
INTRODUCTION

IN RECENT YEARS, THERE HAS BEEN A RAPID AND SIG-
NIFICANT PROGRESS IN UNDERSTANDING THE
MOLECULAR BASIS OF THE CIRCADIAN RHYTHMICI-
TY, AS SEVERAL CLOCK GENES HAVE BEEN CLONED IN
MAMMALS. Studies with these genes focusing on loss of func-
tion have demonstrated abnormal sleep/wake length periods, dis-
turbed entrainment, and loss of persistence of circadian rhythms.
Current findings clearly indicate that the core components of the
pacemaker work on the basis of feedback loops of gene expres-
sion and repression.1-5

The same genes found in rodents remain well preserved in
humans and the same mechanisms that underlie endogenous cir-
cadian rhythmicity in these animals are likely to play an impor-
tant role in regulating human circadian rhythms.6 The
wake/sleep cycle is regulated in a circadian fashion, in addition
to its homeostatic regulation. Since mutations in rodent clock
genes are related to circadian abnormal regulation of the
rest/activity cycle, it is likely that mutations in the same genes
may give rise to circadian rhythm-related syndromes in humans.
Alternatively, less drastic changes in these genes, such as natu-
ral polymorphisms, could be related to subtle differences in cir-
cadian phenotypes, as seen in the so-called “morning” and
“evening” persons, ie, individuals who reportedly function bet-

ter during specific parts of the day.
Since the first publication7 reporting an association of a poly-

morphism in the Clock gene with diurnal preference, there has
been a steady increase in the number of studies assessing possi-
ble correlations between polymorphisms or mutations and circa-
dian phenotypes in humans. Katzenberg et al8 and Pedrazzoli et
al9 did not find any association of the human Per1 and Timeless
polymorphisms with diurnal preference. Toh et al10 reported a
familial case of advanced sleep phase syndrome with a mutation
in the hPer2 gene. Ebisawa et al11 reported an association of
polymorphisms in the human Per3 gene (hPer3) with the delayed
sleep phase syndrome (DSPS) in Japan, and Archer et al12 report-
ed an association of a length polymorphism in the same hPer3
gene with evening preference and DSPS in England. 

These last results were obtained in developed countries
located in the northern hemisphere, where there is considerable
seasonal variation in day length along the year. A pertinent
question is whether these effects of the hPer3 length polymor-
phism would also be observed in populations living in the
southern hemisphere. In order to verify this possibility, we
have genotyped this polymorphism in a population selected for
diurnal preference in the cities of São Paulo and Curitiba,
Brazil, and also in a group of patients with DSPS living in the
city of São Paulo.

MATERIAL AND METHODS

Subjects

Volunteers

A total of 1089 volunteers answered the Horne-Östberg (HO)13

questionnaire for determination of diurnal preference. Based on
their HO scores, 58 volunteers in the category of morning pref-
erence, 40 under the category of evening preference, and 58 in
the category of intermediate (mean age 25.85 ± 7.1 years, 66.6%
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women, 77% Caucasian) were selected. One hundred and ten
volunteers (mean age 48.91 ± 17.35 years, 60% women, 76.36%
Caucasian), for whom HO scores were not obtained, participated
in the study as a sample of the general population.

Patients

The study included 17 patients (mean age 28.88 ± 11.5 years,
47 % women, 77% Caucasian) with a diagnosis of DSPS, accord-
ing to the International Classification of Sleep Disorders,14 in the
Department of the Psychobiology/Sleep Institute, São Paulo,
Brazil. Twelve of the patients agreed to undergo sleep recording
and had their circadian profiles of rectal temperature and mela-
tonin secretion assessed; they also wore an actigraph for 2 weeks,
which allowed us to have a physiologic confirmation of their
condition. The study was approved by the Committee on Ethics
of the Federal University of São Paulo, and the patients gave
informed consent with acknowledgement of their awareness of
the theme of the study. Case and control groups shared the same
sociodemographic characteristics and ethnic background.

Genotyping

Blood samples were collected from all participants in the study,
and DNA was extracted from white cells.15 The hPer3 length
polymorphism was genotyped as in Ebisawa et al11 and Archer et
al12 studies.

Statistical Analysis

The allelic frequencies in the groups were compared using
the χ2 test with the Yates correction; for comparison among
chronotype groups, we used χ2 for trend. The P value was set
at .05.

RESULTS

Table 1 shows time of sleep onset, time of melatonin-secretion
onset, time of minimum body temperature, and genotype for the
patients with DSPS. The mean sleep-onset time for the patients
was 2:27 AM ± 72.9 minutes, the mean time of melatonin-secre-
tion onset was 11:25 PM ± 140.49 minutes, and the mean temper-

ature nadir was 6:53 AM ± 126.14 minutes.
Our genotyping data showed a significantly higher 5-repeat and

lower 4-repeat allele frequencies in the DSPS group (5-repeat =
0.56, 4-repeat = 0.44) when compared with the sample from the
general population (5-repeat = 0.34, 4-repeat = 0.66; χ2 = 4.85, P =
.028, odds ratio, 95% CI: 2.4 [1.1-5.3]) or when compared with
evening group (5-repeat = 0.23; 4-repeat = 0.77; χ2 = 5.82, P =
.016). Interestingly, we did not observe any difference when com-
paring the frequencies of the patients with DSPS with those from
the morning group (5-repeat = 0.40; 4-repeat = 0.60; χ2 = 2.95, P =
.086). A significant trend was observed among morning, intermedi-
ate, and evening groups (χ2 test for trend = 5.91, P = .015), with the
frequency of 5-repeat allele significantly higher in the morning
group (χ2 = 6.33, P = .01, odds ratio 95% CI: 2.23[1.1-4.5]) as com-
pared to the evening group. The intermediate group is different from
neither the evening nor the morning groups (P > .05). Table 2
shows the hPer3 allele frequencies in the studied groups. The fig-
ure shows the genotypic frequencies for each group.

DISCUSSION

Our data show that the 5-repeat allele is significantly higher in
the group of patients with DSPS than in the general population
and suggest a role for this allele in the pathophysiology of the
syndrome. Our results thus confirm the findings of Archer et al,12

showing an association of the hPer3 length polymorphism in the
exon 18 with diurnal preference in humans. Surprisingly, howev-
er, our results show an effect of the opposite allele on DSPS;
while Archer et al12 found no 5-repeat allele homozygous for the
DSPS individuals, the present study found nearly 30% of the
patients with DSPS to be homozygous for the 5-repeat allele.

A possible reason for the difference between our results and
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Table 1—Sleep-Onset Time, Melatonin-Secretion Onset, Temperature
Nadir, PER3 genotype for the Patients with Delayed Sleep-Phase
Syndrome  

DSPS Patients SOT MSO TN PER3 genotype
1 3:12 AM 10:30 PM 4:12 AM 4/5
2 3:47 AM 2:01 AM 9:41 AM 4/5
3 1:34 AM 7:07 PM 4:01 AM 4/4
4 1:03 AM 9:50 PM 6:52 AM 4/5
5 2:19 AM 00:58 AM _____ 5/5
6 2:24 AM 00:38 AM 7:24 AM 4/5
7 11:53 PM 7:45 PM 4:30 AM 4/5
8 2:52 AM 00:12 AM 8:36 AM 4/4
9 3:46 AM 00:09 AM 6:26 AM 5/5
10 1:43 AM 00:27 AM 7:51 AM 5/5
11 3:05 AM _____ 6:08 AM 5/5
12 3:46 AM 2:02 AM 10:06 AM 4/5

DSPS refers to delayed sleep-phase syndrome; SOT, sleep-onset time;
MSO, melatonin-secretion onset; TN, temperature nadir.

Table 2—hPer3 Length Polymorphism Allele Frequencies in Patients
with Delayed Sleep-Phase Syndrome, Morning Types, Intermediate
Types, and Evening Types and in the General Population.

Group 4-repeat 5-repeat
allele frequency allele frequency

General population 0.66 0.34 
DSPS 0.44 0.56
Morning 0.60 0.40 
Intermediate 0.65 0.35
Evening 0.77 0.23 

DSPS refers to delayed sleep-phase syndrome.

Figure—Percentage of subjects by hPer3-length polymorphism geno-
type in each group: patients with delayed sleep-phase syndrome (DSPS),
morning types (Morn), Intermediate types (Int), Evening types (Even)
and in the general population (GenPop). 4/4 homozygous 4-repeat, 4/5
heterozygous, 5/5 homozygous 5-repeat.
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those of Archer et al12 is the ethnic background of the studied
populations. The Brazilian population is formed mainly of a
European/Portuguese-Brazilian/Indian background16,17 mixed
with a variety of African groups and later, in the beginning of 20th

century, with a variety of European ethnicities (mainly Italian and
Spanish) and Asiatic ethnicities (mainly Japanese).16 Because the
control and DSPS patient groups are formed mainly by the same
background with a major proportion of European Caucasians, we
believe that there is no reason for ethnic bias in our sample.
Besides, the hPer3 allele frequencies in our population sample
are very similar to those described in Archer et al’s12 study, sug-
gesting similarity between both populations. 

Another possible reason for the difference between our results
and those of Archer et al12 is the latitude of the cities where the
studies were carried out. London is located at 51°30’N, whereas
São Paulo is located at 23°32’S. There is a considerable differ-
ence between these cities in terms of the length of days through-
out the year. In São Paulo, the average day length during the win-
ter months is about 10.5 hours and the longest day length, about
13.5 hours during the summer months (3-hour difference),
whereas, in London, the shortest days last about 8.0 hours and the
longest about 16.0 hours (8-hour difference). In addition, the cli-
mate is also very different, including temperature variations
throughout the year (such variations are less drastic in São Paulo)
and sun brightness. Under such extremely different conditions,
organisms may have to adopt different strategies to entrain,
sometimes losing track of the day length, which may be, at least
in part, dependent on the Per3 genotype and latitude. Recent
studies in Drosophila melanogaster have demonstrated that vari-
ations in the dPer gene are associated with responses to temper-
ature and day length—variables related to latitude.18,19

It is well known that the entrainment by light depends on the
time when the circadian system is exposed to light. The phase of
entrainment depends on the strength of the zeitgeber and on the
individual’s free-running period. Circadian systems are influ-
enced by intensity and duration of the light signal, responding
more or less strongly, leading to steeper or flatter phase-response
curves.20 At different latitudes, such as those found in London
and São Paulo, the same genotypes exposed to different zeitgeber
strengths could result in different phenotypes. However, at the
present time, it is difficult to elucidate the exact mechanism by
which the hPer3 gene could influence the phase of entrainment
and/or the intrinsic free-running period in different latitudes. 

Our data also reveal an unexpected association between DSPS
and morningness in the Southern hemisphere, as we have not
found any difference in the frequency of this polymorphism
among these groups. The apparent contradiction of these findings
may reflect the presence of common mechanisms underlying the
DSPS and morning-preference phenotypes,21 since similar fea-
tures in the phase relationship between endogenous circadian
rhythms and the wake/sleep cycle, as a longer interval between
the circadian phase of body temperature and the sleep offset,
have been shown.22, 23

Assuming that the Archer et al12 data and the data we have col-
lected hold true, we may infer that patients with DSPS who move
to latitudes different from their original latitude would experi-
ence an improvement in their condition. In agreement with this
proposition, Gottesmann24 reported a DSPS case where the
patient experienced an amelioration in the symptoms after mov-
ing from Paris (latitude 48º52N) to Rio de Janeiro (22º54S).

Tournier et al25 studied the clock genes’ mRNA transcription
under short and long photoperiods and reported that the expres-
sion pattern of all clock genes is affected by photoperiodic
changes, mainly the mPer3 gene in which the mRNA expression
shows marked changes in amplitude and a large phase advance
exposed to short photoperiod. 

The importance of the Per3 gene in the operation of the molec-
ular clock system has been debated. The first Per3 gene descrip-
tions in the literature26,27 reported it as unresponsive to light puls-
es throughout the day. Animals with disruption in the Per3 gene
do not appear to show any major variation in the circadian phe-
notype, except for a minor reduction in the circadian period
length, suggesting a nonessential role of this gene in the molecu-
lar clock system. However, the present results, in combination
with the data collected by Archer et al12 and Ebisawa et al,11 indi-
cate that the hPer3 gene may play an important role in the patho-
genesis of DSPS, and in diurnal preference, and may be involved
in tracking the day length in the course of the year, instead of
having a direct effect on the maintenance of the circadian period.

It has been proposed that the circadian pacemaker consists of a
morning oscillator locking at dawn (M) and an evening oscillator
locking at dusk (E), these 2 oscillators being composed at the
molecular level by the Per1/Cry1 and the Per2/Cry2 genes,
respectively.28 A role for the Per3 gene has not been included in
this mechanism. Instead, Per3 has been assigned a side role,
maybe as a clock-controlled gene. Based on this hypothesis,
Daan et al28 suggested that there should be a coupling force in the
oscillating system that would maintain the phase relationship of
both oscillators (M and E) under free-running conditions. Two
reports published lately indicate that PER3 can have this func-
tion; Takumi et al27 have reported that mPer3 has a broader peak
of expression that reaches the peak of expression of both mPer1
and mPer2, and Yagita et al29 reported that the nuclear entry of
mPer1 and mPer2 involves physical interactions with mPer3.
Thus, it is possible that the PER3 protein could have this cou-
pling role proposed by Daan.28

These clock proteins, mainly the PER proteins, are quite com-
plex. They comprise PAS domains associated with a cytoplas-
matic localization domain, casein-kinase–binding sites, phospho-
rilation sites, and a nuclear localization domain. They have a very
dynamic kinetics, including nuclear import and export that are
not yet completely understood.

The results obtained here were unexpected, and attempts
should be made to replicate our findings in equivalent latitudes.
Additional data on the function of this length polymorphism in
the physiology of the protein and animal models exploring its
effect during long and short photoperiods are also needed. 

The discovery of genetic variations regulating circadian pheno-
types may have a significant therapeutic impact on preventive
medicine. It may prove helpful in furthering understanding and
treatment of sleep and circadian rhythm disturbances, as well as in
the prevention of health hazards caused by night and shift work.
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