
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

Arts & Sciences Electronic Theses and 
Dissertations Arts & Sciences 

Summer 8-15-2021 

Association of Structural Variation (SV) with Cardiometabolic Association of Structural Variation (SV) with Cardiometabolic 

Traits in Finns Traits in Finns 

Lei Chen 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds 

 Part of the Bioinformatics Commons, Genetics Commons, and the Statistics and Probability 

Commons 

Recommended Citation Recommended Citation 

Chen, Lei, "Association of Structural Variation (SV) with Cardiometabolic Traits in Finns" (2021). Arts & 

Sciences Electronic Theses and Dissertations. 2485. 

https://openscholarship.wustl.edu/art_sci_etds/2485 

This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open 
Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an 
authorized administrator of Washington University Open Scholarship. For more information, please contact 
digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/art_sci_etds
https://openscholarship.wustl.edu/art_sci_etds
https://openscholarship.wustl.edu/art_sci
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F2485&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F2485&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/29?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F2485&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F2485&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F2485&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds/2485?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F2485&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


 
 

WASHINGTON UNIVERSITY IN ST. LOUIS 

Division of Biology and Biomedical Sciences 
Human and Statistical Genetics 

 

Dissertation Examination Committee: 
Nathan O. Stitziel, Chair  

Ira M. Hall, Co-Chair 
Adam Locke 

Nan Lin 
Timothy Peterson 

John Rice 
Nancy Saccone 

 
 

 

Association of Structural Variation (SV) with Cardiometabolic Traits in Finns  
Arts & Sciences Graduate Students 

by 
Lei Chen 

 

 

A dissertation presented to  
The Graduate School  

of Washington University in 
partial fulfillment of the 

requirements for the degree 
of Doctor of Philosophy 

 

 

August 2021 
St. Louis, Missouri 

 
 



 
 

 

 

 

 

 

 

 

 

 

 

© 2021, Lei Chen



ii 
 

Table of Contents 
List of Figures ................................................................................................................................ iv 

List of Tables ................................................................................................................................. vi 

Acknowledgments ......................................................................................................................... vii 

Abstract of the Dissertation ........................................................................................................... xi 

Chapter 1: ........................................................................................................................................ 1 

The contribution of SVs to quantitative cardiometabolic traits in Finns ........................................ 1 

1.1 Introduction ..................................................................................................................... 2 

1.1.1 Studying the genetics of cardiometabolic traits ........................................................................... 2 

1.1.2 The role of SVs in common and complex diseases – prior studies .............................................. 3 

1.1.3 Detecting SVs by sequencing data ............................................................................................... 4 

1.1.4 Identifying CVD associated SVs in Finns ................................................................................... 5 

1.2  Material and Methods ..................................................................................................... 6 

1.2.1 Samples and phenotype collection .......................................................................................... 6 

1.2.2 Power estimation and phenotype selection ............................................................................. 7 

1.2.3 Generation of SV callsets from WGS data .............................................................................. 7 

1.2.5 Replication using exome and array data ............................................................................... 12 

1.3 Results ........................................................................................................................... 16 

1.3.1 Structural variation detection and genotyping ...................................................................... 16 

1.3.2 Association of SVs with cardiometabolic traits .................................................................... 17 

1.3.3 Deletion of the ALB gene promoter is associated with multiple traits .................................. 19 

1.3.4 A multi-allelic CNV at PDPR is associated with pyruvate and alanine levels ..................... 21 

1.3.5 Additional trait-association signals ....................................................................................... 23 

1.4 Discussion ..................................................................................................................... 25 

1.5 Author Contributions .................................................................................................... 57 

1.6 Acknowledgements ....................................................................................................... 57 

Chapter 2: ...................................................................................................................................... 59 

Association between blood mtDNA content (MT-CN) and insulin related traits ........................ 59 

2.1 Introduction ................................................................................................................... 60 

2.1.1 Insulin-associated CNVs on nuclear mitochondrial DNA segments (NUMTs) ........................ 60 



iii 
 

2.1.2 Mitochondrial DNA copy number (MT-CN) and metabolic traits ............................................ 60 

2.2 Methods......................................................................................................................... 61 

2.2.1 Brief introduction of the pilot CNW experiment ....................................................................... 61 

2.2.2 Direct measurement of MT-CN and batch effect correction ................................................. 62 

2.2.3 Association test by direct measurement ................................................................................ 63 

2.2.4 Expanding the analysis to WES data ..................................................................................... 63 

2.3 Results ........................................................................................................................... 63 

2.3.1. CNVs on nuclear mitochondrial sequences (NUMTs) associate with insulin/fat mass traits .. 63 

2.3.2. Direct measured MT-CN showed stronger association signals with multiple metabolic traits in 

Finns .................................................................................................................................................... 64 

2.4 Discussion ..................................................................................................................... 65 

2.4.1 The potential and limitation of measuring MT-CN with WGS data .......................................... 65 

2.4.2 The story beyond: genetic determinants of MT-CN and its causal relationship with metabolic 

traits ..................................................................................................................................................... 66 

2.5 Acknowledgement ........................................................................................................ 67 

Chapter 3: ...................................................................................................................................... 77 

Genotyping Recurrent SVs in Loci with Complex Rearrangement Using Machine Learning 
Approach ....................................................................................................................................... 77 

3.1 Introduction ................................................................................................................... 78 

3.1.1 The limitation of applying traditional imputation methods to complex SVs ............................. 78 

3.1.2 The copy number polymorphism (CNP) of AMY1 locus and its potential phenotypic effect ... 79 

3.1.3 Neural network models and their potential application in this case .......................................... 80 

3.2 Methods......................................................................................................................... 82 

3.2.1 Data preparation ......................................................................................................................... 82 

3.2.2 Model training and evaluation ................................................................................................... 82 

3.3 Results ........................................................................................................................... 83 

3.3.1 Model performance .................................................................................................................... 83 

3.3.2 Predicted AMY1 CNP in Finns and its association with metabolic traits ................................. 85 

3.4 Discussion ..................................................................................................................... 86 

3.5 Acknowledgement ........................................................................................................ 88 

References/Bibliography/Works Cited ......................................................................................... 93 

 



iv 
 

List of Figures 
 

Chapter 1 

Figure 1.1: Deciding QC filters based on FDR curves………………...……………………...…28 

Figure 1.2: Flowchart of the overall experimental design.……….…………………...…………29 

Figure 1.3: Overview of the high-confidence SV callsets.……….…………………...…………30 

Figure 1.4: The frequency distribution of multi-allelic CNVs.….…………………...………….32 

Figure 1.5: Overlapping SVs among internal and external callsets....………………...…………34 

Figure 1.6: The overall evaluation of imputation quality with two metrics...………...…………35 

Figure 1.7: The ALB promotor deletion associated with serum albumin level and cholesterol 
traits………………………...……………....……….…………….……...…………36 

Figure 1.8: The overview of the 16 trait-association signals of ALB deletion.………………..…38 

Figure 1.9: Potential disease endpoints of the ALB deletion in FinnGen dataset.………………40 

Figure 1.10: The multi-allelic CNV at the PDPR locus affecting pyruvate and alanine...………41 

Figure 1.11: Aligning genome assemblies to solve the PDPR structure.……….…….…………43 

Figure 1.12: Read depth variation of the T-cell receptor genes.……….……………...…………45 

 

Chapter 2 

Figure 2.1: CNVs on chr1 and chr17 NUMTS regions and their association with insulin ...........68 

Figure 2.2: Directly measure MT-CN by aligning to mitochondrial genome  .............................69 

Figure 2.3: Batch effects among FINRISK cohorts ......................................................................70 

Figure 2.4: Trait association tests using directly measured MT-CN ............................................71 

Figure 2.5: Measuring MT-CN using WES data ..........................................................................73 

Figure 2.6: Measuring MT-CN in CCDG African American samples .........................................74 

 



v 
 

Chapter 3 

Figure 3.1: The two types of copy number labels ..........................................................................89 

Figure 3.2: The distribution of predicted and measured AMY1 copy number ..............................90 

Figure 3.3: The phenome-wide association results for predicted AMY1 copy number ................91 



vi 
 

List of Tables 
 

Chapter 1 

Table 1.1: Variant and sample counts in each QC step for WGS data. .........................................46 

Table 1.2: High-confidence autosomal SVs count ........................................................................47 

Table 1.3: Genotype redundancy estimation .................................................................................48 

Table 1.4: Fragmentation level ......................................................................................................49 

Table 1.5: Callsets QC metrics ......................................................................................................50 

Table 1.6: Summary statistics for all the genome-wide significant signals ...................................51 

Table 1.7: Leave-one-out validation for genome-wide significant SVs ........................................53 

Table 1.8: Test ALB deletion conditioned on GWAS SNPs .........................................................54 

Table 1.9: Test the GWAS SNPs w./w.o. SV as covariate ............................................................55 

Table 1.10: Conditional analysis (phenotype - phenotype) ...........................................................56 

 

Chapter 2 

Table 2.1: The association signals of NUMTs CNVs ....................................................................75 

Table 2.2: WES MT Copy Number vs. Candidate Metabolic Traits .............................................76 

 

Chapter 3 

Table 3.1: Model performance .......................................................................................................92 

 

 

 



vii 
 

Acknowledgments 
Before came to the United States for a PhD, I was mentally prepared for all the miserable stories 

I heard over the years. However, the closer I am to the end, the more I realized how much I 

enjoyed this journey and how hard it is to say goodbye to the people and life here. There were so 

many factors associated with those joy and accomplishments, while in a metaphor of PCA, the 

first component would be labeled with the name of my thesis advisor, Dr. Ira Hall. Five years 

ago, I decided to join the lab fascinated by his cool science, and that turned out to be a decision 

for which I will never regret. He is not only an excellent role model as a scientist, but also a 

caring mentor and thoughtful leader. He always has the ability to set up challenging but realistic 

research goals, a superpower that gradually pulled me out of my comfort zone and accelerated 

my growth as a trainee scientist. I also appreciate his direct, honest and respectful 

communicating style, which made me feel safe and comfortable to start the frank conversations 

about my feelings and thoughts. More than my academic advisor, Ira is also my trusty mentor 

and friend for lifetime.  

I also have to emphasize the contribution from my committee members, especially Nate and 

Adam, who have been dedicating to this project from day one, providing guidance and 

connecting me to resources. Thanks to Nan, Nancy and John for sharing their perspectives 

through the lens of statistics and thank to Tim for his valuable inputs from the view of genomics 

and bioinformatics.        

Next I want to thank the members of Hall lab, with the first round of applause going to Haley 

Abel and Niel Das, who helped me overcome the most challenging part of the SV project – 

developing and adapting the read-depth based methods to detect CNVs. Those two geniuses also 

inspired me by their incredible productivity and the bandwidth of supporting multiple crucial lab 



viii 
 

projects in parallel. Thanks to my fellow graduate students, both the “senior” batch – Sasha, 

Liron, Colby and Ryan Smith, and the “junior” batch – Shuangjia, Wen-Wei, and Xinxin, for all 

the practice talks they organized, all the innovative ideas they shared, and all the yummy snacks 

they put above the lab fridge. A special appreciation goes to Sasha, who took care of us like a big 

sister and voluntarily offered me help when I was still adapting to the new lab and the culture 

difference. I am so happy to see her achievements both in career and in personal life and wish 

her all the best in journey forward. Also, Liron, who owns a half of my acknowledgement of 

chapter 2. And there are also people in CCDG analysis group contributed to the fundamental 

work for this project: Bo, Allison, Dave, Erica, CJ, Ryan Christ, Krishna, Chad and Eddie, as 

well as the MGI production team. I also want to thank our collaborators in FinMetSeq 

Consortium, especially all those in Finland who shared the precious samples and phenotype data 

with us.  

Many other people in WashU also helped me along the way. First is the McDonnell International 

Scholar Academy, who financially supported me with a five-year fellowship and provided a 

great platform to meet talents from all over the world. Special thanks to James and Mary 

Wertsch, who treated scholars like family and invited us for Thanksgiving dinner every year. I 

also would like to thank the HSG program of DBBS, the former and current coordinators Jeanne 

and Sara, the current directors John and Nate, also Pat, the former HSG director who offered me 

a lot of career insights from his own transition to industry. Another important person is Thi, who 

has been my career advisor and personal inspiration as a strong East Asian woman. A special 

thanks to Meghann Feely and WashU recreation center, for the plenty of fun workouts they 

provided before and during the pandemic that kept me active and healthy.            



ix 
 

Then there are all my friends. Jiayang, Zhen, Jiang and Wenjun are my best friends in graduate 

school and also the people I missed the most in St Louis. Thanks to my rock-climbing buddies – 

Rachel, Ya-Lin, Wen-Wei, Yiran, and Hsun-Chia, for all the courage we gave to each other on 

and off the wall. Special thanks to the Morris Lab members too, for inviting Wenjun’s roommate 

and her dog to all the fun events. Big thanks to Qing, Mingxin and Yi, my besties in other parts 

of the world who nurtured our long-distance friendship and served as my sounding boards for 

years. 

Last but not the least, I would like to acknowledge my families in China, especially my parents. 

Growing up in a working-class family in East Asian usually means lots of pressure towards 

material success, while because of my parents and things they believed to be important in life, I 

got the privilege to pursue my own interests, happiness and a free soul.  

Lei Chen 

Washington University in St. Louis 

August 2021 



x 
 

 
 

 

 

 

 

 

 

 

 

 

 

Dedicated to my 4-year-old puppy, 

Shumai. 

 

 

 

 

 

 

 

 

 

 



xi 
 

ABSTRACT OF THE DISSERTATION 
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Professor Ira M. Hall, Co-Chair 
 

Cardiovascular diseases (CVDs) are known to be associated with a variety of quantitative risk 

factors such as cholesterol, metabolites, and insulin. Understanding the genetic basis of these 

quantitative traits can shed light on the etiology, prevention, diagnosis, and treatment of disease. 

However most prior trait-mapping studies have focused on single nucleotide variants (SNVs) and 

Indels, with the contribution of structural variation (SV) remaining unknown. In this thesis, we 

present the results of a study examining genetic association between SVs and cardiometabolic 

traits in the Finnish population. In the first chapter, we used sensitive methods to identify and 

genotype 129,166 high-confidence SVs from deep whole genome sequencing (WGS) data of 

4,848 individuals. We tested the 64,572 common and low frequency SVs for association with 

116 quantitative traits, and tested candidate associations using exome sequencing and array 

genotype data from an additional 15,205 individuals. We discovered 31 genome-wide significant 

associations at 15 loci, including two novel loci at which SVs have strong phenotypic effects: (1) 

a deletion of the ALB gene promoter that is greatly enriched in the Finnish population and causes 
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decreased serum albumin level in carriers (p=1.47x10-54), and is also associated with increased 

levels of total cholesterol (p=1.22x10-28) and 14 additional cholesterol-related traits, and (2) a 

multiallelic copy number variant (CNV) at PDPR that is strongly associated with pyruvate 

(p=4.81x10-21) and alanine (p=6.14x10-12) levels and resides within a structurally complex 

genomic region that has accumulated many rearrangements over evolutionary time. We also 

confirmed six previously reported associations, including five led by stronger signals in single 

nucleotide variants (SNVs), and one linking recurrent HP gene deletion and cholesterol levels 

(p=6.24x10-10), which was also found to be strongly associated with increased glycoprotein level 

(p=3.53x10-35). The result of this chapter confirms that integrating SVs in trait-mapping studies 

will expand our knowledge of genetic factors underlying disease risk.    

Chapter 2 and chapter 3 present two side projects derived from chapter 1: chapter 2 focused on 

an insulin associated chromosome 1 CNV which turned out to have indirectly measured the 

mitochondrial DNA copy number, of which the direct measurement showed stronger association 

with multiple metabolic traits. In chapter 3 we presented a pilot study of applying machine 

learning to genetics problems unsolvable by traditional methods. We built multi-layer neural 

network models to impute the highly polymorphic AMY1 CNVs, and showed the boosted 

performance compared to baseline regression models as well as the best practice employed in 

previous publication. Both chapters proposed solutions to new questions rising from the main SV 

project and provided the preliminary data for other ongoing or upcoming projects in our group.
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Chen L, Abel HJ, Das I, …, Stitziel NO, Hall IM. Association of structural variation with 
cardiometabolic traits in Finns. Am J Hum Genet. 2021 Apr 1;108(4):583-596. doi: 
10.1016/j.ajhg.2021.03.008. PMID: 33798444; PMCID: PMC8059371. 
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1.1 Introduction 

1.1.1 Studying the genetics of cardiometabolic traits  

Cardiovascular diseases (CVDs) are a series of heart and blood vessel conditions, which cause 

17.7 million deaths each year -- contributing 31% of the worldwide mortality(World Health 

Organization, 2017). Metabolic syndromes, including obesity, high insulin level, high blood 

pressure, fasting glucose and abnormal lipids cholesterol level are the common risk factors of 

CVD, coronary heart disease and type 2 diabetes(Wilson et al. 2005). Family studies and 

population genetic studies both suggest significant heritability of metabolic syndromes and 

CVDs(Hegele and Pollex 2005; Vattikuti, Guo, and Chow 2012; Pollex and Hegele 2006). 

Studying the genetics of related metabolic traits could help understand the etiology, prevention, 

diagnosis and treatment of CVD – for instance, to provide new targets for gene therapy(Wolfram 

and Donahue 2013). Family and population-based studies have shown significant heritability for 

many cardiometabolic traits(Kolifarhood et al. 2019; Kim et al. 2015; Campbell Am 2017; 

Hagenbeek et al. 2020), and prior genome-wide association studies (GWAS) have identified 

hundreds of associated loci(Willer et al. 2013; Fall and Ingelsson 2014; Visscher et al. 2017).  

However, limited by cost and technology, most previous genome-wide trait mapping studies 

have focused on common single nucleotide polymorphisms (SNPs) detectable by genotyping 

arrays, or SNPs and small insertion/deletion variants (indels) that are routinely assessed in 

genome and exome sequencing studies, leaving out the contributions of larger and more complex 

forms of genome variation.  
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1.1.2 The role of SVs in common and complex diseases – prior studies 

 Of particular interest is the contribution of genome structural variation (SV), which 

encompasses diverse variant types larger than 50bp in size, including copy number variants 

(CNVs), mobile element insertions (MEIs), inversions, and complex rearrangements. Although 

rare and de novo SVs are known to cause various rare human disorders, and somatic SVs play a 

central role in cancer biology, the extent to which SVs contribute more generally to common 

diseases and other complex traits is unclear. Early microarray-based CNV association studies 

from the Wellcome Trust Case Control Consortium (WTCCC) and others(Wellcome Trust Case 

Control Consortium et al. 2010; McCarroll et al. 2008; Myocardial Infarction Genetics 

Consortium et al. 2009) were largely unsuccessful in identifying new disease associated variants 

or genes, suggesting a minimal contribution to common disease. However, in retrospect this is 

perhaps unsurprising given that these studies were fairly small and underpowered relative to our 

current knowledge of complex trait genetic architecture and limited to a small subset of SVs – 

namely, large CNVs.  

Recent studies from the GTEX consortium have assessed the contributions of SVs to gene 

expression across tissues, where SVs comprise 3.5-6.8% of eQTLs, and on average have larger 

effect sizes than SNP eQTLs(Chiang et al. 2017; X. Li et al. 2017). The contribution of SVs to 

human disease in general, and CVD in particular, has remained an open question.  

For a long time our knowledge of disease-causing SVs was restricted to a few well-studied 

loci(Usher et al. 2015; Wu et al. 2014; Boettger et al. 2016) or large de novo or somatic CNVs 

that cause various genomics disorders and cancer visible at cytogenetic level with severe 

phenotypic effects such as Down syndrome(Jacobs 1959) or leukemia(Nowell 1962), until the 

development of DNA microarray technology, which enabled the high-throughput genotyping of 
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copy number variation (CNV). In 2010, The Wellcome Trust Consortium published the first 

genome-wide association study specifically designed for CNVs using Comparative Genomic 

Hybridization (CGH) assay(Wellcome Trust Case Control Consortium et al. 2010). The study 

genotyped ~3,000 polymorphic CNVs and tested them with eight common diseases in ~19,000 

individuals and concluded that most common CNVs were tagged by nearby SNPs and had small 

contributions to common traits in humans. As well-designed as it was, this study only assayed 

the highly polymorphic loci detected from the ~400 pilot samples, leaving behind a large number 

of SVs with lower frequency. Alternatively, other studies tried to utilize existing SNP array data 

to detect CNVs. However, since the assays were initially designed for SNPs, the probe density 

and the noise of intensity signals restricted the resolution and genotype quality of detected 

CNVs, even those well powered studies with tens of thousands of samples were only able to 

identify a few novel disease-associated loci(Aguirre, Rivas, and Priest 2019; Macé et al. 2017; 

Marshall et al. 2017). Several later studies performed targeted analysis of known SVs combined 

with larger-scale GWAS data(Boettger et al. 2016; Usher et al. 2015; Zekavat et al., n.d.), 

leading to the association of structural alleles at HP and LPA with cholesterol levels. More recent 

array-based CNV association studies with large sample sizes (>50,000 individuals) have revealed 

several genome-wide significant CNV loci for anthropometric traits and coronary disease, but 

these studies focused on extremely large CNVs representing <1% of the overall SV burden, 

leaving most SVs untested(Macé et al. 2017; Aguirre, Rivas, and Priest 2019; Y. R. Li et al. 

2020). 

1.1.3 Detecting SVs by sequencing data 

 Along with the rise of next generation sequencing (NGS) technologies, many NGS 

variant calling methods were invented for SVs, most of them were built on short pair-end reads 
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data. Despite the variety of features and purposes, the short-reads SV callers can be summarized 

into two categories – read-depth based methods and breakpoint mapping methods. The former 

detects CNVs from the coverage data and the later aggregates evidence from discordant 

alignment patterns to identify CNVs as well as copy number neutral SVs such as inversions and 

translocations. Those two categories of SV calling algorithms are complementary to each other 

in terms of advantages and limitations. Read-depth approaches are able to cover multiallelic 

CNVs and repetitive regions but cannot predict the precise variant boundaries and are prone to 

technical confounders such as PCR-induced coverage biases. On the other hand, breakpoint 

mapping methods provide high resolution for predicting SV boundaries, while often fail to 

recognize multi-allelic SVs or the SVs within complex regions. Both approaches are preferably 

applied to whole genome sequencing (WGS) data, and have been utilized in large-scale projects 

such as 1000 Genomes Project(Sudmant et al. 2015), CCDG(Abel et al. 2020) and 

gnomAD(Collins et al. 2020) to extensively survey the SV landscape in human populations. 

However, due to the sequencing costs and analysis complexity, trait association studies have not 

been conducted genome-wide with adequate sample size except for a few attempts with whole 

exome sequencing (WES) data(Maxwell et al. 2017; Ruderfer et al. 2016), which were restricted 

to coding regions.  

1.1.4 Identifying CVD associated SVs in Finns  

 The northern and eastern Finnish populations have historically been genetically isolated, 

mostly originated from small isolated geographic groups and rapidly expanded in recent genetic 

bottleneck events, during which the founder alleles were either enriched or lost under random 

drift. Previous studies proved that studying these populations boosted the power of detecting 

deleterious variants, many of which were preserved in Finnish population with detectable 
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frequency and depleted in non-Finnish Europeans (NFE) under negative selection pressure(Lim 

et al. 2014; Davis et al. 2017; Locke et al. 2019).   

 To study the effects of SVs with higher sensitivity and across a broader spectrum of 

traits, we combined read-depth and breakpoint mapping methods to detect 64,572 high-

confidence autosomal SVs from the WGS data of 4846 Finnish individuals, 4,030 of which also 

have extensively measured quantitative cardiometabolic phenotypes. To increase the power of 

trait mapping analysis, we genotyped 2,053 candidate SVs in an additional ~15,000 Finnish 

samples with WES and SNP array genotype data and tried to replicate the suggestive association 

signals observed in the WGS analysis. We identified 15 genome-wide significant loci associated 

with 31 metabolic traits, nine of which passed multiple testing correction after adjusting for the 

number of phenotypes. We then combined information from other types of variants, local copy 

number profiles, nearby genomic annotations to investigate the significant loci, and demonstrate 

here the interesting biology of several trait-associated SVs, including a multiallelic CNV 

affecting PDPR gene associated with pyruvate level, and a Finnish-enriched promoter deletion 

on ALB gene associated with multiple metabolic traits.  

1.2  Material and Methods 

1.2.1 Samples and phenotype collection 

The genomic data in this study come from 10,197 METSIM participants collected from Kuopio 

in Eastern Finland, and 10,192 FINRISK participants collected from northeastern Finland. Both 

studies were approved by the Ethics Committees in Finland and all individuals contributing 

samples provided written informed consent. Besides collecting genotype data by SNP array and 

exome sequencing, both studies measured up to 254 quantitative cardiometabolic traits, among 
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which we selected 116 traits with adequate sample sizes to maintain trait-mapping power (see 

below). All phenotype data were residualized for trait-specific covariates and transformed to a 

standard normal distribution by inverse normalization. Complete details of sample collection, 

genotype acquisition, and trait adjustments were described previously(Locke et al. 2019).  

1.2.2 Power estimation and phenotype selection 

Phenotypes with limited sample size are likely to be underpowered in trait-mapping analysis and 

increase the test burden if included. Thus, we selected 116 traits with large enough sample size 

that guaranteed 80% power to detect a hypothesized rare SV (Minor allele count (MAC) =10) 

with strong effect (explained 8.4% of the additive quantitative trait locus (QTL) variance, a 

contribution comparable to the effect of SV expression QTLs(Chiang et al. 2017)). We estimated 

the minimum required sample size as 375 through an analytical approach implemented in 

Genetic Power Calculator(Purcell, Cherny, and Sham 2003). Several other assumptions for the 

calculation are: 1. All samples are independent (sibship size=1); 2. The top signal is in perfect 

linkage disequilibrium (LD) with the causal variant; and 3. type I error rate=1x10-6.  

1.2.3 Generation of SV callsets from WGS data 

For SV discovery, we used WGS data from 3,082 METSIM participants and 1,114 FINRISK 

participants sequenced at the McDonnell Genome Institute under the NHGRI Centers for 

Common Disease Genomics (CCDG) program. To increase variant detection sensitivity, we also 

included 779 additional Finnish participants from other cohorts and 112 multi-ethnic samples 

from 1000 Genomes (1KG) Project. All genomes were sequenced at >20x coverage on the 

Illumina HiSeq X and NovaSeq platforms with paired-end 150bp reads.  
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 WGS data were aligned to the GRCh38 reference genome using BWA-MEM and 

processed using the functional equivalence pipeline(Regier et al., n.d.). An SV callset based on 

breakpoint mapping was generated using our recently published workflow(Larson et al. 2019) 

using the same methods as in our recent study of 17,795 human genomes(Abel et al. 2020). 

Briefly, we ran LUMPY (v0.2.13)(Layer et al. 2014), CNVnator (v0.3.3)(Abyzov et al. 2011), 

and svtyper (v0.1.4)(Chiang et al. 2015) to perform per-sample variant calling. After removing 

22 samples that failed quality control, we merged sites discovered in all the samples and re-

genotyped all sites in all samples to create a joint callset using svtools (v0.3.2)(Larson et al. 

2019). Each variant was characterized as either deletion (DEL), duplication (DUP), inversion 

(INV), mobile element insertion (MEI), or generic rearrangement of unknown architecture 

(BND), based on comprehensive review of its breakpoint genotype, breakpoint coordinates, 

genome annotation, and read-depth evidence, as described previously(Larson et al. 2019; Abel et 

al. 2020). According to our definition of SV, we filtered variants smaller than 50bp. Moreover, 

we tuned the callset based on Mendelian error rate and flagged BNDs with mean sample quality 

(MSQ) score <250 and INVs with MSQ <100 as low-confidence variants. Details about this QC 

strategy are described elsewhere(Abel et al. 2020). For convenience, we refer to this as the 

“LUMPY callset”.  

 We applied two read-depth based CNV detection methods to WGS data to detect variants 

that might be missed by breakpoint mapping. GenomeSTRiP(Handsaker et al. 2015) is an 

established tool for cohort-level CNV discovery that has proven effective in many prior studies; 

however, when using the recommended parameters (as we did here), detection is limited to larger 

CNVs (>1kb) within relatively unique genomic regions. Thus, in parallel we used a custom 
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cohort-level CNV detection pipeline based on CNVnator(Abyzov et al. 2011) to detect smaller 

and more repetitive CNVs (see below).  

 We adapted the original GenomeSTRiP pipeline (v2.00.1774) for the large cohort of 

5,087 Finnish samples: after the SVPreprocess step, samples were grouped by study cohorts and 

sorted by sequencing dates, then split into 54 batches with maximum size of 100. CNVs were 

detected within each batch by CNVDiscoveryPipeline and classified as either deletion (DEL), 

duplication (DUP), or mixed CNV (mCNV), with both copy number gain and loss existing in the 

population (referred to as “multiallelic CNV” in the text). Next, we concatenated variants from 

the 54 batch VCFs and re-genotyped all variants in all samples using SVGenotyper to produce a 

joint callset. Then we ran several GenomeSTRiP annotators (CopyNumberClassAnnotator, 

RedundancyAnnotator) to reclassify variants and remove redundant variant calls. During callset 

generation, 72 samples with abnormal read-depth profiles were excluded.  

 The read-depth based “CNVnator” callset was constructed using a custom pipeline that 

took as inputs the individual-level CNV callsets generated by CNVnator during the svtools 

pipeline. After removing samples with abnormal read-depth profiles, CNV calls from 4,979 

samples were sorted and merged using the svtools pipeline. All merged CNV calls were re-

genotyped in all samples using CNVnator. Within each connected component of overlapping 

CNV calls, individual variant calls were clustered based on correlation of copy-number profiles 

and by pairwise overlap. For each cluster, a single candidate was chosen to represent the 

underlying CNV. For sites with carrier frequency >0.1%, we fit the copy number distribution to a 

series of constrained Gaussian Mixture Models (GMMs) with varying numbers of components, 

and selected the site with the “best” variant representation based on a set of model metrics, 

including the Bayesian Information Criterion (BIC) and the distance between cluster means 
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(“mean_sep”). For the remaining sites we selected those with the most significant copy number 

difference between carriers and non-carriers. With the same criteria used in GenomeSTRiP, we 

assigned integer copy number genotypes and CNV categories to the variants.    

 We used array intensity data for 2,685 METSIM samples to estimate the false discovery 

rate (FDR) under different filtering criteria, and to tune both CNV callsets. FDR was estimated 

from the Intensity Rank Sum (IRS) test statistics based on CNVs intersecting at least two SNP 

probes. Based on the FDR curves (Figure 1.1) we excluded GenomeSTRiP variants with 

GSCNQUAL score<2 and CNVnator DELs and DUPs with mean_sep < 0.47 or low carrier 

counts (DUPs<1, DELs<5, mCNVs<7).  

 To eliminate likely false positive calls introduced by sequencing artefacts, we excluded 

612 LUMPY SVs, 740 GenomeSTRiP SVs, and 1098 CNVnator SVs that were highly enriched 

in any of the three sequencing year batches (P<10-200 from Fisher’s exact test). We further 

excluded 3 samples in the LUMPY callset, 72 samples in the GenomeSTRiP callset, and 12 

samples in the CNVnator callset that carried abnormal numbers of variants (outlier samples 

defined by the difference of per-sample SV count from median divided by median absolute 

deviation (mad) larger than 10 for LUMPY/GenomeSTRiP or larger than 5 for CNVnator). 

Together with the samples that failed QC during variant calling, the combined list of outliers 

consists of 84 METSIM samples, 56 FINRISK samples, and 99 samples from other cohorts. 

More information about sample- and variant-level exclusions can be found in Table 1.1.  

 For each high-confidence callset, we evaluated the final FDR by using the IRS, and ran 

the TagVariants annotator in GenomeSTRiP to estimate the proportion of SVs in LD with nearby 

SNPs (Rmax
2>=0.5, flanking window size=1Mb). We calculated the overlap fraction between SV 
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callsets by bedtools(Quinlan and Hall 2010) intersect (v2.23.0) requiring >50% reciprocal 

overlap between variants. To evaluate the genotype redundancy within and between callsets, we 

compared the original variant counts and the equivalent number of independent genetic variables 

estimated by a matrix decomposition method implemented in matSpDlite(J. Li and Ji 2005), 

using the genotype correlation matrix as input. The space clustering was evaluated by running 

bedtools cluster with -d (max distance) specified as 10bp.  

1.2.4 Association test with WGS data 

For CNV callsets, we defined minor allele count (MAC) as the number of samples with different 

genotypes from the mode copy number. We kept the conventional MAC definition for the 

LUMPY callset since it primarily contains biallelic SVs. We set the minimum MAC threshold as 

10 for variants to be included in the trait association test. We renormalized the phenotype data of 

the WGS samples by rank-based inverse normal transformation. We performed single-variant 

association tests across all renormalized metabolic traits using the EMMAX model(Kang et al. 

2010) implemented in EPACTS (v3.2.9) software (see Web Resources). In the model, we 

specified the dosage-format input genotype variables as the integer copy number genotype for 

GenomeSTRiP variants, allele balance for LUMPY variants, and raw decimal copy number for 

CNVnator variants. We also incorporated in the model a kinship matrix derived from SNP data 

by EPACTS to account for sample relatedness and population stratification. For each multiallelic 

CNV, one single variant test was performed between the phenotype and the copy number value 

of the interval.  

 We applied matSpDlite(J. Li and Ji 2005) to estimate the equivalent number of 

independent tests. The genome-wide significance threshold was set at 1.89x10-6 after Bonferroni 



12 
 

correction at level  over 26,495 independent genetic variables, and the experiment-

wide significance threshold was set as 3.32x10-8 to further correct for the 57 independent 

phenotypic variables also estimated using matSpDlite(J. Li and Ji 2005). 

1.2.5 Replication using exome and array data 

We attempted to replicate the association signals with a nominal p<0.001 in WGS analysis using 

genotype data for an additional 15,205 FinMetSeq participants (Figure 1.2). To achieve this, we 

employed two approaches to infer the genotypes of candidate SVs from WES and array data: 

WES read depth analysis for CNVs and genotype imputation for biallelic SVs.  

 We separated the WES alignment data into two batches: the first composed of 10,379 

samples sequenced with 100bp paired-end reads and the second composed of 9,937 samples 

sequenced with 125bp paired-end reads. For samples in each batch, we calculated the per-sample 

per-exon coverage by GATK(Auwera et al. 2013) DepthOfCoverage (v3.3-0) and adopted the 

data processing steps from the XHMM (v1.0) pipeline(Fromer and Purcell 2014) to convert the 

raw coverage data into PCA-normalized read-depth z-scores. Duplicated and outlier samples 

were filtered simultaneously, with 9,537 samples left in batch1 and 9,864 samples left in batch2. 

We calculated the correlation between SV genotypes from WGS data and the normalized read-

depth z-scores of exons intersected or nearby (<5kb) using samples with both WES and WGS 

data. Exons with R2<0.1 were filtered out and the rest were passed on to validation, restricted to 

samples absent from the WGS analysis (n=15,205). The genetic relationship matrix used for 

WES replication was generated in a previous study(Locke et al. 2019). We later did a meta-

analysis under a fixed effect model using METASOFT (v2.0.1)(Han and Eskin 2011) to combine 
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the results from the two WES batches, considering the two sequencing batches were actually 

sampled from the same population.  

 We standardized the genotype representations of 2,291 biallelic candidate SVs, with copy 

number genotypes of duplications (CN=2,3,4) and deletions (CN=0,1,2) converted to allelic 

genotype format (GT=0/0, 0/1, 1/1), and extracted the SNPs and indels in the 1 Mb flanking 

regions of those SVs from the GATK callset generated from the same WGS data. We then 

phased the joint VCF with Beagle (version 5.1)(Browning, Zhou, and Browning 2018) to build a 

reference panel composed of 3,908 high-quality samples shared by the SV callset and the SNP 

callset. Then, we imputed the SV genotype in the additional 15,125 FinMetSeq samples with 

array genotype data by running Beagle on the genotyped SNPs. We filtered out low-imputation-

quality SVs with DR2<0.3 reported by Beagle (the estimated correlation between imputed 

genotype and real genotype of each variant); then ran the EMMAX model on the 1,705 well-

imputed SVs with the corresponding traits.  

 58 of the 2,053 candidate SVs had both imputed genotype and WES read-depth genotype, 

so we compared the imputation DR2 with exon-SV genotype R2, then chose the measurement 

that was most well correlated with the WGS data. Considering the differences between directly 

measured WGS-based SV genotypes and predicted genotypes estimated from WES and array 

data, for SVs with consistent direction of effects across the discovery stage (WGS data only) and 

replication stage, we used Fisher’s method to combine the p-values (instead of conventional 

meta-analysis models that assume effect sizes across studies were sampled from the same 

distribution). As a sanity check for the imputation quality, we conducted leave-one-out validation 

for the eight genome-wide significant SVs using the reference panel only. Specifically, we took 
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one sample out each time as a test genome and imputed the SV genotype using the other 3,907 

samples as reference and repeated the process 3,908 times to calculate the validation rate. 

 The array data and WES data were aligned to reference genome GRCh37 while the WGS 

data were aligned to reference genome GRCh38. For analysis, the coordinates were lifted over 

using the LiftOver utility from the UCSC GenomeBrowser (see Web Resources). Considering 

the LiftOver works less efficiently for intervals (e.g., exons) than single-base coordinates (e.g., 

SNPs), we chose different strategies for the WES experiment and the imputation experiment to 

minimize information loss. For the WES dataset, we converted the CNV coordinates from 

GRCh38 to GRCh37; 5,391 successfully converted (2310 intersected with exons) while 264 

failed (78 intersected with exons). We dropped the CNVs that failed conversion. For the 

imputation experiment, we converted the coordinates of array-genotyped SNPs to GRCh38, thus 

all the biallelic SV candidates were kept in the replication experiment. A small number of SNPs 

(0.1%) dropped out during this process, which should not have big impact on the imputation 

considering the abundance of SNPs around each SV and the fact that this only happened to the 

imputed callset, not to the reference panel.  

1.2.6 Candidate analysis 

For genome-wide significant trait-SV associations, we collected previous GWAS signals on the 

same chromosome with P<10-7 from the EBI GWAS catalogue (see Web Resources) with the 

same set of keywords used in a previous study(Locke et al. 2019) (one publication based on 

METSIM samples was excluded to only include findings from independent studies). We then 

performed conditional analysis on the original trait-SV pairs adding the GWAS hits as 
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covariates. Conditional analyses were restricted to samples with WGS data to minimize the 

difference in genotype accuracy of the SV callset vs. the SNP callset.  

 For loci containing multiple genotype-correlated SVs associated with a trait, we lumped 

the variants together using bedtools merge(Quinlan and Hall 2010) and reported the coordinates 

of the entire region with the summary statistics of the strongest signal. To better understand these 

loci, we manually curated the candidates in IGV(Thorvaldsdóttir, Robinson, and Mesirov 2013) 

and extended the regions of interest to include surrounding genes, functional elements, previous 

GWAS signals and other genome annotations. We then equally split each region into ~1000 

windows and used CNVnator to calculate the copy number values of those windows for 100 

individuals selected to represent all genotype groups. We then plotted the window-sample copy 

number matrix as a heatmap with scales best presenting the locus structure (e.g. Figure 1.10). In 

addition, for SNPs in the same region, we calculated the SNP-SV genotype correlation R2 by a 

linear regression model and SNP-trait p values by EMMAX, then plotted them together in a local 

Manhattan plot (e.g. Figure 1.7) using custom R scripts.  

 For the fine-mapping experiment of albumin, we selected the top 100 most significant 

SNPs on chr4:67443182-79382541 plus the ALB promoter deletion to calculate the pairwise 

genotype correlation matrix and ran CAVIAR (v0.2)(Hormozdiari et al. 2014) on those 101 

variants, with the “rho” probability set at 0.95 and varying the maximum number of causal 

variants one to five. The same experiment was done for total cholesterol. We used the model 

with maximum causal variants set at two to plot the posterior probability in Figure 1.7.  
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1.3 Results 

We now turn to the results of this study starting with an overview of the SV callset, followed by 

trait association results including the in-depth discussion of individual genome-wide significant 

loci. 

1.3.1 Structural variation detection and genotyping 

We identified 120,793 SVs by LUMPY(Layer et al. 2014), 111,141 CNVs by 

GenomeSTRiP(Handsaker et al. 2015) (GS), and 92,862 CNVs by our customized pipeline based 

on CNVnator(Abyzov et al. 2011). Considering the different genotype metrics and detection 

resolutions, to retain sensitivity we chose to concatenate those three callsets together and adjust 

for redundancy later instead of merging the variants. 129,166 high-confidence autosomal SVs 

passed quality control, and 64,572 passed the frequency filter for association tests (Table 1.2). 

Figure 1.3 and Figure 1.4 provide an overview of the high-confidence callset, including the size 

distribution, composition of biallelic vs. multiallelic SVs, and frequency distributions. The SV 

size and frequency distributions are consistent with those in previous studies(Sudmant et al. 

2015; Chiang et al. 2017; Abel et al. 2020; Collins et al. 2020): most called SVs are relatively 

small ( <10kb), biallelic and rare; called MEIs exhibit the expected size distribution 

corresponding to Alu and L1 insertions; and allele frequency decreases with increased mean SV 

size, consistent with negative selection against large SVs (Figure 1.3, Figure 1.4).   

 Based on comparison with a set of SNP array intensity data (see Methods), we estimate 

an overall false discovery rate (FDR) of 4.7% for the high-confidence callset. As an indicator of 

true positive rate, the proportion of SV calls tagged by nearby SNPs (R2>=0.5, see Methods) 

was 56.8%, consistent with our prior GTEx study that used similar methods(Chiang et al. 2017) 
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and was evaluated extensively in the context of eQTL mapping. We also compared our callset to 

the high-quality SV callsets from 1000 Genomes (1KG) and gnomAD projects and found an 

overlap of 35.2%, which is reasonable considering that these studies used distinct methods and 

sample sets. Table 1.5 shows the above metrics stratified by pipelines. We estimated the 

genotype redundancy in total and stratified by pipelines (Table 1.3). Overall, the “effective 

sample size” of independent genetic variables was 55.5% of the original variant count. 

Additionally, since read-depth detection methods commonly result in “fragmented” CNV calls, 

we estimated the fragmentation level of calls by clustering variants within 10bp and measured 

the size of the clusters (Table 1.4). 

 Our CNVnator pipeline was the major source of redundancy and fragmentation since it 

detects CNVs with higher resolution – as small as 100bp – and covers repetitive and low-

complexity regions, where the coverage profile is in general much noisier than the rest of the 

genome. The benefit is that CNVnator detected many true CNVs missed by the two other 

methods. As a benchmark of the sensitivity gain, we calculated the external validation rates for 

SVs uniquely detected in each of our pipelines (Figure 1.5). 7,210 variants identified only in 

CNVnator overlapped with variants in 1KG and gnomAD, contributing to the 43.1% of the 

overall CNVnator SVs that were validated through comparison to external datasets.\ 

1.3.2 Association of SVs with cardiometabolic traits 

We first performed single variant association tests for 64,572 high-confidence SVs (MAC≥10) 

and 116 quantitative traits using the EMMAX model (Kang et al. 2010) in the 4,030 individuals 

with WGS data. We defined the genome-wide significance threshold as 1.89x10-6 and the 

experiment-wide significance threshold as 3.32x10-8 (see Methods). Nine associations of six loci 
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passed genome-wide significance threshold; six were still significant after adjusting for the 

equivalent number of independent phenotypes (Table 1.6, WGS P). 

 We next sought to replicate these findings and to follow up on 4,855 loci with sub-

threshold associations (p<0.001) via meta-analysis with larger WES (n=20,316) and array 

genotype datasets (n=19,033) from these same cohorts, using independent samples 

(nWES=15,205, narray=15,125 ) not included in the original WGS experiment (see 

Methods)(Locke et al. 2019). We developed a strategy to genotype coding CNVs from WES 

data using read-depth information from XHMM(Fromer and Purcell 2014), and measured copy 

number at the 20,058 exons intersecting with 819 candidate CNVs from WGS. We found that 

281 exons from 392 CNV calls were able to recapture the copy number variability detected by 

WGS (at R2>0.1). To genotype SVs using array data, we used standard imputation methods to 

impute 2,127 bi-allelic SVs based on the background of array-genotyped SNPs (see Methods). 

The estimated imputation accuracy of SVs corresponded well to their LD with nearby SNPs, as 

expected (Figure 1.6). To assess performance more rigorously for the eight significant SVs 

described below, we also performed a leave-one-out experiment, and the validation rate ranged 

from 93.3%-99.8% (Table 1.7). Overall, we were able to accurately genotype 2,053 of 4,864 

candidate SVs using exome (n=392) and/or array genotype data (n=1,705). We then ran single-

variant tests on those genotyped SVs with the corresponding candidate traits in the independent 

samples, and performed a meta-analysis to calculate a combined p-value (Table 1.6). 

 After merging fragmented SVs, we ended up with 15 independent loci associated with 31 

traits at genome-wide significance, 9 of which remained significant after correction for the 

multiple phenotypes. Table 1.6 shows the summary statistics of the lead SVs for their top traits 
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(table for all the pre-merged summary statistics was too big to include in this thesis while could 

be found in the published paper).  

 

1.3.3 Deletion of the ALB gene promoter is associated with multiple traits 

The strongest signal in the combined study was a 4kb deletion immediately upstream of the ALB 

gene, affecting the promoter region (Figure 1.7). This variant was 16-fold enriched in the 

Finnish population compared to non-Finnish Europeans from 1KG (MAF: 1.6% vs. 0.1%) and 

was associated with 16 traits at genome-wide significance (Figure 1.8). The top two associations 

were with serum albumin (p=1.47x10-54, beta=0.91) and total cholesterol (p=1.22x10-28, beta=-

0.49), and these are independent signals based on conditional analyses (Table 1.10). The 

cholesterol signal appears to explain the remaining 14 trait associations, all of which are highly 

correlated (Figure 1.8). This SV was well-tagged by nearby SNPs (R2=0.73), and the tagging 

SNPs showed similar trait association patterns. To tease apart potentially indirect associations 

caused by LD, we performed fine-mapping analysis for serum albumin and total cholesterol with 

CAVIAR(Hormozdiari et al. 2014) including the deletion variant and the 100 most significant 

SNPs on chr4:67-79Mb (see Methods). The top candidate for the association with total 

cholesterol was a SNP (rs182695896) in moderate LD (R2=0.49) with the deletion. Accounting 

for this SNP via conditional analysis attenuated the association between the deletion and total 

cholesterol (p=0.023, n=4014). The deletion was identified as the most probable causal variant 

for the association with albumin, and the association between the deletion and albumin remained 

significant after adjusting for rs182695896 (p=6.52x10-13, n=3,117). We also observed different 

causality patterns for the two traits by aligning the posterior probabilities with the LD structure 

of the causal candidates in 95% confidence sets (Figure 1.7). Thus, we hypothesize that the 
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promoter deletion directly affects serum albumin by altering ALB gene expression, and is 

associated with total cholesterol through its genetic correlation with other underlying causal 

variant(s) in the same LD block.  

 Prior studies(Inouye et al. 2012; Kettunen et al. 2012, 2016; Surakka et al. 2015) have 

reported five albumin associated SNPs and two cholesterol associated SNPs in this region. In our 

conditional analyses including all intrachromosomal GWAS hits(Buniello et al. 2019), the SV-

albumin association remained genome-wide significant (Table 1.6) while the SV-cholesterol 

association was diminished (conditioned p=0.004). To investigate the relationship between our 

signal and each of the seven previous GWAS SNPs, we tested the SV for association while 

conditioning on the reported SNPs one at a time (Table 1.8) and ran the association tests on 

those SNPs with the SV as covariate (Table 1.9). These results suggest that the ALB deletion is 

the causal variant for three prior albumin associations (rs16850360, rs2168889, and rs1851024), 

is linked to one previously reported cholesterol association (rs182616603), and is independent of 

two prior albumin associations (rs115136538, rs184650103) and one cholesterol association 

(rs117087731).  

 We next explored the potential downstream effects of this promoter deletion in the 

FinnGen dataset (see Web Resources), which reports GWAS results for 1,801 disease endpoints 

in 135,638 individuals. We queried the top SV-tagging SNP (rs187918276, R2=0.73) in the 

PheWeb browser (Figure 1.9, Web Resources); the top association was with statin medication 

use (p=6.5x10-69). The second set of signals appeared in the “Endocrine, nutritional and 

metabolic diseases” category, led by disorders of lipoprotein metabolism and other lipidemias 

(p=1.4x10-11), pure hypercholesterolemia (p=3.0x10-11), and metabolic disorders (p=1.8x10-7). 

These results support the medical relevance of genetic variation at this locus suggested by this 
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and prior work; however, it is unclear whether these results are due to the ALB promoter deletion 

or the linked variants (e.g., rs182695896) associated with cholesterol. 

1.3.4 A multi-allelic CNV at PDPR is associated with pyruvate and alanine 

levels 

We identified a cluster of 13 highly correlated CNV calls at chr16q22.1 that were strongly 

associated with pyruvate (p=4.81x10-21, beta=-0.72) and alanine (p=6.14x10-12, beta=-0.53) 

levels in the serum. We reconstructed the copy number profile of this locus from short-read 

WGS data (see Methods) and confirmed that the 13 correlated variant calls correspond to a 

single ~250kb multiallelic CNV (CNV1 in Figure 1.10) spanning the coding sequence and 5’ 

region of PDPR, a gene involved in the pyruvate metabolism pathway. PDPR encodes the 

regulatory subunit of pyruvate dehydrogenase phosphatase (PDP) which catalyzes the 

dephosphorylation and reactivation of pyruvate dehydrogenase complex, the catalyst of pyruvate 

decarboxylation. According to this mechanism, fewer copies of PDPR should slow down the 

decarboxylation reaction and lead to increased pyruvate levels, and increased copies should 

decrease pyruvate levels, consistent with our data (Figure 1.10). This CNV was also negatively 

associated with alanine levels, the product of pyruvate transamination, and conditional analysis 

suggested this association was mediated through pyruvate (Table 1.10).  

 An intriguing aspect of the PDPR locus is that it contains numerous segmental 

duplications (SDs), including highly similar local SDs scattered throughout the PDPR locus, 

additional SDs at a PDPR pseudogene (LOC283922) located 4 Mb distal to PDPR, as well as 

more divergent copies located ~55Mb away on chr16p13.11. These include LCR16a, a core 

element shared by many SDs on Chr16 and a well-known driver of the formation of complex 
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segmental duplication blocks in the genomes of humans and primates(Jiang et al. 2007; Johnson 

et al. 2006; Cantsilieris et al. 2020). There are both duplication and deletion alleles of the PDPR 

gene, and these have indistinguishable breakpoints that correspond to LCR16a duplicons, 

suggesting these CNVs were caused by recurrent non-allelic homologous recombination. Similar 

to the ALB deletion described above (and many prior coding associations(Locke et al. 2019)), 

this CNV appears to be enriched in the Finnish population: the duplication allele was identified 

in 1KG with a frequency of 0.005 in non-Finnish Europeans, 50x less than the 0.025 frequency 

observed in our Finnish sample , and the deletion allele was not detected in 1KG. The CNV is 

poorly tagged by flanking SNPs (max R2<0.088), making it virtually undetectable using standard 

GWAS methods. 

 In addition, a second highly polymorphic and multiallelic CNV (CNV2 in Figure 1.10) 

intersects with CNV1 and covers >90% of the gene body of PDPR, missing the first three exons. 

Notably, CNV2 did not show association with pyruvate levels in our data (p=0.6), despite being 

previously reported as a cis-eQTL for PDPR in multiple tissues(Chiang et al. 2017). To resolve 

the structure of this locus, we aligned chromosome 16 of the GRCh38 reference against itself and 

also against the recent high-quality CHM13 assembly(Miga et al. 2020) created from long-read 

sequencing data (Figure 1.11). Interestingly, we found that the sequence of CNV2 contains three 

inverted paralogs of the LOC283922 locus (a PDPR pseudogene) in the CHM13 assembly, while 

there is only one copy of LOC283922 in GRCh38 (Figure 1.10). These data suggest that CNV2 

reflects highly variable structural alleles of LOC283922 located 4Mb away from PDPR, and thus 

it is not surprising that this CNV does not affect pyruvate levels. 
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1.3.5 Additional trait-association signals 

We confirmed a previously reported association between the recurrent HP deletion and decreased 

total serum cholesterol levels16. In our data, this same deletion was strongly associated with 

serum glycoprotein acetyls quantified by NMR (p=3.53x10-35), and conditional analysis showed 

that the two associations were independent (Table 1.10). Since Boettger et al.16 proposed a 

plausible mechanism for the association of HP copy number and cholesterol, here we focus on 

the glycoprotein association. As a serum glycoprotein, haptoglobin forms dimers in individuals 

with the HP1/HP1 genotype (homozygous deletion) but forms multimers in individuals carrying 

HP2 allele(s). The multimers can be as large as 900kDa – more than twice the size of the dimers 

(86kDa)55 – which could result in fewer haptoglobin molecules in HP2 carriers, and 

consequently fewer glycoprotein molecules overall.   

 We identified five trait associations involving common SVs that were within 1Mb of 

previously published GWAS loci for the same traits. All SVs were well-tagged by SNPs 

(R2>0.9) and were either intronic or upstream of genes that are functionally related to the 

associated phenotypes. In all five cases there were stronger SNP signals nearby, and the SV 

associations dropped to not more than nominal significance when conditioned on the known 

GWAS SNPs (Table 1.6). This suggests that instead of having independent effects on the 

phenotypes, those SVs were more likely to be in LD with the causal variants.  

 Additionally, we identified a low-frequency (MAF=0.01) SV associated with serum 

tyrosine levels (combined p=4.17x10-10). This variant was a 4kb deletion of IL34, affecting the 

first exon of one transcript isoform and the intronic region of the two longer isoforms. There is a 

stronger signal from a SNP (rs190782607, p=1.44x10-11) within 100kb of and partially tagging 
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the SV (R2=0.61), indicating that the SV is unlikely to be the causal variant. However, the p-

value of this association remained at a similar level when conditioned on known GWAS SNPs50 

(Table 1.6), suggesting a novel signal. IL34 mediates the differentiation of monocytes and 

macrophages and to our knowledge has not previously been reported to be associated with amino 

acid traits56.  

 The re-discovery of known loci described above demonstrates the effectiveness of our 

study design. Our CNV detection pipeline also detected two associations with metabolic traits 

that appear to be related to blood cell-type composition rather than inherited genetic variation.  

 We identified three clusters of CNVs on chr7q34, chr7p14 and chr14q11.2 associated 

with C-reactive Protein (CRP) levels in the plasma, a biomarker for inflammation and a risk 

factor for heart disease (Table 1.6). These CNVs are large, involve subtle alterations in copy 

number, and correspond to T cell receptor loci, suggesting that they are likely to reflect somatic 

deletions due to V(D)J recombination events during T cell maturation. This hypothesis was 

supported by the read-depth coverage pattern (see Figure 1.12), where the measured copy 

number is lowest at the recombination signal sequence (RSS) used constitutively for 

rearrangement, and gradually increases with increasing distance to the RSS. The cause of this 

association is unclear but may reflect increased T-cell abundance and CRP levels due to active 

immune response in a subset of individuals.  

 Interestingly, we also indirectly measured mitochondrial (MT) genome copy number 

variation due to the mis-mapping of reads from mitochondrial DNA to ancient nuclear MT 

genome insertions (NUMT)57 on chromosomes 1 and 17, that show strong homology to 

segments of the MT genome. These apparent “CNVs”, which reflect MT abundance in 
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leukocytes, were strongly associated with fasting insulin levels (p=1.00x10-10) and related traits, 

and are the topic of a separate study58. 

  We also discovered three association signals corresponding to dense clusters of 

fragmented CNV calls within highly repetitive and low-complexity regions including simple 

repeats and segmental duplications (Table 1.6). Interpreting patterns of variation and trait 

association at these loci remains challenging due to their complex and repetitive genomic 

architecture, and known alignment artifacts within such regions. Although we were not able to 

identify any technical artifacts that might explain these specific associations, they should be 

interpreted with caution. Further investigation of these highly repetitive loci will require 

improved sequencing and variant detection methods. 

1.4 Discussion  

We have conducted what is to our knowledge the first complex trait association study based on 

direct ascertainment of SV from deep WGS data. Our study leverages sensitive SV detection 

methods, extensive cardiometabolic quantitative trait measurements, and the unique population 

history of Finland. Despite the relatively modest sample size and limited power of this study, we 

identified 9 novel and 6 known trait associated loci. Most notably, we identified two novel loci 

where SVs are the likely causal variants and have strong effects on disease-relevant traits. Both 

SVs are ultra-rare in non-Finnish Europeans but present at elevated allele frequency in Finns – 

presumably due to historical population bottlenecks and expansions – which mirrors the findings 

from our recent study of coding variation, where many cardiometabolic trait-associated variants 

were enriched in Finns26. The first, a deletion of the ALB promoter, strongly decreased serum 

albumin levels in carriers (~1 standard deviation per copy), and also resides on a haplotype 



26 
 

associated with cholesterol levels. This example shows that non-coding SVs can have extremely 

large effects, consistent with our prior results based on eQTLs22 and selective constraint30, and 

points to the importance of including diverse variant classes in trait association efforts . Although 

more work is required to understand the disease relevance of this deletion variant, we note that 

low levels of albumin can cause analbuminemia, which is associated with mild edema, 

hypotension, fatigue, lower body lipodystrophy, and hyperlipidemia. 

 The second, a multi-allelic CNV with both duplication and deletion alleles that affect 

PDPR gene dosage, has strong effects on pyruvate and alanine levels. Notably, this CNV is the 

product of recurrent NAHR between flanking repeats at a complex locus that has accumulated 

numerous segmental duplications over evolutionary time, and is not well-tagged by SNVs. This 

phenomenon – recurrent CNVs at segmentally duplicated loci – has been studied extensively in 

the context of human genomic disorders and primate genome evolution, but there are few 

examples for complex traits. This result underscores the importance of comprehensive variant 

ascertainment in WGS-based studies of common disease and other complex traits. We further 

note that it is unusual to observe multiallelic CNVs at a conserved metabolic gene such as PDPR; 

it is tempting to speculate about the role of such variation in human evolution.  

 Interestingly, our study also identified two novel and highly atypical trait associations 

that appear to be caused by variable cell type composition in the peripheral blood. Identifying 

these results was only possible due to our use of WGS on blood-derived DNA, combined with 

sensitive SV analysis methods capable of detecting sub-clonal DNA copy number differences. 

Our quantitative detection of subclonal T-cell receptor locus deletions formed by V(D)J 

recombination served as a proxy for measuring T cell abundance, and led to the novel result that 

CRP levels are associated with T cell abundance. We hypothesize that this association is caused 
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by active immune response in a subset of individuals. Similarly, our quantitative detection of 

mitochondrial genome copy number via apparent “CNVs” at NUMT sites in the nuclear genome 

led to the novel and important finding that variable abundance of neutrophils vs. platelets in 

peripheral blood is strongly associated with insulin, fat mass, and related metabolic traits (as 

described in detail elsewhere58).  

 Taken together, these results highlight the potential role of rare, large-effect SVs in the 

genetics of cardiometabolic traits, and suggest that future comprehensive and well-powered 

WGS-based studies have the potential to contribute greatly to our understanding of common 

disease genetics. 
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Figure 1.1. Deciding QC filters based on FDR curves 

FDR curves under different quality thresholds for (A) GenomeSTRiP CNVs, (B) Common 

variants of CNVnator CNVs, and (C) Rare variants of CNVnator CNVs. The FDR was estimated 

from the array intensity data of METSIM samples using IntensityRankSumAnnotator from the 

GenomeSTRiP pipeline, among CNVs covered by at least two probes. GenomeSTRiP CNVs 

were filtered based on the “GSCNQUAL” score output by the software, common CNVnator 

CNVs were filtered by the “mean_sep” metrics from the constrained GMM model, and the rare 

CNVnator CNVs were filtered by carrier frequency. The results are presented for all variants as 

well as by different variant types, indicated by the colors shown. 
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Figure 1.2. Flowchart of the overall experimental design.  

 

19k Finnish samples

116 Metabolic phenotypes

4k   

WES

array

15k   

p<0.001

WGS

15 significant loci

392 exonic CNVs 

1705 biallelic SVs 

candidate SVs

64k SVs

WES

array

combined p<1.89x10-6 
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Figure 1.3. Overview of the high-confidence SV callset  

(A) SV size distribution (log10 scale, bp) by variant type. BNDs are not included due to the 

ambiguous definition of variant boundaries. (B) Proportion of bi-allelic SVs and multi-allelic 

CNVs, where N is defined by the number of copy number groups (e.g. CN=0,1,2,3,4, etc.). (C) 
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The minor allele count distribution of all the high-confidence bi-allelic SVs stratified by variant 

type. (D) the size distribution (log10 scale) of biallelic SVs stratified by MAF groups (<0.1% - 

ultra-rare; 0.1%-5% - rare, >5% - common). The central line and box borders represent median, 

1st and 3rd quartiles. The upper whiskers extend to the lesser extreme of the maximum and the 3rd 

quartile plus 1.5 times the interquartile range (IQR); the lower whiskers extend to the lesser 

extreme of the minimum and the 1st quartile minus 1.5 times the IQR.   
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Figure 1.4. The frequency distribution of multi-allelic CNVs 

 (A) The carrier frequency spectrum of multi-allelic CNVs, stratified by detection methods. Note 

that the concentration of CNVnator variants between 0.5-0.75 were primarily caused by large 

segmental duplication regions near centromeres and telomeres, where the variant boundaries 

were challenging to define and the CNVs were detected in highly fragmented form. Such regions 

are often excluded from genetic analysis but were included here to maximize sensitivity. (B) 

Similar frequency distribution to (A), stratified by mCNV size groups. The central line and box 

borders represent median, 1st and 3rd quartiles. The upper whiskers extend to the lesser extreme 

of the maximum and the 3rd quartile plus 1.5 times the interquartile range (IQR); the lower 

whiskers extend to the lesser extreme of the minimum and the 1st quartile minus 1.5 times the 

IQR.   
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Figure 1.5. Overlapping SVs among internal and external callsets  

For each of the three SV detection methods used in this study, these venn diagrams show the 

number of CNVs that were also identified by the other two “internal” pipelines used in this study 

(left), and the “external” reference SV callsets from 1KG and gnomAD (right). The upper part of 

each diagram also shows the number of CNVs only identified by a given pipeline. Dashed 

rectangles were used to emphasize the number of CNVnator CNVs that were validated by 

external callsets but missed by the other two pipelines, showing the complementary nature of the 

methods used for this study. 50% reciprocal overlap was used to compare CNV calls from 

different callsets. 
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Figure 1.6. The overall evaluation of imputation quality with two metrics  

The Y-axis shows the Beagle output quality score (DR2) for the ~15k tested samples, which is 

the estimated correlation between the imputed genotype and real genotype for each variant, and 

the X-axis shows the “training error” for the ~4k samples with WGS data. Training error was 

calculated using the WGS data as reference and array data as test input, after which the 

correlation of real genotype (based on WGS) and predicted genotype was calculated. The color 

shows how well each SV was tagged by nearby SNPs located within 1 Mb.  
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Figure 1.7. The ALB promotor deletion associated with serum albumin level and 

cholesterol traits 

(A) The genomic location of the chr4 deletion, with coordinates detected from LUMPY, 

GenomeSTRiP and 1KG. The H3K27Ac track is from the ENCODE (ENCODE Project 

Consortium 2004) data obtained from the UCSC genome browser (showing the data of K562 

cells). (B) Boxplot showing serum albumin levels stratified by genotype, with the sample size of 

each genotype group annotated at the center of each box. The trait value on the y-axis is the 

inverse normalized residual of raw measurement (residualized for age, age2, and sex). (C) Local 

Manhattan plot of albumin association signals on chr4:71-75Mb, including the ALB deletion (red 

diamond) and SNPs with minimum allele count of 9 (filled circles). The sizes of the circles are 

proportional to -log10(p) and colors indicated LD (Pearson R2) with the deletion (NA shown in 

grey). Six of the seven previously published GWAS signals are indicated with ‘x’ (the seventh 

was too rare in our data to be included in the test). (D) Fine-mapping results at the ALB locus for 

albumin and total cholesterol trait associations, using CAVIAR. The top panel shows the 95% 

confidence causality sets for albumin (top) and cholesterol (bottom) and posterior probability of 

each variant to be causal (assuming a maximum of two causal variants). The bottom panel shows 

the LD structure for the candidate variants, using the genotype correlation (Pearson R2) 

calculated from WGS data. 
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Figure 1.8. The overview of the 16 trait-association signals of ALB deletion 
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(A) The pairwise correlation (Pearson R) of the 16 traits that were significantly associated with 

ALB deletion. The cells shown in gray represent missing data, since the S_ldlc_semi trait (serum 

LDL cholesterol in semi-fasting samples) shared zero samples with S_ldlc (serum LDL 

cholesterol in fasting samples) and Phe (phenylalanine). (B) Comparison of the association p-

value of the ALB deletion and the 16 traits, with (y-axis) and without (x-axis) albumin (top) and 

total cholesterol (bottom) as a covariate. The increases of significant level of most traits when 

conditioned on albumin were likely due to Berkson's paradox(Berkson 1946). 
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Figure 1.9. Potential disease endpoints of the ALB deletion in FinnGen dataset 

Screenshots from the FinnGen PheWeb browser(“PheWeb” n.d.) (Data Freeze 3) of the top 

tagging SNP for the ALB deletion (top) and for the cholesterol candidate (bottom) predicted by 

fine mapping with CAVIAR, showing the phenome-wide association results for each of the 

SNPs, colored by phenotype groups.  
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Figure 1.10. The multi-allelic CNV at the PDPR locus affecting pyruvate and alanine.  

(A) The PDPR locus showing (from top to bottom) genes, duplicated genomic segments based 

on dotplot analysis (see Figure 1.11), segmental duplication annotations from the UCSC table 

browser(Karolchik et al. 2003), and copy number profiles for 100 samples comprising 51 carriers 

and 49 non-carriers for CNV1. Copy number is shown in 500bp windows, as determined by 

CNVnator, and the color saturates at four copies. The two horizontal lines indicate locations of 

the two CNVs (solid-CNV1, dashed-CNV2). (B) Pyruvate levels for 3,121 WGS samples 

stratified by copy number genotypes of CNV1 (p=9.41x10-11) and CNV2 (p=0.6). (C) Structure 

of GRCh38 reference and CHM13 assembly at the PDPR locus (top) and its pseudogene locus 

(bottom two), using the same annotations as in part (A). Blocks with the same color and letter 

notation are highly similar DNA sequences and arrows show the direction of alignments. 

Diagrams were drawn based on the dot plots in Figure 1.11. The segment B corresponds to 

LCR16a, the core element shared by many duplicons sparsely distributed on chromosome 

16(Jiang et al. 2007). 
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Figure 1.11. Aligning genome assemblies to solve the PDPR structure 

Dot plots showing the structure of the PDPR and nearby pseudogene locus in both the GRCh38 

and CHM13 assemblies, with repetitive alignments shown in orange and unique alignments 

shown in blue and green (see legend bottom right). (A) The PDPR locus in GRCh38 (y-axis) 

aligned to the pseudogene locus (x-axis) in GRCh38, where (B) shows a zoomed-in version with 

the diagram used for Figure 4 using the same colors and letter. (C) and (D) show the PDPR 

locus in GRCh38 vs. the PDPR locus in CHM13. (E) and (F) show the pseudogene locus in 

GRCh38 vs. CHM13, and (g) shows the PDPR locus in CHM13 vs. itself.  
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Figure 1.12. Read depth variation of the T-cell receptor genes  

Read-depth coverage patterns at the chr14 T-cell receptor alpha variable region (coordinates 

LiftOver to GRCh37/hg19), showing one example for “deletion” carriers and one for a sample 

with the reference allele. The coverage values were calculated by CNVnator for 100bp windows, 

and the top gene track was extracted from UCSC genome browser (GRCh37/hg19).  
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Table 1.1. Variant and sample counts in each QC step for WGS data. 

 

Table 1.1. Variant and sample counts in each QC step for WGS data separated by variant calling 

pipelines. FD – false discovery, see Methods for the filtering criteria in each step. 
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Table 1.2. High-confidence autosomal SVs count 

 

Table 1.2.  Count of high-confidence autosomal SVs stratified by variant type and detection 

method including deletions (DEL), duplications (DUP), multiallelic copy number variants 

(mCNV), inversions (INV), mobile element insertions (MEI) and generic rearrangements of 

unknown architecture (BND). 
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Table 1.3. Genotype redundancy estimation 

 

Table 1.3. Estimation of redundant SV calls based on genotype information. Redundant variant 

calls identified by multiple SV detection methods are expected to have genotypes that are highly 

correlated. We therefore applied matSpDlite to each pipeline and to the combined callset to 

calculate the numbers of independent makers (VeffLi). We then applied the same method to the 

subset of the variants included in the trait association test and to the phenotypes to perform 

Bonferroni correction for the genome-wide significance threshold and experiment-wide 

threshold. 

Variants CNVNATOR LUMPY GS ALL Tested_all

Original count 53,793          35,713          39,660                    129,166 64,572          

VeffLi independent 

count
a

24,330          27,676          29,445          71,688           26,495          

Ratio 45.23% 77.50% 74.24% 55.50% 41.03%

Genome-wide 

significant 

threshold

- - - - 1.89E-06

Experiment-wide 

significant 

threshold
b

- - - - 3.32E-08

a
 VeffLi results: sum of per chromosome estimates
b
 effective number of traits 56.8566 (ori:116)
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Table 1.4. Fragmentation level 

 

Table 1.4. Estimation of SV fragmentation based on physical clustering. Due to coverage 

fluctuations, CNV calls detected by read-depth analysis are often fragmented into multiple 

adjacent CNV calls that in fact represent a single variant. To estimate the degree of 

fragmentation, we clustered high-confidence autosomal CNVs within 10bp of each other and 

calculated the average number of SVs per cluster (average cluster size), the percentage of single 

variant clusters, and the maximum number of variants per cluster (size of the largest cluster).  

Pipeline #. SV # Cluster
average 

cluster size

% single 

variant 

cluster

size of the 

largest 

cluster

GS 39,660 24,497 1.619 75% 96

LUMPY 35,713 23,751 1.321 90% 458
a

LUMPY CNV 27,858 21,759 1.28 90% 149

CNVNATOR 53,793 16,962 3.171 73% 527

a 
a large inversion on chr7 with size of 44mb covered 400+ other variants
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Table 1.5. Callsets QC metrics 

QC Metrics Variants Subset LUMPY GS CNVNATOR 

CNV FDR a 

  

all - 27% 25% 

high confidence 0.80% 3% 9% 

Counts 
 
  

all 120,793 111,141 92,862 

high confidence 35,713 39,660 53,793 

common 11,633 11,062 41,877 

Overlap w. 1kg a 
 
  

all 10% 10% 11% 

high confidence 34% 21% 15% 

common 49% 34% 13% 

Overlap w. gnomad a 
 
  

all 18% 14% 25% 

high confidence 47% 27% 27% 

common 60% 40% 27% 

Tagged by SNPs 

  

high confidence 63% 62% 46% 

common 77% 65% 49% 

a CNVs only 

 Table 1.5. Quality control metrics of the SV callsets including all variants, high-confidence 

variants, and high-confidence common variants (defined by >=10 carriers). CNV FDR was 

estimated by intensity rank sum test (IRS) using the SNP array data from METSIM samples. 

Note that LUMPY CNVs are by definition high confidence due to confirmation of independent 

read-depth support during variant classification steps (see Methods). Variant overlaps with 1KG 

and gnomAD were defined based on >50% reciprocal overlap. “Tagged by SNPs” was defined 

as SVs that are in LD (max r2>=0.5) with any SNP in the 1Mb flanking regions. 
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Table 1.6. Summary statistics for all the genome-wide significant signals 

SV type 
Gene or 

annotation 
Top trait Chr P WGS 

P GWAS 

conditioned 

BETA 

WGS 
REP Novel 

Carrier 

freq. 

P 

combined 

deletion ALB Albumin 4 3.49E-21 1.05E-10 0.91 IMP Y 0.03 1.47E-54a 

deletion HP 

Glyco- 

-protein 

16 1.38E-10 3.63E-04 -0.16 IMP N 0.55 3.53E-35 a 

mCNV PDPR Pyruvate 16 9.41E-11 1.07E-10 -0.72 WES Y 0.02 4.81E-21 a 

TCR 
TRAV 

genes 
CRP 14 1.30E-15 1.89E-15 1.2 WES Y 0.36 1.51E-16 a 

deletion HNF1A-AS CRP 12 7.23E-04 3.60E-01 0.19 IMP N 0.55 4E-13 a 

TCR TRBV genes CRP 7 3.36E-09 6.29E-09 0.84 WES Y 0.38 2.47E-16 a 

mCNV NUMTS 
Fast 

insulin 
1 1.00E-10 NA -0.12 NA Y 0 1E-10 a 

MEI LEPR CRP 1 3.94E-04 2.20E-01 0.16 IMP N 0.51 4.5E-13 a 

deletion IL34 Tyrosine 16 2.10E-04 5.45E-04 1.95 IMP Y 0.02 4.17E-10 a 

MEI CDH13 
Adiponect

in 
16 1.24E-04 1.91E-02 -0.33 IMP N 0.24 3.68E-08 

mCNV AMDHD1 Histidine 12 4.74E-04 2.72E-01 0.15 IMP N 0.52 5.33E-07 

mCNV 
SegDup 

cluster 
Fatty acid 16 1.10E-06 NA -0.16 NA Y 0.57 1.10E-06 

mCNV 
SegDup 

cluster 

Glutamin

e 
9 1.25E-06 NA -0.79 NA Y 0.43 1.25E-06 

deletion PLTP 
Small HDL 

Particle 
20 2.40E-04 3.81E-02 0.11 IMP N 0.53 1.24E-06 

mCNV 
Simple 

repeats 
Creatinine 4 1.41E-06 NA -0.39 NA Y 0.01 1.41E-06 

a experiment-wide significant 

Table 1.6. Summary statistics for 15 genome-wide significant loci with the top associated traits. 

Highly correlated SVs showing the same signal were manually inspected and clumped together. 

The genome-wide significance threshold was 1.89x10-6 and the experiment-wide significance 

threshold was 3.32x10-8 (see Table 1.3 and Methods for details). The p value from WGS 
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analysis and the p value from the replication experiment (IMP-imputation, WES-WES read-

depth analysis, if applicable) were combined by Fisher’s method and used to determine the 

significance level. The BETA WGS column shows the effect size in the unit of normalized trait 

value (e.g., for the ALB deletion, gaining one copy of the SV corresponds to 0.91 standard 

deviation of increased albumin level). The carrier frequency was calculated in the WGS dataset. 

The column of “P GWAS conditioned” shows the SV p value conditioned on all 

intrachromosomal GWAS SNPs from GWAS Catalog(Buniello et al. 2019), using WGS data 

only (see Methods) 
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Table 1.7. Leave-one-out validation for genome-wide significant SVs 

 

Table 1.7. The “leave-one-out” validation experiment to assess imputation quality of the eight 

genome-wide significant SVs. For each variant, we ran 3,908 imputation experiments and in 

each we used one sample as the test genome and the other samples as the reference. The 

accuracy rate was calculated among all 3,908 tests. 

VAR FALSE TRUE AC_RATE

40551 17 3891 0.996

52933 113 3795 0.971

61703 55 3853 0.986

62003 7 3901 0.998

chr12_95946601_95947800 260 3648 0.933

chr16_72057601_72058200 63 3845 0.984

chr20_45906701_45907200 144 3764 0.963

CNV_chr4_73399922_73404147 9 3899 0.998
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Table 1.8. Test ALB deletion conditioned on GWAS SNPs 

 

Table 1.8. Association analysis between the ALB deletion and albumin/total cholesterol 

conditioned on the seven previously published GWAS SNPs and rs182695896 one at a time. 

None of the seven GWAS SNPs diminish the SV-albumin signal, while the first three SNPs 

attenuate the SV-cholesterol signal, suggesting that they might also be in LD with the underlying 

causal variants for cholesterol. MAF(Finns) – MAF in our data, MAF(Reported) – MAF reported 

in previous GWAS studies. 

 

albumin ~ 

SNP + SV 

cholesterol ~ 

SNP + SV 
albumin cholesterol

rs16850360 albumin
Kettunen et al, 2012 

Inouye et al, 2012
0.3 0.025 0.03 8.10E-18 6.00E-04 1.1 -0.39

rs182616603 cholesterol Surakka et al, 2015 0.3 0.024 0.01 6.60E-17 4.00E-03 1.06 -0.32

rs2168889
a albumin Inouye et al, 2012 0.12 0.049 0.05 6.40E-23 9.70E-05 1.05 -0.37

rs1851024 albumin Inouye et al, 2012 0.08 0.049 0.05 2.30E-19 3.30E-08 0.91 -0.5

rs117087731 cholesterol Surakka et al, 2015 6.00E-04 0.02 0.01 2.50E-21 1.70E-08 0.91 -0.49

rs115136538 albumin Kettunen et al, 2012 3.00E-05 0.005 0.02 2.80E-21 1.50E-08 0.91 -0.49

rs184650103 albumin Kettunen et al, 2016 3.00E-05 0.001 0.01 2.90E-21 1.60E-08 0.91 -0.49

rs182695896
b . . 0.49 0.024 . 6.52E-13 2.33E-02 0.97 -0.27

b
rs182695896: top causal candidate for cholesterol in our study, has not reported in published GWAS papers

SV ~ albumin P value = 3.49E-21, beta = 0.9107

rs ID GWAS trait First author, year R2 w. SV
MAF 

(Reported)

SV ~ cholesterol P value = 1.17E-08, beta = -0.4929
a
rs2168889: collider effect

SV P value Beta (conditional 
MAF 

(Finns)
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Table 1.9. Test the GWAS SNPs w./w.o. SV as covariate 

 

Table 1.9. The association tests between each of the seven previously published GWAS SNPs as 

well as rs182695896 and serum albumin/total cholesterol, with and without the ALB deletion as a 

covariate (SNPs with p-value > 0.05 were not included in the conditional analysis, with “-” in the 

related fields). The “Beta” column shows the direction of effects of SNPs with/without the SV in 

the model. rs115136538, rs184650103 and rs117087731 did not show significant association 

with either trait in our dataset. The other SNPs showed signals with albumin or total cholesterol 

which became much less significant after conditioning on SV genotype. *Note: rs184650103 

was too rare to be included in the test, so the summary statistics were marked as “NA”, to 

differentiate from “-”, which marks non-significant SNPs. 

 

albumin ~ 

SNP

albumin ~ 

SNP + SV 

 cholesterol 

~SNP

cholesterol 

~SNP + SV 

rs16850360 albumin
Kettunen et al, 2012 

Inouye et al, 2012
0.3 0.025 0.03 2.30E-06 0.05 -/+ 2.90E-06 0.18 +/+

rs182616603 cholesterol Surakka et al, 2015 0.3 0.024 0.01 1.40E-06 0.08 -/+ 5.30E-08 0.020 +/+

rs2168889 albumin Inouye et al, 2012 0.12 0.049 0.05 >0.05 - - 4.40E-07 0.002 +/+

rs1851024 albumin Inouye et al, 2012 0.08 0.049 0.05 2.20E-03 0.83 +/+ >0.05 - -

rs117087731 cholesterol Surakka et al, 2015 6.0E-04 0.02 0.01 >0.05 - - >0.05 - -

rs115136538 albumin Kettunen et al, 2012 3.0E-05 0.005 0.02 >0.05 - - >0.05 - -

rs184650103
a albumin Kettunen et al, 2016 3.0E-05 0.001 0.01 NA NA NA NA NA NA

rs182695896
b . . 0.49 0.024 . 6.65E-10 0.56 -/+ 6.18E-09 0.0096 +/+

ars184650103 was too rare to be included in the test, so the summary statistics were marked as “NA”, to differentiate from “-”, which marks non-significant SNP
b
rs182695896 was the top causal candidate for cholesterol in our study, has not reported in published GWAS papers

Beta 

(chol) 

Beta  

(alb) 

SNP P value  SNP P value
MAF 

(Finns)
rs ID GWAS trait First author, year R2 w. SV

MAF 

(Reported)
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Table 1.10. Conditional analysis (phenotype - phenotype) 

 

Table 1.10. Conditional analysis of the three multi-trait associated variants, taking one trait as a 

covariate and testing the other. Additional traits were tested for the ALB deletion conditioned on 

albumin and total cholesterol, the results of which can be found in Supplementary Figure 6b. 

The covariate trait was defined as a mediator of the tested trait if the conditional p-value failed 

the genome-wide significance threshold (1.89x10-6). 

 

 

 

 

Variant Tested trait Covariate trait P WGS P conditioned BETA WGS
BETA 

conditioned
Mediator?

Albumin Total Cholesterol 3.49E-21 5.74E-25 0.9107 0.9937 N

Total cholesterol Albumin 1.17E-08 1.16E-11 -0.4929 -0.6558 N

Pyruvate Alanine 9.41E-11 6.59E-05 -0.5817 -0.4344 N

Alanine Pyruvate 2.93E-07 1.47E-03 -0.5744 -0.3197 Y

Glycoprotein Total cholesterol 1.51E-11 2.78E-15 -0.2081 -0.1988 N

Total cholesterol Glycoprotein 1.01E-05 2.62E-10 0.1466 0.1604 N

ALB 

deletion

PDPR 

mCNV

HP 

deletion



57 
 

 

1.5 Author Contributions 

 I.M.H. and N.O.S. conceived and directed the study. L.C., H.J.A, and I.D. adapted the 

GenomeSTRiP pipeline to perform CNV detection at scale. H.J.A. developed the pipeline for 

CNV genotyping based on CNVnator. L.C. and I.D. created the GenomeSTRiP callset; L.C. and 

H.J.A created the CNVnator callset; D.E.L. and K.L.K created the LUMPY callset, and led data 

management. L.C. led all analyses related to trait association, SV genotyping using WES and 

array data, and investigation of candidate loci. H.J.A, D.E.L, I.D, L.G. and A.A.R. led GATK 

callset creation and QC for WGS data. A.P., S.R., M.L, and J.K. contributed samples and 

phenotypic data. All authors edited the manuscript and/or provided intellectual contributions. 

L.C. and I.M.H. wrote the manuscript. 

1.6 Acknowledgements 

We thank D. Ray from Johns Hopkins University for her comments to the manuscript. This work 

was funded by an NHGRI CCDG award to IMH and NOS (UM1 HG008853) and DK U01 

DK062370, the NHGRI large-scale sequencing grant (grant number 5U54HG003079), the Sigrid 

Jusélius Foundation (to SR), the University of Helsinki HiLIFE Fellow grants 2017-2020 (to 

SR), the Academy of Finland Center of Excellence in Complex Disease Genetics (grant number 

312062 to SR, grant number 312074 to SR and AP), the Academy of Finland (grant number 

285380 to SR), the National Heart, Lung and Blood Institute (grant number T32HL007081 to 

EY), and the National Center for Advancing Translational Sciences (grant number 

UL1TR002345 to EY). The funders had no role in study design, data collection and analysis, 

decision to publish, or preparation of the manuscript. We thank the MGI administration and data 



58 
 

production team, in particular R. Fulton, L. Fulton, C. Fronick, A. Wollam, S.K. Dutcher, and J. 

Milbrandt. The FINRISK samples used for the research were obtained from THL Biobank. We 

thank all study participants for their generous participation in the THL Biobank, FINRISK study, 

and METSIM study. ASH was supported by the Academy of Finland (grant no. 321356). LC was 

supported by the McDonnell International Scholars Academy Fellowship. AJS was supported by 

the Mr. and Mrs. Spencer T. Olin Fellowship for Women in Graduate Study. 

 



59 
 

 

 

 

 

Chapter 2:  

Association between blood mtDNA content 

(MT-CN) and insulin related traits 
 

 

 

 

 

 

 

The contents of this chapter were in a preprint released in 2020 and the manuscript is currently 
under review: Ganel, L., Chen, L., Christ, R., Vangipurapu, J., Young, E., Das, I., ... & Hall, I. 
M. (2020). Mitochondrial genome copy number in human blood-derived DNA is strongly 

associated with insulin levels and related metabolic traits and primarily reflects cell-type 

composition differences. medRxiv.  
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2.1 Introduction 

2.1.1 Insulin-associated CNVs on nuclear mitochondrial DNA segments 

(NUMTs)  

One interesting result from the SV trait-mapping study was a CNV on chr1:628901-636500 

associated with insulin level in fasting samples. This signal was first identified in a preliminary 

analysis with 2,063 Finnish samples (the first batch finished sequencing) using copy number 

window screening method (see chapter 2.2.1 for details), together with another signal on chr17 

showing similar association pattern (chapter 2.3.1). Both CNVs overlapped with a type of special 

genomic regions called nuclear mitochondrial DNA segments (NUMTs). NUMTs evolved from 

ancient mitochondrial DNA fragments inserted in the eukaryotic nuclear genome, probably 

through non-homologous end joining (NHEJ) at double-strand breaks (DSBs) (J. V. Lopez et al. 

1994; J. Lopez, Stephens, and O’Brien 1997; Rateb Dweik 2017). Because of the high similarity 

between NUMTs sequences and their homologous sequences on mitochondrial genome as well 

as several other evidence (chapter 2.3.1), it was likely that the CNVs detected on NUMTs were 

actually the indirect measurement of the average mtDNA copy number (MT-CN) in peripheral 

blood cells. To test this hypothesis, we designed an experiment to directly estimate MT-CN from 

the reads aligned to mitochondrial genome, and test for the association between MT-CN and 

metabolic traits.  

2.1.2 Mitochondrial DNA copy number (MT-CN) and metabolic traits 

As an important type of cellular organelle, mitochondrial provide the source of chemical energy 

for cells. The number of mitochondrial per cell varies across different cell types with a wild 

range (1~600,000), so as the mitochondrial DNA (mtDNA). There were previous studies 

suggesting the potential relationship between mtDNA and cardiometabolic phenotypes(Nisoli et 

al. 2007; Guyatt et al. 2018; X. Zhou et al. 2016; Wang and Wei 2020; Ding et al. 2015; Chen et 
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al. 2014) . However, many studies reported conflict results about the effect direction of 

mitochondrial copy number to the same trait (e.g., insulin resistance), especially in the peripheral 

blood tissues(Lee et al. 1998; Perfield et al. 2013; Shoar et al. 2016; Song et al. 2001; Ding et al. 

2015). One potential explanation is that most of the previous studies were done in clinical 

settings, where the sample sizes were small, and the designs were biased towards individuals 

with disease. Utilizing the access to large sequencing dataset collected by cohort studies from the 

general population together with various cardiometabolic phenotypes, we aimed to unveil the 

role of mtDNA copy number in metabolic syndrome with an enhanced statistical power.  

2.2 Methods 

2.2.1 Brief introduction of the pilot CNW experiment   

In the first freeze of sequencing data, we performed a pilot experiment on 2,063 Finnish samples 

from FINRISK and METSIM cohorts with an association analysis on 1kb autosome variable 

copy number windows (vCNWs). We first split the autosomes into 1kb adjacent windows and 

estimated the copy number of each window using CNVnator (Abyzov et al. 2011). Since most 

windows were expected to be from non-variable regions, we filtered for variable copy number 

windows (vCNWs) via an outlier detection method proposed by Hoaglin and Iglewicz(Hoaglin 

and Iglewicz 1987), and tested those vCNWs for association with the quantitative metabolic 

phenotypes using EMMAX model. After corrected for the number of independent loci in the 

tests, we set up the significance threshold at 2 x 10-7. The genome-wide significant signals were 

then investigated in a similar way as chapter 1 candidates. 
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2.2.2 Direct measurement of MT-CN and batch effect correction 

To develop the method to directly measure the mitochondrial DNA copy number (MT-CN), we 

first calculated per base coverage on the mitochondrial genome from the alignment data using a 

combination of SAMTools(H. Li et al. 2009) (to convert CRAM format to BAM format) and 

BEDtools(Quinlan and Hall 2010) (the genomecov subcommand). Given the read depth 

distribution was fairly uniform (Figure 2.2a), for each individual we computed the mean 

coverage of mitochondrial genome divided by the mean coverage of nuclear genome to estimate 

the average MT-CN in peripheral blood. We then compared the direct measurement with the 

copy number of NUMTs (indirect measurement), to validate the first part of the hypothesis 

(Figure 2.2b). Besides Finns, we also applied this method to other population cohorts collected 

for CCDG project, while the rest all suffered from the hard-to-correct batch effect and were not 

included in the future analyses (Figure 2.6 and chapter 2.4.1). 

In our variety of quality control analyses for the direct measurement of MT-CN, the DNA 

sample collection procedure turned out to be a big confounder (Figure 2.3, chapter 2.3.2). 

Specifically, among the Finns the FINRISK samples collected in the 2002 and 2007 cohorts 

showed strong batch effects, with significant mean-shifts compared to other cohorts. Therefore, 

we separately the data into three analysis batches: 1. FR92 and FR97, 2. FR02 and FR07, and 3. 

METSIM for the downstream analysis. For each batch the MT-CN estimates were regressed out 

by possible confounders (Age and Age2) and transformed to approximately normal distribution 

by rank-based inverse transform method. And then the standardized MT-CN values from all 

batches were combined for the trait association tests.  
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2.2.3 Association test by direct measurement  

We then applied EMMAX model to the directly measured MT-CN, with the metabolic traits as 

response variables. We compared the results of directly measured versus indirectly measured 

mtDNA content, in both pre-processed stage (raw estimates) and post-processed stage 

(normalized traits). We also included mitochondrial haplotype group inferred from mtSNPs as a 

covariate in the model, to test whether some demographic features could explain both the 

phenotypic and mtDNA differences. 

2.2.4 Expanding the analysis to WES data 

Similar to the strategy applied in chapter 1 for boosting the sample size and statistical power, we 

sought to expand our experiment to the 20k Finns using WES data. We first looked at the 

alignment data and found that the coverage of WES data on mitochondrial genome was pretty 

sparse (Figure 2.5c). So instead of using the mean coverage to estimate MT-CN, we compared 

several summary statistics of the WES coverage and selected the maximum to move forward, for 

it had the highest correlation with the WGS measurement (R2=0.44). We then applied similar 

procedures to estimate the MT-CN and normalize the WES measurement, which was tested for 

association with quantitative traits in all ~20k samples, in samples with WGS data and in 

samples without WGS data (Table 2.2). 

2.3 Results 

2.3.1. CNVs on nuclear mitochondrial sequences (NUMTs) associate with 

insulin/fat mass traits  

Among the 272,996 vCNWs tested in our preliminary analysis, there were two regions 

significantly associated with insulin and fat mass with similar summary statistics, one on 

chromosome 1 and the other on chromosome 17 (Table 2.1). The copy number genotype of 
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those two regions were well correlated and far above the normal range for diploid genomes 

(Figure 2.1a). According to the annotation provided by UCSC Genome Browser, those two 

regions both overlapped with nuclear mitochondrial sequences (NUMTs) (one showed in Figure 

2.1b). The vCNWs were highly similar to the homologous mitochondrial sequences, with the 

similarity of 98.7% and 85.4% given by BLAT(Kent 2002) (Table 2.1). Based on the above 

observations, we hypothesized that the read-depth detected NUMTs CNVs actually reflected the 

variation of the mitochondrial DNA copy number (MT-CN) among individuals, and this indirect 

measurement happened when the reads amplified from mitochondrial DNA were misaligned to 

the NUMTs region of nuclear genome in the upstream pipeline. 

2.3.2. Direct measured MT-CN showed stronger association signals with 

multiple metabolic traits in Finns 

We directly measured the MT-CN using the approach mentioned in chapter 2.2.2 for all the 5k 

Finnish samples (same set of WGS samples studied in chapter 1), and found the direct 

measurement well correlated with both NUMTs CNVs on chr1 and chr17 (Figure 2.2b, with R2 

of 0.49 and 0.68, respectively). Given the decent correlation, we went ahead tested the 

association between MT-CN and all the 116 quantitative metabolic traits, with particular 

interests on insulin and fat mass, the two candidate traits showed up in the preliminary analysis 

using NUMTs vCNWs. For comparison we also ran CNVnator again on the same set of 5k 

samples to estimate the NUMTs copy number and generated the same set of summary statistics 

for the indirect measurements. To summarize the results, the signals of insulin and fat mass 

became much stronger with the directly measured WGS genotype (Figure 2.4a, p-value = 2.02 x 

10-21 for insulin and p-value = 4.48 x 10-16 for fat mass) and conditioning on the mitochondrial 

haplotype groups did not change the results. Besides insulin and fat mass, we also observed 

many novel signals including C-reactive protein (p=9.21 x 10-14), total triglycerides (p=9.21 x 
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10-14), and HDL cholesterol (p=4.00 x 10-15), suggesting MT-CN might have broader effects on 

multiple metabolic phenotypes. 

We also used WES data to measure MT-CN and ran the association tests (chapter 2.2.4). The 

measurement was noisier while still able to show the same association signals in the 20k samples 

as well as the subsets with and without WGS data (Table 2.2).  

To understand the connection between MT-CN and more clinically relevant phenotypes, our 

collaborators in METSIM project tested our direct measured MT-CN against two additional traits 

-- Matsuda ISI and disposition index, which measure insulin sensitivity and secretion, and both 

traits were significant (p=4.3x10-26 for insulin sensitivity, p=3.0 x 10-7 for insulin secretion, 

N=2975 for both traits). Notably, the Matsuda ISI signal was still significant when conditioned 

on fat mass and excluding diabetic individuals, which indicates that the association of MT-CN 

with insulin sensitivity was independent of fat mass, while the secretion association was likely to 

be linearly correlated with fat mass association. 

2.4 Discussion  

2.4.1 The potential and limitation of measuring MT-CN with WGS data 

Compared to previous measurement of mitochondrial DNA content, such as real time 

PCR(Gahan et al. 2001) and quantitative PCR(Gourlain et al. 2003), our WGS-based approach is 

much more scalable, which gives it a big application potential given the increased availability of 

large WGS-sequenced cohorts in recent years. Since sample size was the common drawback of 

previous studies, applying our method to analyze large WGS datasets with tens of thousands of 

samples will shed light on the metabolic roles of MT-CN, as we explicitly proved in the preprint 

and briefly discussed in chapter 2.4.2.  
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However, this WGS-based MT-CN measurement has a few caveats as well. First, what we 

calculated was the average amount of mitochondrial DNA copies relative to the copies of nuclear 

genome in the bulk blood tissue, and the variation of this measurement could be significantly 

contributed by the difference in cell type composition among individuals. Similar to the variation 

we found on T-cell receptor genes in chapter 1, this trait was not germline mutations and it could 

be affected by many confounders such as immune responses. The second limitation, as illustrated 

in Figure 2.3 and 2.6, was the batch effect. As briefly mentioned in chapter 2.2.2 we performed 

the same analysis in all the CCDG samples with WGS data available at that time and planned on 

a large meta-analysis across multiple CVD cohorts from different populations. However, we 

found that the MT-CN distributions of samples collected in different centers separated from one 

another, with large differences in means as well as standard deviations. Technically we could 

standardize the data using the same procedure applied in Finns, while given the small sample 

size of most cohorts, the normalization was not likely to work very well and there was a big risk 

of erasing the real differences among samples when data from different standardized batches 

were combined. Considering the large variation in sample collection and library preparation 

procedures among most studies, the batch effects are likely to be common and therefore we 

suggest that whoever apply this method needs to be extra cautious about the quality control of 

the data.    

2.4.2 The story beyond: genetic determinants of MT-CN and its causal 

relationship with metabolic traits 

The strong associations with multiple metabolic traits put MT-CN in the spotlight of our 

research, however as mentioned previously, it was not clear whether this trait is genetically 

inheritable and what are the underlying causal relationships between MT-CN and CVD-related 

metabolic phenotypes. To address these important questions, my colleague Liron Ganel, also the 
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first author of the preprint, conducted a series of analyses to find the genetic determinants for 

MT-CN, estimate the heritability of this mitochondrial trait, untangle the underlying causal 

relationship between MT-CN and fasting serum insulin via a modified Mendelian 

Randomization (MR) model, and finally interpret the association between MT-CN and metabolic 

syndrome in UK Biobank data with polygenic risk score (PRS) approach. Considering the length 

of this thesis and the free access to our manuscript, here we only briefly introduce the conclusion 

from his work, leaving the details to the publication. In summary, we found that genetics played 

a significant role in the variation of blood-derived MT-CN measured from WGS data, which 

turned out to be a reflection of the relative quantities of circulating immune cells in the blood. 

This result, together with other prior evidence (e.g., CRP as a risk factor of CVD) suggested that 

inflammation might play a role in metabolic syndrome.   

2.5 Acknowledgement 
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work to this project. Together with our advisor Dr. Ira Hall, he also led the writing of the 
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Figure 2.1 CNVs on chr1 and chr17 NUMTS regions and their association with insulin 

(a) The genotype correlation between chr1 and chr17 NUMTS CNWs, with the copy number 

estimated by CNVnator. Each dot represents a sample.  

(b) Local Manhattan plot for the chromosome 1 CNWs on region 450kb-700kb, with the 

NUMTS region highlighted by the pink block. The annotation tracks of Gap Locations and 

Human NumtS were from UCSC Genome Browser.  
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Figure 2.2 Directly measure MT-CN by aligning to mitochondrial genome 

(a) Per-base coverage of the WGS reads aligned to Mitochondrial genome, showing six random 

samples as example.  

(b) The scatterplot of directly measured MT-CN (x-axis) versus the indirect measurement from 

NUMTS copy number (y-axis). Each dot represents a sample, colored by sex.  
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Figure 2.3 Batch effects among FINRISK cohorts  

Distributions of the direct measured MT-CN from FINRISK (top four panels) and METSIM, 

with FINRISK samples further stratified by the year of sample collection. Batch effects mainly 

manifested in the 2002 and 2007 FINRISK cohorts, which is likely be caused by the change of 

DNA collection and storage protocol.  
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Figure 2.4 Trait association tests using directly measured MT-CN 

(a) The negative log10 p-values of direct MT-CN measure (red) compared to those measured 

from NUMTS copy number (blue) in the association tests with insulin and fat mass, the top two 

candidate traits from CNW analysis. 
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(b) Phenom-wide negative log10 p-values between MT-CN and all the tested metabolic traits, 

colored by the trait groups.  
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Figure 2.5 Measuring MT-CN using WES data 

(a) The correlation between MT-CN measured by the mean coverage of WGS data and the max 

coverage of WES data using normalized MT-CN measurement.  

(b) Similar to (a), but with mean coverage of WES data 

(c) The per-base coverage profile for the alignment results of WES reads on mitochondrial 

genome, showing four samples as example.  
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Figure 2.6 Measuring MT-CN in CCDG African American samples 

Distributions of the direct measured MT-CN in the 3807 African American samples from CCDG 

project, stratified and colored by the different cohorts which conducted the initial sample 

collection.  
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Table 2.1 The association signals of NUMTs CNVs 

 

The information of the trait-associated NUMTS CNWs, with summary statistics from the of 2k 

WGS-sequenced samples (aligned to GRCh37 reference). The p-values marked by red survived 

the multiple testing correction for that preliminary analysis. The “Similarity” column showed the 

BLAT results between each of those NUMTS windows and its homologous sequence on 

mitochondrial genome (column on the left). 

quantitative trait ~ variable copy number window genotype + kinship

(~2k Finnish samples, b37)

Nuclear 

coordinates 

(b37)

Nuclear 

coordinates 

(b38)

MT 

alignment 

(b38)

Similari

ty 

(BLAT)

Trait associated Sample

size

P Beta

chr1:565000-5

66000

chr1:629620-6

30620

chrM:4451-	

5451

98.7% ln_ins_fast_combined 1107 3.33	x	10-7 -0.066

chr1:566000-5

67000

chr1:630620-6

31620

chrM:5450-64

50

98.7% fatmass_combined;	

ln_ins_fast_combined

1309;	

1107

2.98	x	10-7;	

5.70	x	10-9
-0.097;	

-0.13

chr1:567000-5

68000

chr1:631620-6

32620

chrM:6450-74

49

98.5% ln_ins_fast_combined 1107 1.86	x	10-7 -0.098

chr17:220200

00-22021000

chr17:2252067

4-22521674

chrM:15853-1

6569

85.4% fatmass_combined;	

ln_P_CRP_combined

1309;	

1964

5.46	x	10-9;	

4.87	x	10-8
-0.058;	

-0.041
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Table 2.2 WES MT Copy Number vs. Candidate Metabolic Traits  

 

Results of EMMAX test of association between normalized MT-CN and both fat mass and two 

serum insulin related traits using WES data. Association tests were performed in all samples and 

also separately among samples with and without WGS data.  

 

 

Traits

Samples in WGS 

(4030)

All WES samples 

(19127)

WGS sample excluded/ 

independent samples (15131)

P Beta P Beta P Beta

fatmass_combined 6.94 x 10-09 -0.109 7.27 x 10-19 -0.093 3.54 x 10-11 -0.083

ln_ins_fast_combined 2.22 x 10-12 -0.150 6.21 x 10-26 -0.121 5.25 x 10-15 -0.106

ln_P_ins120_combined 5.94 x 10-08 -0.115 2.47 x 10-21 -0.110 5.18 x 10-14 -0.103
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3.1 Introduction  

3.1.1 The limitation of applying traditional imputation methods to complex 

SVs 

Using imputation methods to predict the missing genotypes has become a standard procedure for 

most GWAS studies, especially for those conducted by microarray technologies (McCarthy et al. 

2016; Das et al. 2016; Naj 2019). However, the traditional genotyping imputation methods, such 

as BEAGLE5 (Browning, Zhou, and Browning 2018) used in chapter 1, were primarily designed 

and validated for SNPs, the genotype of which usually have relatively simple representation 

(samples either carry zero, one or two copies of the alternative alleles). Most of the commonly 

used imputation software started with a haplotype-based reference panel built from either 

pedigree data or large cohort of unrelated samples, and then predict the missing variants using 

Hidden Markov Model (HMM) or similar alternatives (Marchini and Howie 2010). A very 

important middle step of imputation is called “phasing”, where the diploid genotype measured by 

either sequencing or array technology was converted into genotype of two haplotypes, during 

which various heuristic algorithms were applied to infer whether the variant was on paternal 

chromosome or maternal chromosome. This phasing step, however, can become extremely 

complicated when dealing with complex SVs with multiple possible allelic combinations, such 

as  CNVs with highly variable copy number genotypes. Besides the technical limitation in 

phasing the complex multiallelic SVs, traditional imputation is also restricted to the assumption 

that the variants nearby (in the sense of linear genome) are more informative than the distal 

variants, under the general belief of low rate of mutation and recombination. This assumption in 

general works well for SNPs and indels, while not for complex SVs which were usually 

generated by mechanisms different from smaller and simpler variants. For instance, because of 

the  frequent rearrangements, the LD structure of some SegDup-enriched loci was likely to be 
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disturbed where some distal variants (or a specific combination of them) might in fact provide 

more information than the ones close to the SV of interests. Therefore, it would be beneficial to 

develop novel methods to predict the missing genotypes for complex SVs.          

3.1.2 The copy number polymorphism (CNP) of AMY1 locus and its potential 

phenotypic effect   

AMY1 genes are a cluster of protein coding gene located on chromosome 1 responsible for 

generating salivary amylase. The diploid copy number of this gene, which has a wild range (2 to 

20) of possible values in the population, was reported to have positive association with the 

digestion ability of starch when compared among human populations with low- versus high-

starch diet(Perry et al. 2007). And the evidence became even stronger when the comparison was 

done between wolves (who have only one copy per individuals) and domesticate dogs (with 

diploid copy number ranged from 2~30), the latter of which were under the selection pressure of 

adapting to a starch-rich diet (Axelsson et al. 2013). After that, the AMY1 copy number has been 

broadly studied for its potential role in other disease related metabolic phenotypes such as 

weight, BMI, obesity, type 2 diabetes etc. (Hariharan, Mousa, and de Courten 2021; Vázquez-

Moreno et al. 2020; Liu et al. 2020; O’Callaghan et al. 2019; Barber et al. 2020; Marquina et al. 

2019; Pinho, Padez, and Manco 2018; Viljakainen et al. 2015). However, just like the case in 

chapter 2, most of the time people tried to address these questions in clinical studies with limited 

sample sizes, and many ended up with the conflict results. One study(Usher et al. 2015) made the 

efforts to evaluate the phenotypic effect of AMY1 copy number in large GWAS. Differed from 

their previous published work on the HP recurrent deletion(Boettger et al. 2016), where they 

extensively studied the allelic structure and existing haplotypes to build a reference panel for 

imputation and tested the imputed SV in a large cohort, this group chose to use the tagging SNP 

(of which the R2 was only ~0.1 with the CNV) as the proxy for AMY1 CNV, presumably because 
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this variant was much more difficult for phasing even after similar efforts and pedigree data were 

invested to solve the allelic structure of this locus. At the end the author concluded that AMY1 

copy number has nothing to do with BMI or obesity, with the argument that the power for 

identifying any association signal was 99% even using the partially linked SNP given their large-

enough sample size. Besides strategically comprised on the genotyping accuracy, this study also 

had a few other caveats: 1. Due to the phenotype availability, they only tested BMI and obesity, 

while AMY1 might contribute to other metabolic traits, e.g. the ones available in our study. 2. 

Samples used in this study were from several small cohorts (each with less than two thousand 

individuals) with various ethnic background and disease status, which essentially had large 

heterogeneity that could affect meta-analysis (e.g., one cohort might be the major drive of the 

conclusion). Therefore, we sought to genotype this AMY1 CNV with a novel machine learning 

approach that accommodated better to this type of problems and look for potential association of 

this recurrent SV with all the quantitative traits in our Finnish data.    

3.1.3 Neural network models and their potential application in this case 

Neural network is a type of machine learning models widely used today, the development of 

which were inspired by the structure of biological neural networks. It usually composed of an 

input layer, several hidden layers and an output layer, and the hidden layers are usually designed 

to have different number of nodes and connecting patterns, just like neurons in the brain, to 

mimic the learning processes of human beings. In most popular areas of computer science, such 

as computer vision and nature language processing(NLP), scientists are training neural network 

models with hundreds of hidden layers with complex architecture constructed by enormous 

numbers of parameters, as known as “deep learning”, empowered by the recent breakthroughs in 

the size of training data as well as computational efficiency and capacity (LeCun, Bengio, and 
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Hinton 2015).  However, the application of neural network and deep learning models has been 

pretty limited in the field of genetics, with a narrow focus on the functional prediction of the 

non-coding sequences (Telenti et al. 2018; Eraslan et al. 2019; Zou et al. 2019). The limited 

application was likely due to several different factors, including the lack of well-labeled genetics 

datasets, the general difficulty in interpreting the model (both the structure and the parameters), 

and probably the little improvement in the performance when compared to classic and simpler 

models. Meanwhile, this type of models are more flexible in terms of the underlying assumptions 

and the data format of inputs and outputs. Also as shown in the imaging processing applications, 

neural nets have the unique ability of automatically selecting informative features from the high 

dimensional space when fed with decent amount of high-quality training data (Razzak, Naz, and 

Zaib 2018). Considering the advantages and disadvantages mentioned above, the genotyping 

experiment of AMY1 CNV (explained in chapter 3.1.2) became a good candidate for applying 

neural network models to a broader human genetics problems that were hard to solve by 

traditional approaches. And as illustrated below, we showed that even simple models with less 

than five fully-connect layers (the most basic architecture) had significantly outperformed the 

previous best practice (tagging SNP proxy) and the baseline single-layer linear separators. This 

experiment is still ongoing, with efforts denoted to refine the performance of the current model. 

However, given how encouraging the preliminary results were, we are already in the progress of 

introducing the same method to other complex SV loci. In the future research, we also look 

forward to applying deep learning in other types of genetics problems where more and more 

high-quality medical and biological datasets are available.       
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3.2 Methods 

3.2.1 Data preparation  

4441 WGS-sequenced samples passed quality control for both SV callsets and GATK callset 

were used for training and testing the models. A subset of 406 SNPs/Indels flanking AMY1 genes 

on chr1:102561901-104594600 (GRCh38) captured by both WGS data and genotype array data 

were extracted from the GATK callset VCF to create feature matrices. We designed two types of 

features using the alternative allele dosage, one from the unphased diploid genome and the other 

from phased haploid genome (see chapter 1.2.5). To determine the labels, we manually curated 

the CNVnator calls overlapped with AMY1 and arbitrarily selected the CNV chr1:103594101-

103722400, of which the genotypes could be easily defined from the copy number distribution 

(Figure 3.1). Similarly, we designed two sets of labels: 1. the continuous genotype from 

CNVnator output and 2. The discrete genotype from clustering the continuous values in 1. All 

four combinations of the features and labels were trained and tested for performances.    

3.2.2 Model training and evaluation  

For this preliminary analysis, all the model training and evaluations were done using 

tensorflow/keras(Chollet 2015), a python based deep learning API, on one laptop with 16GB 

memory and 6-core i9 processor. The 4441 samples were randomly separated, with 80% went 

into the training set and 20% went into the testing set. For models with categorical output 

(discrete genotype label), we used cross entropy loss function and aimed at maximizing 

accuracy, and mean squared error as the loss function for regression output(continuous genotype 

label). All models were trained with Adam optimizer for 5000 epochs with entire set of training 

samples. To set up the baseline performance, we first trained a simple regression model/linear 

separator for each group of feature and label combinations (for models with categorical outputs, 
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an additional softmax activation function was added to convert the outputs variables). Next, we 

experimentally built up the neural network model starting from the simplest structure (e.g. one 

hidden fully connected layer with 32 nodes followed by a relu activation function) and gradually 

increased the complexity (adding more layers and/or nodes) until there was indication of 

overfitting: the improvement of the training accuracy almost saturated and the testing accuracy 

started to drop. Then we added regularization (L2 regularizers with factor of 0.01) and dropout 

layers (rate = 20%) to reduce overfitting. The final models was selected according to the training 

and testing performance evaluated by the correlation between the predicted genotype and WGS-

measured genotype.        

3.2.3 Predict AMY1 copy number in 19k Finns and association tests 

In order to better predict the “unseen” data, we first retrained the model using full set of the 4441 

labeled samples with the final structure determined in chapter 3.2.2. Then the array genotype 

data of 21,058 Finnish samples was then input to predict the AMY1 copy number of those 

individuals. We estimated the overall prediction quality from the overlapping samples between 

WGS and array datasets and then tested the predicted AMY1 genotypes against 140 quantitative 

metabolic traits (24 additional traits added according to the same power cut-off used in chapter 

1) via EMMAX model.   

3.3 Results 

3.3.1 Model performance 

The final models for each combination are listed below:    

Model #1: discrete labels ~ unphased features 
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Model #2: continuous labels ~ unphased features 

 

Model #3: discrete labels ~ phased features 

 

Model #4: continuous labels ~ phased feature 
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And the performances of above models can be found in Table 3.1. To summarize: all the multi-

layer neural net models outperformed the baseline models in both training data and testing data, 

and the performances were similar across different selections of features and labels. Given this 

observation and the principle of Occam’s razor, we selected model #2 for the downstream 

analysis, as it had the simplest structure.    

3.3.2 Predicted AMY1 CNP in Finns and its association with metabolic traits 

We retrained the parameters of model #2 using all the labeled samples and predicted the AMY1 

copy number genotype of the ~20k samples using the updated model and the feature matrix 

created from SNP array data. The correlation between predicted copy number and the “ground 

truth” was 0.97 estimated in the ~4k overlapped samples. This approximated accuracy was 

presumably overestimated, since the model performance tend to drop when making predictions 

on the rest of the unseen data. To get a sense of the overall performance, we compared the 

distribution of the predicted values to the distribution of WGS-measured copy number (Figure 

3.2). The predicted distribution also fit into a GMM, with each component centered around the 

same mean compared to the labeled distribution ( the variant increased probably as a result of 

more diverse input haplotypes). We then tested for association between the predicted AMY1 copy 

number and the 140 quantitative traits (Figure 3.3),  and found five significant signals with p 

<0.05: serum LDL cholesterol level in semi-fasting samples (p = 0.012, beta = 0.052, n = 4602), 
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alanine (p=0.023, beta = 0.034, n=8699), pyruvate (p=0.031, beta = 0.029, n=10743), HDL3 

cholesterol (p=0.034, beta=0.028, n=10826) and glycine (p=0.042, beat = 0.031, n=8155). None 

of those five signals was strong enough to pass multiple testing correction for the tested 

phenotypes. Meanwhile, previous studies suggested a potential correlation between LDL 

cholesterol and acute pancreatitis(Hong et al. 2018, 2020; Ni et al. 2014), with one study 

observed a positive correlation between amylase level and LDL cholesterol in the blood and in 

the urine(Ni et al. 2014). And the observation that the signal only appeared in the semi-fasting 

samples was also interesting given the role of amylase in digestion activities.     

3.4 Discussion 
We proved in chapter 1 that SVs could have large phenotypic effect and once included in the 

trait-mapping studies would improve our understanding of disease genetics. However, this type 

of variants are also challenging to detect in large scale, since a high quality SV callset either 

depends on expensive and time-consuming collection of WGS data or requires highly 

conservative quality control for WES or array data at the price of missing out a large number of 

true variants. An alternative solution to that, which was already employed in our first study, is to 

genotype the high-confidence SVs detected from a relatively small set of WGS samples in a 

larger dataset with targeted sequencing (e.g., WES) or SNP array data. This approach boosted the 

power of our trait-mapping study, and also provided a much more “affordable” solution for 

routinely including SVs in GWAS studies -- simply adding those variants in the imputation 

panels.  

However, since the classic imputation methods were only good at handling part of biallelic SVs, 

we still missed a fair number of complex SVs with potential phenotypic effects, such as the 

AMY1 CNV. In this chapter, we delivered a new strategy for imputing the complex SVs from 
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SNP array data, with the application of the neural network models. And we showed that models 

with relatively simple structures already performed surprisingly well.  

Given this proof-of-concept, the future directions of this project are:  

1. Building more complex models to see if we can further improve the predicting accuracy. This 

could be done by either adding more hidden layers (“go deeper”) or trying out other architecture 

such as convolutional neural network (CNN), recurrent neural network (RNN) and long short-

term memory (LSTM). Of particular interests are the sequential models, given the linear nature 

of the DNA sequences. However, as the model becomes more sophisticated, the current size of 

well-labeled data for training and testing is not likely to be enough for the drastically increased 

parameters. As a consequence, a lot of efforts will be denoted to prevent overfitting, while the 

improvement on performance might be minor. Ideally we can reach a good balance of method 

development and application efficiency through practice and getting inputs from other machine 

learning experts. For example, we might find inspiration from one recently published study in 

which the authors also applied deep learning method to improve imputation (Kojima et al. 2020).        

2. Expanding the application to other unsolved problems. A lab member Neil Zheng is currently 

working on experimenting the same approaches to a few pharmacogenomics loci known to be 

affected by recurrent SVs, including CCL3L1(Carpenter et al. 2012), C4(Szilágyi and Fust 

2008), CYP2D6(Nofziger et al. 2020), and DEFB4A(Bentley et al. 2010; X.-J. Zhou et al. 2012). 

At the same time, he is also retraining the AMY1 CNV model with additional samples from other 

ethnicity groups (e.g., including the 1000 Genome Project samples), so that we can expand the 

analysis to datasets like UK Biobank, where we also have the access to a lot more samples as and  

phenotypes. Besides genotyping SVs, we are also considering other biological applications of 



88 
 

deep learning technology, such as solving the structure of human genome and predicting 

functional and phenotypic effects from genotype data.           
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Figure 3.1. The two types of copy number labels  

This figure illustrated the two types of the copy number genotype labels we used for training the 

models and their relationship. The histogram was plotted for the continuous copy number labels 

estimated by CNVnator, and the color code showed the discrete copy number labels which were 

the clustering results of the continuous values using k-means method (k=8).    
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Figure 3.2. The distribution of predicted and measured AMY1 copy number  

The histogram of continuous copy number genotype predicted by the final model (top, 20k 

samples) and that of the directly measured genotype from WGS data (bottom, 4k samples).  
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Figure 3.3. The phenome-wide association results for predicted AMY1 copy number  

The phenome-wide Manhattan plot for the predicted AMY1 copy number variation, colors were 

coded by trait groups. P value on the y-axis was plotted in negative log10 scale, to better 

illustrate the significance level of the first five traits (p<0.05).  
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Table 3.1. Model performance 

 

* Different structure for the optimal categorical model and regression model 

The model performance measured by the Pearson correlation coefficient of the true label (Y) and 

predicted label (Y_hat). Only the final selected models are presented here of which the structure 

of each model can be find in the chapter 3.3.1.    
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