) 0.11 (0.02) 0.78 (0.10) 

FLAV 0.16 (0.03)  0.09 (0.01) 0.58 (0.11) 

NBI 0.09 (0.01) 0. 12 (0.01)  0.61 (0.08) 

 

Family selection 

 

 

Figure 8 Family ranking for ANTH, FLAV and NBI content in Sassafras tzumu at age 2. Family values are expressed as 

deviation from each trait mean. BV: Breeding values. 

 

The best models of ANTH, FLAV and NBI were applied to predict the remaining 1000 trees 

spectra. In total, 1500 trees of 50 families were selected for breeding analysis. Figure 8 shows 
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the distribution of three leaf traits in the ranking of breeding value from 50 families. The 

ranking of three leaf traits in different families is inconsistent as well as a part of families 

consistently displaying in the breeding value, which explains that it is feasible to make a family 

selection of ANTH, FLAV and NBI at the same time through genetic selections.  

 

Figure 9 Relationship between ANTH, FLAV and NBI content breeding values of Sassafras tzumu families at age 2. BV-

ANTH: breeding value of ANTH; BV-FLAV: breeding value of FLAV; the blue solid line: the mean value of each trait 

breeding value; red square: the region that most interesting. The number of each dot: family number. 

Figure 9 demonstrates the breeding value distribution of 50 families of three leaf traits. The 

blue solid lines represent the average of ANTH and FLAV respectively. The families with a 

higher NBI breeding value than its mean are shown in red, and below the mean is in black. 16 

families have high FLAV and ANTH breeding value. 10 families with a high breeding value 

will be selected If NBI breeding values are required to be above mean. These families can be 

further taken as genetic family materials for second-generation breeding.  
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Discussion  

The health of tree growth is dictated by main factors, such as soil, nutrients, environment, 

genetic and so on. N is a key role of nutrient which highly influences the tree growth. 

The internal N cycling in trees  (Swarts, 2016) is a hot topic in numerous study (Millard and 

Neilsen, 1989; García-Sánchez et al., 2017; Li and Coleman, 2019). However, the 

measurement of N concentration limits the access to the further study. In this study, the field-

base reflectance spectroscopy is proved to be a useful method to characterize the plant nutrition 

properties in fresh leaves. The SNV + 2nd derivative spectra for ANTH, and 1st derivative 

spectra for FLAV and NBI have been identified to increase the model accuracy when 

calibrating the PLSR prediction models. Incorporate with spectra variable selection, the model 

accuracy is significantly improved with less variables for the prediction of leaf nutrition traits. 

Our model offered a reliable result for predicting the FLAV content in fresh leaf (R2
Val=0.58, 

ranged from: 0.54 to 0.62), which was lower than the result reported for fresh Ginkgo biloba 

leaf in different colors (R2
CAL = 0.82 and RMSE = 2.62 %) (Shi et al., 2012). The variability 

lessened by small range of NBI value lead to an inefficient prediction (Blanco and Villarroya, 

2002).  

Conversely, our result of the prediction of ANTH content illustrates a suitable accuracy than 

the other two leaf traits, with a mean R2
Val of 0.72 (range: 0.69-0.75) and a mean of RMSEVal 

= 0.09 % (range: 0.09-0.10 %). Similar result was discovered in wine grapes by NIR 

hyperspectral imaging and PLSR model, which gave R2 of 0.84 and RMSEP of 0.013% for 

estimating ANTH content. 

A robust statistical methodology for model calibration which was first conducted by Couture 

et al. (2016) was carried out to predict plant leaf secondary metabolites with reflectance 

spectroscopy. It was being run 200 randomized simulations for calibrating the models to 

provide an estimation of the model uncertainty and overall stability (Figures 1-7). It is similar 
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to our previous study which takes use of filed spectroscopy to predict the leaf colour and 

chlorophyll content (Li et al., 2019).  Random sampling (Quentin et al., 2017) and Kennard-

Stone sampling algorithm (Li et al., 2018b) in other studies, which sample only once for model 

calibration, may cause instability for model prediction. Thus, we highly recommend to use this 

methodology for model calibration and validation on NIR analysis. 

The NIR spectra involves not only the favourable information but noise and irrelevant 

information which will encumbrance the model accuracy of prediction. Therefore, variable 

selection is regarded as an efficient way to find out the most important wavelengths which 

contributes the minimum error for model calibration and helps to reduce the model processing 

time for spectral models. Variables in the spectrum play a key role in the predictive accuracy 

of the model. The spectral information is extensive along with the relevant and irrelevant 

information, both of which will overlap to interfere the model construction of the useful 

information and the PLSR model with a specific trait (Workman Jr and Weyer, 2012). Thus, it 

is vital to screen important variables for spectral information. In this study, four variable 

selection methods were compared to pick the best variable selection method. It shows that the 

sMC-PLSR model efficiently identified the key wavelengths and enables us to select a small 

set of variables to yield a promising and robust calibrated model for the prediction of ANTH, 

FLAV and NBI. Our results support the research announced by Li and Altaner (2018), who 

successfully took the sMC variable selection method to improve the accuracy of an NIR 

calibration model to predict concentrations in extracts of heartwood of Eucalyptus bosistoana 

trees, and Li et al. (2019) who found that sMC selection algorithm held the advantage of finding 

the most relevant variables for the prediction of leaf chlorophyll content and colour parameters. 

Some studies also states that significance multivariate correlation (sMC) (Tran et al., 2014) is 

a positive algorithm to remove confounding effects from NIR calibrations (Wijewardane et al., 

2016).  
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Several important variables which are related to the ANTH, FLAV, and NBI have been selected 

similarly in each model, including the range at 2060，2180，2270，2330 and 2440 nm for 

ANTH, 1070, 1235, 1950, 2220 nm for FLAV, and 1100, 1220, 1465, 1950, 2220 nm for NBI 

respectively. As reported by Ramirez et al. (2015), the regions around  2060, 2180, 2270, 2330 

and 2440 nm are mostly associated with O–H and C–H stretching vibrations as well as the 

starch and sugar (Decruyenaere et al., 2012). However, in our study, these regions have been 

ignored. The regions around 1070, 1100, 1220, 1235 nm are mainly assigned to the 1st 

overtones of C–H combination bands and 1st and 2nd overtones of O–H and N–H stretching 

vibrations, while the bands around 1465 nm are mostly related to the 1st overtones of O–H 

stretching vibration, both of which are associated with starch and protein  (Curran, 1989; 

Kokaly, 2001; De Bei et al., 2017). In NIR spectra, water has a wide absorbance region which 

is a major influence on the other chemical information because of spectra overlap. In our study, 

the band around 1950 nm related to the water has less contribution to the FLAV and NBI model 

but no influence on the ANTH model. It probably influences the accuracy of model for the 

prediction of FLAV and NBI. Correlational study was found by Min et al. (2006), who stressed 

that the regions of 1910 and 1938 nm highly related to water might have a strong impact on 

the N concentration prediction. 

Trees N internal cycling is considered as one of the major ecology factors for tree growth and 

is an augment for the tree uptake of soil N (Millard, 1989). In addition, it also helps to 

understand numerous aspects of plant ecology, for instance, to evaluate the effect of the N 

storage and remobilization in different part tissues of trees in relation to current demands for 

growth (Schneider et al., 1996), to find out the role of N on growth stress, the relationship with 

N deposition in forest (Gundersen, 1991; Gundersen et al., 1998) and the relationship with 

dynamics of carbon recourse in trees (Villar-Salvador et al., 2015; Han and Kabeya, 2017). 

Our fast and accurate measurement of N index, including ANTH, FLAV and NBI traits of trees 
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with NIR spectroscopy provides an advanced way for the study of N internal cycling and allows 

to quickly measure large number of samples. 

In this study, we continue to use the coefficients of 1/2.5 for the calculation of heritability of 

ANTH, FLAV and NBI traits based on our previous study to avoid the assembling of half-

siblings and inbreeding effects. (Li et al., 2019). The moderate heritability of ANTH, FLAV 

and NBI was found, with the value of h2 ranging from 0.61 to 0.78. The leaf ANTH heritability 

of 0.78 in our study is similar to the result found by Yihu et al. (2009) who figured out the 

anthocyanin content heritability ranging from 0.79 to 0.91 in leaves of chili pepper higher than  

0.29 reported in the leaf of Aspen (Populus tremula L.) (Robinson et al., 2012). For FLAV, a 

significant high rang of heritability from 0.94 to 0.99 was reported in the leave of Ginkgo Trees 

(Zhang et al., 2017) which was much higher than our study (h2= 0.58). It indicates that genetic 

control capacity is different between species even the same traits. Our study proves there is 

also a potential for the selection for NBI traits in breeding programs while with less study on 

the estimation of NBI heritability. 

The consistence of families ranking of ANTH, FLAV and NBI indicates that the selection for 

a good leaf nutrition tree is workable, and the selection of qualified nutrition plant is supposed 

to involve multiple traits, which will afford a stable inheritance. 

Conclusion 

In conclusion, NIR spectroscopy is potentially taken to estimate the nutrition related traits by 

fresh leaf. Although our models do not perform a higher accuracy for ANTH, FLAV and NBI, 

the residuals shown that the prediction error are small. This should not affect the availability 

in tree breeding programs, cause the selections can be based on relative prediction value. Our 

study provide an alternative way for the N index traits and open a door to the efficient analysis 

of the internal N cycling in trees. The pre-processing method and variable selection much 

influence the performance of model prediction. Our study found that by using of 1st and SNV+ 
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2nd derivative spectra processing method and sMC variable selection algorithm, the PLSR 

models have been highly improved. In addition, the repeated spectral statistical methodology 

that we applied provided an efficient way to deal with variation in calibration data and generate 

information on the response of plant nutrition traits with NIR spectra. NIR model serves as an 

efficient tool for the estimation of genetic parameters and breeding selection in high throughput 

way to improve the leaf traits quality. 
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Figures

Figure 1

Distribution (95% con�dence intervals) of calibration and validation statistics from 200 simulations of
models predicting ANTH, FLAV and NBI with full length NIR spectra. Each model permutation included
80% of the data for internal calibration and the remaining 20% for validation. R2: coe�cient of
determination of cross-validation; RMSE: root-mean-square error of cross-validation; The black vertical
line in each box represents median value, the red colour box represents the SNV+ 2nd model. the green
colour box represents the 1st model.



Figure 2

Measured and predicted ANTH, FLAV and NBI contents with full length of NIR spectra. Error bars for
predicted values represent the standard deviations obtained from the 200 simulated models.

Figure 3

Residuals plotted against measured ANTH, FLAV and NBI with full length of spectra. Error bars for
predicted values represent the standard deviations obtained from the 200 simulated models.



Figure 4

Distribution (95% con�dence intervals) of calibration and validation statistics from 200 simulations for
models predicting ANTH, FLAV and NBI contents using sMC, Rep, Ipw and Ga variable selection. Each
model permutation included 80% of the data for calibration and the remaining 20% for validation. R2:
coe�cient of determination of cross-validation; RMSE: root-mean-square error of cross-validation; The
black vertical line in each box represents median value, the red colour box represents the sMC model.



Figure 5

Measured and predicted ANTH, FLAV and NBI contents with sMC selected NIR spectra. Error bars for
predicted values represent the standard deviations obtained from the 200 simulated models. sMC_V: the
total selected number of variables.

Figure 6



Residuals plotted against measured ANTH, FLAV and NBI with sMC selected spectra. Error bars for
predicted values represent the standard deviations obtained from the 200 simulated models.

Figure 7

Spectra in�uence in ANTH, FLAV and NBI models that randomly being conducted 200 times; each line
means one time of modelling with sMC variable selection.



Figure 8

Family ranking for ANTH, FLAV and NBI content in Sassafras tzumu at age 2. Family values are
expressed as deviation from each trait mean. BV: Breeding values.



Figure 9

Relationship between ANTH, FLAV and NBI content breeding values of Sassafras tzumu families at age
2. BV-ANTH: breeding value of ANTH; BV-FLAV: breeding value of FLAV; the blue solid line: the mean
value of each trait breeding value; red square: the region that most interesting.


