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IMPORTANCE Given the widespread use of systemic antibiotics for treatment of moderate
to severe acne, it is important to understand the associations of such antibiotic use with
changes not only in Cutibacterium acnes (formerly Propionibacterium acnes) but also in the
complete bacterial community of the skin.

OBJECTIVE To examine the composition, diversity, and resilience of skin microbiota
associated with systemic antibiotic perturbation in individuals with acne.

DESIGN, SETTING, AND PARTICIPANTS This longitudinal cohort study conducted at an academic
referral center in Maryland from February 11 to September 23, 2014, included 4 female participants
who had received a recent diagnosis of acne vulgaris, showed comedonal and inflammatory acne on
the face, were at least 18 years old, and had no recent use of systemic or topical treatments for acne,
including antibiotics and retinoids. Data analysis was performed between July 5, 2017, and
November 7, 2018.

INTERVENTIONS Participants were prescribed oral minocycline, 100 mg, twice daily for 4 weeks.
Skin areas on the forehead, cheek, and chin were sampled for 16S ribosomal RNA gene sequencing
at baseline, 4 weeks after starting minocycline treatment, and then 1 week and 8 weeks after
discontinuation of treatment.

MAIN OUTCOMES AND MEASURES Skin microbiota examined with respect to relative abundance of
bacterial taxa, α diversity (represents within-sample microbial diversity), and β diversity (represents
between-sample microbial diversity). Acne status evaluated with photography and lesion count.

RESULTS Of the 4 patients included in this study, 2 were 25 years old, 1 was 29 years old, and 1 was
35 years old; 2 were white women, 1 was an African American woman, and 1 was an Asian woman.
Acrossall4patients,antibiotictreatmentwasassociatedwitha1.4-foldreductioninthelevelofCacnes
(difference, −10.3%; 95% CI, −19.9% to −0.7%; P = .04) with recovery following cessation of
treatment. Distinct patterns of change were identified in multiple bacterial genera, including a
transient 5.6-fold increase in the relative abundance of Pseudomonas species (difference, 2.2%;
95% CI, 0.9%-3.4%; P < .001) immediately following antibiotic treatment, as well as a persistent
1.7-fold increase in the relative abundance of Streptococcus species (difference, 5.4%; 95% CI, 0.3%-
10.6%; P = .04) and a 4.7-fold decrease in the relative abundance of Lactobacillus species (difference,
−0.8%; 95% CI, −1.4% to −0.2%; P = .02) 8 weeks following antibiotic treatment withdrawal.
In general, antibiotic administration was associated with an initial decrease from baseline of
bacterial diversity followed by recovery. Principal coordinates analysis results showed moderate
clustering of samples by patient (analysis of similarity, R = 0.424; P = .001) and significant
clustering of samples by time in one participant (analysis of similarity, R = 0.733; P = .001).

CONCLUSIONS AND RELEVANCE In this study, systemic antibiotic treatment of acne was
associated with changes in the composition and diversity of skin microbiota, with variable
rates of recovery across individual patients and parallel changes in specific bacterial
populations. Understanding the association between systemic antibiotic use and skin
microbiota may help clinicians decrease the likelihood of skin comorbidities related to
microbial dysbiosis.
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A cnevulgarisisacommondiseaseofthepilosebaceousunit
characterized by release of inflammatory mediators,
hyperkeratinization, increased production of sebum, and

colonization by Propionibacterium acnes,1-3 recently reclassified
as Cutibacterium acnes.4 This bacterium promotes inflammation
through toll-like receptors, neutrophil chemotactic factors, and
complement pathways.5,6 Cutibacterium acnes also secretes
lipases, proteases, and hyaluronidases that damage the pilo-
sebaceous unit.6 Tetracycline-class antibiotics, such as minocy-
cline and doxycycline, are commonly used as first-line treatment
of moderate to severe acne because of their antimicrobial and
anti-inflammatory actions.2,3 Although recent guidelines recom-
mend limiting systemic antibiotic treatment to 3 to 4 months,3

retrospective studies reveal that the duration of antibiotic treat-
ment often exceeds recommendations,7-11 with a mean treatment
duration of 6.5 months among patients with acne who were
treated by dermatologists in the United States between 2004 and
2013.11 Given the widespread use of systemic antibiotics for acne,
it is important to understand their effects not only on C acnes but
also on the complete bacterial community of the skin.

Amplification and sequencing of the 16S ribosomal RNA
(rRNA) gene has been used to identify bacterial communities in
a variety of body sites, including the skin.12,13 Using this culture-
independent method, many studies have investigated the effects
of antibiotics on gut microbiota, often noting shifts in bacterial
diversity following antibiotic treatment and incomplete recov-
ery in subsets of bacterial taxa following cessation of antibiotic
treatments.14-17 Given these findings in gut microbiota, the aim
of the present study was to examine the composition, diversity,
and resilience of skin microbiota following antibiotic perturba-
tion in individuals with acne.

Methods
Study Participants
Four women who had received a recent diagnosis of acne by a
dermatologist were enrolled from February 11 through Septem-
ber 23, 2014, at the Johns Hopkins Department of Dermatology,
Baltimore, Maryland. Inclusion criteria included the presence of
comedonal and inflammatory acne on the face, age of 18 years
or older, and willingness to use nonantibacterial bar soap for fa-
cial cleansing for the duration of the study. Exclusion criteria in-
cludedhistoryofsystemicortopicalantibioticusewithin1month
of the baseline study visit, hypersensitivity to tetracycline-class
antibiotics, dermatologic procedural treatment within 6 months,
systemic acne treatment within 4 weeks, topical acne treatment
within 2 weeks, significant facial hair, pregnancy or breastfeed-
ing status, and inability to provide informed consent. No partici-
pant had a history of topical or systemic retinoid use within 2
years of the baseline study visit, and no concomitant medication
use was reported. The study was approved by the Johns Hopkins
University Institutional Review Board, and participants provided
written informed consent prior to participation.

Antibiotic Treatment and Sample Collection
Participants were prescribed minocycline, 100 mg, to be taken
orally twice daily for 4 weeks. Skin samples were collected at

4 visits across 12 weeks (Figure 1A), including a baseline visit
before antibiotic treatment and visits 4 weeks after starting
minocycline therapy (week 4), 1 week after discontinuation of
minocycline therapy (week 5), and 8 weeks after discontinu-
ation of minocycline therapy (week 12). Participants’ adher-
ence to antibiotic therapy was followed with a self-reported
diary; all participants took minocycline as directed, with par-
ticipants 2 and 4 each missing 2 doses on nonconsecutive days
at least 2 weeks apart. At each visit, facial skin was sampled
bilaterally from the forehead, cheek, and chin using sterile cot-
ton swabs (Figure 1B), yielding a total of 96 skin samples from
4 participants across 4 time points. Clinical evaluation of acne
status at each visit included photography and lesion counts,
which were performed by a trained postdoctoral fellow.

DNA Extraction and 16S rRNA Gene Polymerase
Chain Reaction Amplification and Sequencing
Extraction of DNA from skin samples involved an enzymatic
lysis and bead-based tissue homogenization protocol; samples
were briefly incubated in a lytic enzyme mixture of lysozyme,
mutanolysin, proteinase K, and lysostaphin, followed by
mechanical lysis with silica beads (0.1 mm), as previously
published.18 The DNA cleanup was then performed with a fecal
DNA extraction kit (ZR Fecal DNA MiniPrep; Zymo Research).
Following DNA extraction, the V3-V4 hypervariable region of the
16S rRNA gene was amplified by polymerase chain reaction and
sequenced using the Illumina MiSeq platform (300 base pairs,
paired-end reads) as previously described.18,19

Statistical Analysis
After screening raw sequences for low-quality bases and short
read lengths, read pairs were assembled using PANDAseq,
demultiplexed, trimmed of barcodes and primers, and assessed
for chimeras, using UCHIME in de novo mode implemented in
the bioinformatic platform QIIME, version 1.9.1.20 Quality-
trimmed sequences were then clustered de novo into operational
taxonomic units (97% similarity threshold), after which taxo-
nomic assignments were performed using the Ribosomal Data-
base Project Classifier21,22 and the Greengenes database (version
13.8).23 For all downstream analyses, samples were normalized

Key Points
Question Does an association exist between systemic antibiotic
treatment and its withdrawal and changes in skin microbiota
in individuals with acne?

Findings In this study of 4 women with acne, there was a significant
decrease in the relative abundance of Cutibacterium acnes (formerly
Propionibacterium acnes) concurrent with a significant increase in
the relative abundance of Pseudomonas species across participants
following 4 weeks of treatment with oral minocycline. After 8 weeks
of antibiotic treatment withdrawal, C acnes levels recovered, while
Streptococcus species significantly increased and Lactobacillus species
significantly decreased from baseline.

Meaning Systemic antibiotic treatment of acne may be associated
with transient and persistent changes in the skin microbiota that
may underlie skin comorbidities related to microbial dysbiosis.
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to 8746 sequences. Microbiota α diversity, which represents mi-
crobial diversity within an individual sample, was computed in
QIIME through the whole tree phylogenetic diversity metric.24-26

Microbiota β diversity, which indicates intervariability of micro-
bial diversity between samples, was examined through princi-
palcoordinatesanalysisofweightedUniFracdistances27 inQIIME
and hierarchical clustering based on the unweighted pair group
method with arithmetic mean algorithm in the R statistical soft-
ware(RCoreTeam).Comparisonsofαdiversityandrelativeabun-
dance of bacterial taxa between samples were performed with
t tests with Monte Carlo permutations in QIIME and Metastats,28

respectively. Comparison of β diversity among samples was per-
formed with QIIME using the analysis of similarity (ANOSIM).29

All other analyses and visualizations were performed with
R and the ggplot2 package.30 For all statistical analyses, a 2-sided
P < .05 was accepted as statistically significant.

Results
Demographic and relevant clinical characteristics of the
4 patients included in this study are shown in the Table. Two
patients were 25 years old, 1 was 29 years old, and 1 was 35 years
old; 2 were white women, 1 was an African American woman,
and 1 was an Asian woman.

Taxonomic Assignment
Of 96 skin samples obtained bilaterally from 3 sites (fore-
head, cheek, and chin) of 4 patients, 8 samples were
excluded from the analysis because of low concentration of
extracted DNA, and 4 additional samples were excluded
because of low read numbers from 16S rRNA gene sequenc-
ing (eTable in the Supplement). The final data set included
84 samples across 4 patients sequenced to a mean (SD) read
count of 66 414 (24 141). We identified 30 phyla, 79 classes,
131 orders, 217 families, 447 genera, and 232 species that
were unique and present in at least 1 sample. There was pre-
dominance of Actinobacteria (41.9%), Firmicutes (31.7%),
and Proteobacteria (19.5%) at the phylum level across all
samples (eFigure 1A in the Supplement).

Relative Abundance of Individual Bacterial Taxa
We focused on the genus and species levels when examining
changes in abundance of individual bacterial taxa relative to
the entire bacterial community in samples. Although the
majority of operational taxonomic units in this study could
not be speciated beyond the genus level, we did characterize
levels of Cutibacterium acnes and Staphylococcus epidermidis
over time (Figure 2A and B). Across all patients and sites, the
mean relative abundance of C acnes decreased 1.4-fold from
baseline to week 4 (difference, −10.3%; 95% CI, −19.9% to
−0.7%; P = .04) following treatment with minocycline and
decreased further by week 5 (difference, −12.8%; 95% CI,
−21.9% to −3.6%; P = .02). At week 12, or 8 weeks after
discontinuation of minocycline treatment, the relative
abundance of C acnes returned to a level that was quantita-
tively lower but not statistically different from baseline
(difference, −10.4%; 95% CI, −20.3% to −0.4%; P = .06).

Staphylococcus epidermidis showed a consistently low rela-
tive abundance across all time points, at a level approxi-
mately 100-fold lower than that of C acnes.

We identified 12 genera with relative abundance greater
than 0.1% across all samples and with statistically significant
changes over time (Figure 2C). Among these 12 genera, we
noted 4 distinct patterns of change, namely, decrease in rela-
tive abundance following antibiotic treatment with or with-
out recovery at week 12, as well as increase in relative abun-
dance following antibiotic treatment with or without recovery
at week 12. Five genera showed decreases in relative abun-
dance on treatment with minocycline: Cutibacterium (base-
line [BL]-week [W]4 difference, −10.3%; 95% CI, −19.9% to
−0.7%; P = .04), Corynebacterium (BL-W4 difference, −2.4%;
95% CI, −4.1% to −0.7%; P = .005), Prevotella (BL-W4 differ-
ence, −0.7%; 95% CI, −1.3% to −0.1%; P = .008), Lactobacillus
(BL-W12 difference, −0.8%; 95% CI, −1.4% to −0.2%; P = .02),
and Porphyromonas (BL-W4 difference, −0.5%; 95% CI, −0.9%

Figure 1. Schematic Diagram of Study Design

Procedures and antibiotic regimenA

Facial skin sampling sitesB

Forehead

Cheek

Chin

Week 12aBaselinea Week 4a Week 5a

Oral minocycline,
100 mg twice daily Discontinue minocycline therapy

4 wk 1 wk 7 wk

A, Time course of antibiotic therapy and procedures performed at each study
visit. B, Bilateral sites of the face sampled by sterile cotton swabs at each visit
for 16S ribosomal RNA (rRNA) gene amplification and sequencing.
a Bilateral skin sampling (forehead, cheek, and chin), 16S rRNA gene

sequencing, photography, and lesion count.

Table. Demographic and Clinical Characteristics of the 4 Patients

Patient
No.

Age,
y

Race/
Ethnicity

Fitzpatrick
Skin Type

Duration
of Acne, y

Baseline
Inflamed
Lesion Count

1 35 White 2 22 7

2 25 Asian 3 14 4

3 29 African
American

5 13 7

4 25 White 2 11 22
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Figure 2. Dynamics of Bacterial Populations in the Presence and After Withdrawal of Antibiotic Treatment

Relative abundance of bacterial genera by timeC

0.6

0.4

0.2

0

Re
la

tiv
e 

Ab
un

da
nc

e

Time

Cutibacterium species
0.08

0.06

0.04

0.02

0

Time

Corynebacterium species
0.016

0.012

0.008

0.004

0

Time

Prevotella species

0.020

0.025

0.015

0.010

0.005

0

Time

Lactobacillus species

Baseline
(n = 22)

Week 4
(n = 23)

a

Week 5
(n = 22)

a

Week 12
(n = 17)

a

Baseline
(n = 22)

Week 4
(n = 23)

b

Week 5
(n = 22)

b

Week 12
(n = 17)

a

Baseline
(n = 22)

Week 4
(n = 23)

b

Week 5
(n = 22)

b

Week 12
(n = 17)

a

Baseline
(n = 22)

Week 4
(n = 23)

Week 5
(n = 22)

Week 12
(n = 17)

a

0.012

0.009

0.006

0.003

0

Re
la

tiv
e 

Ab
un

da
nc

e

Time

Porphyromonas species
0.20

0.15

0.10

0.05

0

Time

Streptococcus species
0.015

0.010

0.005

0

Time

Chryseobacterium species
0.012

0.009

0.006

0.003

0

Time

Finegoldia species

Baseline
(n = 22)

Week 4
(n = 23)

a

Week 5
(n = 22)

b

Week 12
(n = 17)

Baseline
(n = 22)

Week 4
(n = 23)

Week 5
(n = 22)

Week 12
(n = 17)

a

Baseline
(n = 22)

Week 4
(n = 23)

Week 5
(n = 22)

Week 12
(n = 17)

b

Baseline
(n = 22)

Week 4
(n = 23)

a

Week 5
(n = 22)

b

Week 12
(n = 17)

b

0.04

0.03

0.02

0.01

0

Re
la

tiv
e 

Ab
un

da
nc

e

Time

Pseudomonas species
0.03

0.02

0.01

0

Time

Erwinia species
0.015

0.010

0.005

0

Time

Actinobacillus species
0.15

0.10

0.05

0

Time

Micrococcus species

Baseline
(n = 22)

Week 4
(n = 23)

Week 5
(n = 22)

a

Week 12
(n = 17)

b b

Baseline
(n = 22)

Week 4
(n = 23)

Week 5
(n = 22)

a

Week 12
(n = 17)

Baseline
(n = 22)

Week 4
(n = 23)

a

Week 5
(n = 22)

Week 12
(n = 17)

Baseline
(n = 22)

Week 4
(n = 23)

a

Week 5
(n = 22)

b

Week 12
(n = 17)

0.8

0.6

0.4

0.2

0

Re
la

tiv
e 

Ab
un

da
nc

e

Relative abundance of Cutibacterium acnes by timeA

Time

Baseline
(n = 22)

Week 4
(n = 23)

a

Week 5
(n = 22)

a

Week 12
(n = 17)

0.006

0.004

0.002

0

Re
la

tiv
e 

Ab
un

da
nc

e

Relative abundance of Staphylococcus epidermidis by timeB

Time

Baseline
(n = 22)

Week 4
(n = 23)

Week 5
(n = 22)

Week 12
(n = 17)

Relative abundance of Cutibacterium acnes (formerly Propionibacterium acnes)
(A) and Staphylococcus epidermidis (B) at various times during and after
antibiotic treatment. Horizontal bar within box plots represents the median;
bottom and top of each box, first and third quartiles; lower error bar extends to
the lowest data point within 1.5 times the interquartile range from the first
quartile; upper error bar extends to the highest data point within 1.5 times the
interquartile range from the third quartile. Data points beyond 1.5 times the
interquartile range above the third quartile or below the first quartile are

plotted individually as outliers. Relative abundance of selected bacterial genera
at various times during and after antibiotic treatment (C). Error bars indicate
95% CIs. P values calculated using t tests with 1000 Monte Carlo permutations
and 5% false-discovery rate adjustment. Sample sizes shown on x-axes indicate
distinct skin samples obtained from all 4 participants.
a P < .05 compared with baseline.
b P < .01 compared with baseline.
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to −0.1%; P = .01). Of these 5 genera, only Porphyromonas
recovered at week 12 to a level that was not statistically dif-
ferent from baseline (BL-W12 difference, −0.3%; 95% CI, −0.7%
to 0.1%; P = .13). By contrast, 7 genera showed increases in rela-
tive abundance on treatment with minocycline: Streptococcus
(BL-W12 difference, 5.4%; 95% CI, 0.3%-10.6%; P = .04),
Chryseobacterium (BL-W12 difference, 0.8%; 95% CI, 0.2%-
1.3%; P = .01), Finegoldia (BL-W4 difference, 0.1%; 95% CI,
0.01%-0.2%; P = .03), Pseudomonas (BL-W4 difference, 2.2%;
95% CI, 0.9%-3.4%; P < .001), Erwinia (BL-W4 difference, 1.6%;
95% CI, 0.6%-2.6%; P < .001), Actinobacillus (BL-W4 differ-
ence, 0.6%; 95% CI, 0.04%-1.2%; P = .04), and Micrococcus
(BL-W4 difference, 3.8%; 95% CI, 0.7%-6.9%; P = .03). Only the
latter 4 genera returned at week 12 to a level that was not
statistically different from baseline: Pseudomonas (BL-W12
difference, 0.02%; 95% CI, −0.3% to 0.3%; P = .90), Erwinia
(BL-W12 difference, 0.1%; 95% CI, −0.2% to 0.5%; P = .45),
Actinobacillus (BL-W12 difference, 0.1%; 95% CI, −0.1% to 0.3%;
P = .27), and Micrococcus (BL-W12 difference, 0.6%; 95% CI,
−0.4% to 1.6%; P = .29).

Acne Severity and α Diversity
When aggregated across all 4 patients and sampled sites, the
median number of inflamed lesions decreased following treat-
ment with minocycline (median at baseline, 7.00; interquar-
tile range [IQR], 6.20-10.75; median at W4, 4.50; IQR, 3.00-
13.75) and increased after discontinuation of treatment (median
at W12, 18.00; IQR, 12.25-26.00) (Figure 3A). Median α diver-
sity, representative of within-sample microbial diversity,
showed a similar temporal trend, that is, decrease following
antibiotic treatment (median at baseline, 32.73; IQR, 21.43-
54.25; median at W4, 28.99; IQR, 24.18-35.49) and increase to
near original baseline levels after 8 weeks of treatment with-
drawal (median at W12, 30.29; IQR, 26.08-34.98) (Figure 3C).
Observed changes in inflamed lesion count and α diversity over
time did not reach statistical significance. However, we noted
distinct and statistically significant changes in α diversity in
individual patients (Figure 3D), highlighting the intraper-
sonal responses of the skin microbiota to antibiotics. Both pa-
tients 3 and 4 had significant decreases in α diversity at week
4 compared with baseline (patient 3 difference, −19.16; 95%
CI, −31.76 to −6.56; P = .006; patient 4 difference, −6.41; 95%
CI, −10.53 to −2.29; P = .048), while patient 3 showed a con-
tinued loss of α diversity at week 5 (difference, −36.26; 95%
CI, −40.39 to −32.12; P = .006). Patients 1 and 3 exhibited op-
posite changes in α diversity at week 12 compared with base-
line; α diversity for patient 1 at week 12 was significantly higher
than baseline (difference, 9.02; 95% CI, 3.96-14.08; P = .01),
whereas α diversity for patient 3 remained significantly lower
than baseline (difference, −36.33; 95% CI, −41.07 to −31.60;
P = .01). When aggregated across all patients and time points,
α diversity showed no difference among the forehead, cheek,
and chin (Figure 3E).

β Diversity
We also examined intersample diversity, or β diversity, based
on principal coordinates analyses of weighted UniFrac dis-
tances. Figure 4 displays principal coordinates analysis plots

with intersample distances represented by 2 principal coordi-
nates (PC1 and PC2), with closely positioned samples being more
similar in composition. The ANOSIM, which generates an R test
statistic ranging from −1 to 1, was used to examine clustering
of samples by patient, site, and time (Figure 4A). A positive R
value suggests greater within-group similarity than between-
group similarity, with greater magnitudes of the R value sug-
gesting more pronounced clustering of samples. An R value of
0 indicates no clustering of samples, whereas a negative R value
suggests greater between-group similarity than within-group
similarity. Although there was moderate clustering of samples
by patient (ANOSIM, R = 0.424; P = .001), showing the unique
microbial signature for each person, clustering by site
(ANOSIM, R = 0.077; P = .001) or by time (ANOSIM, R = 0.084;
P = .001) was much less apparent. Within individual patients,
however, there was clustering of samples by time (Figure 4B),
especially in patient 3 (ANOSIM, R = 0.733; P = .001). We per-
formed hierarchical clustering of samples obtained from pa-
tient 3, and the resulting cluster dendrogram (Figure 4C) also
showed grouping of samples by time, with samples from weeks
4 and 5 most similar to each other, a finding supported by
the proximity of samples from weeks 4 and 5 on the principal
coordinates analysis plot for patient 3 (Figure 4B).

Discussion
This pilot longitudinal cohort study examined the association
of systemic antibiotic treatment with acne severity and skin
microbiota. Through 16S rRNA gene sequencing, we con-
firmed the predominance of Cutibacterium species and C acnes
as well as bacterial taxa belonging to phyla Actinobacteria,
Firmicutes, and Proteobacteria in skin samples, in accordance
with previous studies.12,31-33 Treatment of acne with minocy-
cline was associated with a 1.4-fold reduction of C acnes across
all patients, with recovery toward baseline C acnes levels 8 weeks
after discontinuation of minocycline therapy. Two patients
(1 and 3) displayed clinical improvements in acne severity con-
current with the reduction in C acnes, although our small sample
size and short duration of antibiotic treatment may have lim-
ited the power of our study to detect changes in acne severity.

Our finding of significant changes in relative abundance of
multiple bacterial genera across all 4 patients (Figure 2C) may
have important clinical implications. In addition to reductions
in C acnes, we also observed a 5.6-fold increase in Pseudomonas
species immediately following 4 weeks of antibiotic treatment.
As C acnes levels recovered after 8 weeks of antibiotic treatment
withdrawal, Pseudomonas species levels also returned to base-
line. These observations parallel previous findings by Hall et al,34

who noted a negative correlation between the abundance of
C acnes and Pseudomonas species in skin samples of individu-
als with acne. Our study shows that this negative association
between C acnes and Pseudomonas species persists on disrup-
tion of skin microbiota with minocycline and suggests that
C acnes and Pseudomonas species may compete for the same
microenvironments within skin microbiota. The transient
growth of bacterial populations, such as Pseudomonas species,
immediately following antibiotic treatment points toward the
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Figure 3. Trends in Acne Severity and Microbiota α Diversity
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possibilityofopportunisticskininfections,suchasgram-negative
folliculitis,35,36 with prolonged antibiotic therapy for acne.

Our observation of a 1.7-fold increase in Streptococcus spe-
cies relative to baseline 8 weeks following antibiotic treat-
ment withdrawal adds to existing discussions on the associa-
tion between antibiotic therapy and Streptococcus species in
individuals with acne. In a cross-sectional study, Levy et al37

previously found a 3-fold increase in colonization of the
oropharynx by Streptococcus pyogenes among patients with
acne receiving antibiotic therapy. Subsequent studies by
Margolis et al38,39 also suggested an association between anti-
biotic treatment of acne and upper respiratory tract infec-
tions, particularly pharyngitis. Although we did not sample the
oropharynx in the present study, our observation of increased
Streptococcus species on facial skin following systemic anti-
biotic treatment raises the question of whether a similar growth
of Streptococcus species occurs in the oropharynx—a process that
may mediate previously discovered associations between
antibiotic therapy for acne and oral pharyngitis.

Systemic antibiotic treatment of acne may also reduce bac-
terial populations beneficial to skin health. Several members
of the Lactobacillus genus, for instance, have been associated
with protective effects against Staphylococcus aureus
infections,40 atopic dermatitis,41,42 and acne.43 In the
present study, we observed a sustained, 4.7-fold decrease in
Lactobacillus species relative to baseline 8 weeks following
discontinuation of minocycline treatment, but whether this
presents increased risk for skin infections remains to be de-
termined. Understanding the timing and significance of shifts
in microbial flora associated with antibiotic treatment, both
during and after therapy, may help clinicians decrease the
likelihood of skin comorbidities related to dysbiosis. This may
involve concurrent monitoring of the skin microbiota, a more
targeted antibiotic approach, or additional therapies to
sustain “good” flora during treatment.

Limitations
We did not notice definite trends in acne severity and α diver-
sity across patients in this study. At the individual level, we
observed opposite changes in α diversity in 2 patients
(Figure 3D) that may be associated with the recurrence status
of inflammatory acne following withdrawal of minocycline
therapy (Figure 3B). Patient 1, who showed excessive recov-
ery of microbial diversity 8 weeks after discontinuation of
minocycline treatment, had an increased number of in-
flamed lesions at week 12 relative to baseline. By contrast,
patient 3, who showed lack of total recovery of microbial
diversity even 8 weeks after discontinuation of minocycline
treatment, showed little recurrence of inflammatory acne.
These findings, however, were confounded by both patients
3 and 4 showing decreases in α diversity following 4 weeks of
antibiotic treatment but having opposite changes in inflamed
lesion counts, with patient 3 showing improvement in acne
severity and patient 4 displaying exacerbation. Although our
results indicated variable rates of microbiota recovery to
antibiotic therapy across individuals, we could not deter-
mine whether a relationship existed between acne severity
and microbial diversity of the skin.

The small participant size of our study meant that statis-
tically significant changes in bacterial taxa over time may have
been driven by individual patients. We compared relative abun-
dance of bacteria across time in individual patients (eFigure 2
in the Supplement) and found variations in the bacterial taxa
change associated with antibiotic treatment among the pa-
tients. Although multiple bacterial taxa—particularly C acnes,
Pseudomonas species, Corynebacterium species, and Erwinia
species—showed similar temporal patterns of change in
more than 1 patient, the small participant size of our study
ultimately limits the generalizability of our findings.

Although we set the duration of antibiotic treatment to 4
weeks to maximize patient compliance and retention, the short
course of treatment may have also limited improvements in
acne severity, particularly in patients with greater acne sever-
ity at baseline. Of the 4 patients in this study, patients 1 through
3 had fewer inflamed lesions than patient 4 at baseline and
showed either improvement or no change in acne severity
following 4 weeks of antibiotic treatment. Patient 4, by con-
trast, had significantly more inflamed lesions at baseline and
showed worsening of acne after 4 weeks of treatment with
minocycline. The use of a larger sample size and longer dura-
tion of antibiotic treatment would enable better characteriza-
tion of changes in inflamed lesion count and α diversity, which
may respond differently to antibiotic treatment depending on
acne severity at baseline. Longitudinal data of negative con-
trol participants receiving no antibiotic treatment, which we
did not collect in the present study, would also enable more
accurate characterization of the changes in skin microbiota
associated with antibiotic treatment.

Another potential limitation of our study was the use of
swabs for skin sampling, which has been characterized as
unsuitable for capturing the bacterial community of the pilo-
sebaceous follicle.44 Although a recent study by Hall et al34

showed no difference in C acnes–associated factors between
surface and follicular sampling methods, concurrent exami-
nation of the follicular microbiota may have provided addi-
tional insights on the clinical significance of shifts in the skin
microbiota observed in the present study. Specifically, whether
changes in bacteria, such as C acnes and Pseudomonas
species, on superficial skin layers contribute to or reflect
changes in follicular microbiota may be investigated. Future
iterations of our study may also use mock community
controls,45 which we did not use, to account for foreign DNA
that may have been introduced into 16S rRNA gene analysis
through use of cotton swabs.

Our use of primers targeting the V3-V4 hypervariable
region of the 16S rRNA gene identified significant levels of
C acnes and Cutibacterium species, thereby avoiding one of the
major limitations of skin microbiome studies targeting the V4
region in isolation.46,47 However, the relative abundance of
Cutibacterium species that we observed (mean of 38.4% at
baseline, 29.8% across all time points; see eFigure 1B in the
Supplement) was still lower than that reported in previous
studies targeting the V1-V3 region.34,46 Finally, we were
unable to obtain strain-level resolution of C acnes. Consider-
ing the emerging association of type IA1 strains of C acnes with
inflammatory skin disease,48-50 it would be valuable to
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Figure 4. Microbiota β Diversity
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examine the association of changes in specific strains of
C acnes with antibiotic treatment.

Conclusions
Antibiotic treatment was associated with changes in the
composition and diversity of skin microbiota with variable

rates of recovery across individuals. Reductions in the rela-
tive abundance of C acnes associated with systemic antibi-
otic treatment was accompanied by concurrent growth and
suppression of various bacterial populations, with possible
clinical implications. Understanding the associations
between antibiotics and skin microbiota may help clinicians
decrease the likelihood of skin comorbidities related to
microbial dysbiosis.
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