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Abstract The mu1 opioid receptor gene, OPRM1, has

long been a high-priority candidate for human genetic

studies of addiction. Because of its potential functional

significance, the non-synonymous variant rs1799971

(A118G, Asn40Asp) in OPRM1 has been extensively stud-

ied, yet its role in addiction has remained unclear, with

conflicting association findings. To resolve the question of

what effect, if any, rs1799971 has on substance dependence

risk, we conducted collaborative meta-analyses of 25 data-

sets with over 28,000 European-ancestry subjects. We

investigated non-specific risk for ‘‘general’’ substance

dependence, comparing cases dependent on any substance to

controls who were non-dependent on all assessed sub-

stances. We also examined five specific substance depen-

dence diagnoses: DSM-IV alcohol, opioid, cannabis, and

cocaine dependence, and nicotine dependence defined by the

proxy of heavy/light smoking (cigarettes-per-day [20 vs.

B10). The G allele showed a modest protective effect on

general substance dependence (OR = 0.90, 95 % C.I.

[0.83–0.97], p value = 0.0095, N = 16,908). We observed

similar effects for each individual substance, although these

were not statistically significant, likely because of reduced

sample sizes. We conclude that rs1799971 contributes to

mechanisms of addiction liability that are shared across

different addictive substances. This project highlights the

benefits of examining addictive behaviors collectively and

the power of collaborative data sharing and meta-analyses.

Keywords Addiction � Substance dependence � OPRM1 �
Opioid receptor � Single nucleotide polymorphism (SNP) �
Genetic association

Introduction

The mu opioid receptors are part of a family of G protein-

coupled receptors that are expressed in the brain and bind

endogenous and exogenous opioids. The mu1 opioid

receptor gene (OPRM1) has been one of the most studied

genes in psychoactive substance research. It is a receptor

for opioid analgesic agents and is involved in reward and

analgesic pathways (Kreek and Koob 1998). The non-

synonymous single nucleotide polymorphism (SNP)

rs1799971 (A118G) in exon 1 of OPRM1 causes an

asparagine to aspartic acid substitution at the fortieth amino

acid residue (Asn40Asp). The G (Asp) allele is the minor

allele across multiple human populations, with frequencies

ranging from 4 % in African-American samples to *16 %

in European-ancestry samples to over 40 % in some Asian

samples (http://www.ncbi.nlm.nih.gov/projects/SNP/snp_

ref.cgi?rs=1799971). Multiple studies have examined the

functional effects of this amino acid change on expression

levels and receptor properties such as binding affinity and

signaling (Befort et al. 2001; Beyer et al. 2004; Bond et al.

1998; Deb et al. 2010; Mague and Blendy 2010; Mague
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et al. 2009; Ray et al. 2012; Wang et al. 2014, 2012; Zhang

et al. 2005).

Because of its potential functional significance, many

human genetic studies of substance dependence have tar-

geted rs1799971. However, the role, if any, of rs1799971 in

substance dependence remains unclear (Crist and Berrettini

2013; Levran et al. 2012; Mague and Blendy 2010). In

studies of opioid dependence, results have been mixed,

with the minor (G) allele reported to have no effect in some

studies (Crowley et al. 2003; Levran et al. 2008; Nelson

et al. 2014; Nikolov et al. 2011) and to decrease risk in

others (Bond et al. 1998; Tan et al. 2003). Similarly,

analyses of alcohol dependence have reported increased

risk (Bart et al. 2005; Kim et al. 2004), no effect (Bergen

et al. 1997; Rouvinen-Lagerstrom et al. 2013; Sander et al.

1998; Xuei et al. 2007), and decreased risk (Schinka et al.

2002; Town et al. 1999) for this allele. Analyses of

rs1799971 with other addictive substances also show no

consensus (Clarke et al. 2013; Crist and Berrettini 2013;

Franke et al. 2001; Gelernter et al. 1999; Hardin et al.

2009; Munafo et al. 2013).

Literature-based meta-analyses have evaluated the

association of rs1799971 with substance dependence (Arias

et al. 2006), opioid dependence (Coller et al. 2009; Glatt

et al. 2007; Haerian and Haerian 2013), and alcohol

dependence (Chen et al. 2012a). Three of these meta-

analyses reported no association (Arias et al. 2006; Coller

et al. 2009; Glatt et al. 2007), while among Asian samples

the G allele was reported to increase risk for alcohol (Chen

et al. 2012a) and opioid dependence (Haerian and Haerian

2013). Although these meta-analyses attained large sam-

ples by combining published information, they were sub-

ject to heterogeneity from multiple sources, including

differing phenotypes, ascertainment schemes, and statisti-

cal analysis models across the meta-analyzed publications.

To clarify the effect of rs1799971 on substance depen-

dence risk, we conducted collaborative meta-analyses

based on new analyses of multiple datasets. Our data-dri-

ven approach moves beyond the limitations of literature-

based meta-analyses by (1) defining consistent phenotypes

across studies, (2) performing new, uniform analyses

across datasets as in our previous meta-analyses (Chen

et al. 2012b; Hartz et al. 2012; Saccone et al. 2010), and (3)

inviting investigators to contribute analyses from estab-

lished studies with relevant phenotype and genotype data,

irrespective of prior publication on rs1799971.

Methods

Samples and Study Design

Twenty-five datasets contributed a starting sample of

28,689 study participants of European ancestry. Invitations
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44 Harvard School of Public Health, Boston, MA 02115, USA

45 Aarhus University, Aarhus 8000, Denmark
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to participate were sent to all studies in the NIDA Genetics

Consortium, which NIDA formed to facilitate collaboration

among investigators in addiction genetics, as documented

by the NIDA Center for Genetic Studies (https://nidage

netics.org/studies). We extended invitations to additional

studies suggested by consortium members as likely to have

relevant data, and to collaborators on a previous meta-

analysis of smoking quantity and lung disease (Saccone

et al. 2010). NIDA further advertised the opportunity to

participate in this meta-analysis project with a web

announcement at http://www.drugabuse.gov/researchers/

research-resources/genetics-research-resources/collabora

tive-opportunities-genetics-research. Dataset inclusion cri-

teria were: (1) rs1799971 must have been genotyped, and

(2) at least one of these five phenotypes must have been

assessed: DSM-IV defined alcohol, cannabis, cocaine, or

opioid dependence, or categorized cigarettes per day (CPD)

(0–10, 11–20, 21–30, and 31? CPD).

Study participants with a history of abstinence from

alcohol (never drank) were excluded prior to all analyses,

so that included participants satisfied a minimum exposure

to alcohol. For the main analyses, we filtered out study

participants if they had no known substance dependence

and were also under the age of 25. Thus, we included non-

dependent (control) participants only if they were old

enough to have passed through the period of highest risk,

so as to reduce phenotypic misclassification. For each

dataset, Table 1 gives demographic characteristics, the

allele frequency of rs1799971, and key publications.

Supplementary text S1 provides additional details for each

dataset, including study recruitment, genotyping methods,

and data quality control.

Phenotypes

We analyzed six primary dichotomous phenotypes: a

‘‘general’’ substance dependence diagnosis (lifetime

dependence on any of five substances: alcohol, nicotine,

cannabis, cocaine, and opioids), plus the corresponding five

individual substance-specific lifetime dependence diag-

noses. General substance dependence controls were required

to be non-dependent on all substances assessed in that

dataset; not all studies assessed all five substances. For each

substance, individuals who did not meet dependence criteria

were classified as non-dependent; abuse criteria were not

considered. These phenotypes allowed us to examine the

general (non-specific) liability to substance dependence and

compare non-specific and substance-specific associations.

DSM-IV criteria were used to define dependent cases for

alcohol, cannabis, cocaine, and opioids. For nicotine

dependence, we defined the proxy of heavy smoking cases

(CPD[ 20) and light smoking controls (CPD B 10) for

current and former smokers, based on CPD when they were

smoking; if multiple measurements were available the

maximum value was used. Heavy versus light CPD is more

commonly measured than nicotine dependence and has been

an informative proxy for nicotine dependence in large meta-

analyses (Chen et al. 2012b; Hartz et al. 2012; Saccone et al.
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2010); smokers meeting this threshold strongly overlap with

nicotine dependent smokers. Because CPD does not account

for dependence items such as withdrawal (Lessov et al.

2004), secondary analyses examined the effect of redefining

general dependence using standard definitions of nicotine

dependence (Fagerström Test for Nicotine Dependence

(Heatherton et al. 1991) and DSM-IV), in the subset of

studies for which these were available.

In addition to filtering out subjects who did not meet

minimum exposure to alcohol, we also defined analysis

variables for exposure to eachof the other four substances. For

cannabis, cocaine, and opioids, the exposure threshold was

‘‘at least one lifetime use.’’ For nicotine, we used ‘‘at least 100

cigarettes smoked lifetime,’’ a commonly used threshold to

define smoking exposure in epidemiological studies.

Table 2 shows dataset-specific counts for cases, con-

trols, and exposed controls. Individuals dependent on

multiple substances are counted and analyzed in the cor-

responding multiple categories.

SNP for Analysis

We required rs1799971 to be genotyped in each dataset.

For analyses, we coded rs1799971 as the number of copies

of the G (minor) allele.

Statistical Analyses and Meta-Analysis

We conducted six correlated discovery tests corresponding to

the six primary phenotypes: the general substance dependence

diagnosis and the five specific substance dependence diag-

noses. To limit the number of tests, we focused on testing for a

main effect of rs1799971 on these outcomes. All discovery

analyses filtered out study participants under the age of 25

with no known substance dependence to ensure that controls

had passed the typical age of dependence onset; cases are

dependent and thus have had sufficient exposure regardless of

age. Additional interpretive tests examined the robustness and

consistency of discovery test results, and included analyses

without age filtering for comparison.

To ensure uniform analyses across datasets, the coor-

dinating site at Washington University developed analysis

scripts in SAS� and R. Scripts were distributed to collab-

orating sites, which then analyzed their datasets locally.

Results were returned to the coordinating site for meta-

analyses. We used standard inverse-variance-weighted

meta-analysis as implemented in the rmeta package in R

(Lumley 2009; R Development Core Team 2012). Addi-

tionally, to be included in the meta-analysis of a given

model, each dataset was required to have at least five cases

and five controls available. This requirement was intended

to reduce noise when some subgroups became very small

after phenotypic filtering. All samples included for general

dependence in fact met a higher threshold of at least 20

cases and 20 controls. We report fixed effect estimates

together with Cochran’s Q and I2 to evaluate heterogeneity

for each meta-analyzed model. No significant heterogene-

ity was observed among the studies analyzed (p-value for

Q[ 0.05, Table S1 and Tables 3 and 4). Correspondingly,

Q values were close to the respective degrees of freedom

(number of studies) and I2 values were small with no

values greater than 26 % (Supplementary Table S1).

General Substance Dependence Analyses

Logistic regression was used to estimate the effect of

rs1799971 on general substance dependence with covari-

ates for sex and age. Of the 25 available datasets, 20 had at

least five cases (dependent at least one of the five sub-

stances) and five controls (no known substance dependence

diagnoses and exposed to alcohol) for analysis of general

substance dependence.

Our interpretive tests examined the robustness of the

general substance dependence results and compared them to

substance-specific effects. Specifically, to assess the influ-

ence of each individual dataset, each of the 20 contributing

datasets was, in turn, left out of the meta-analysis. In this

leave-one-out test, observing consistency of summary odds

ratios would suggest that it is unlikely that the overall meta-

analysis result is primarily due to a single study. Also, we

Table 3 Summary of the effect of rs1799971 on general substance dependence

Model Cases Controls Cochrane’s Q Q-p value Odds Ratio L95 %-U95 % OR-p value

Gen-Dep = age sex rs1799971 9064 7844 20.13 0.387 0.90 0.83–0.97 0.952

Alcohol = age sex rs1799971 5086 7623 12.08 0.672 0.92 0.83–1.01 0.696

Nicotine = age sex rs1799971 3358 2670 16.84 0.265 0.93 0.83–1.05 0.244

Cannabis = age sex rs1799971 2077 5115 7.63 0.746 0.83 0.71–0.98 0.279

Cocaine = age sex rs1799971 1307 5313 7.68 0.809 0.87 0.73–1.04 0.132

Opioid = age sex rs1799971 2139 5168 7.87 0.641 0.84 0.70–1.00 0.557

Model column shows what outcome phenotype was tested for each model. Gen-Dep denotes general substance dependence. Each substance

denotes the subsets of general substance dependence that were tested in interpretative phase of the analysis. All effects shows are fixed effect

estimates. Controls were filtered for age and exposure to alcohol

Behav Genet

123



meta-analyzed only studies that had assessed all five sub-

stances to examine consistency of results; the general

dependence controls in these studies were assessed for all

five substances and thus more homogenous. Finally, to

compare the effect of rs1799971 on general substance

dependence liability with its effect on the constituent sub-

stance-specific diagnoses, we tested for association using

individuals dependent on each specific substance as cases

compared to the same controls used in the general depen-

dence analysis (non-dependent on all assessed substances).

Specific Substance Dependence Analyses

To test the association of rs1799971 with each specific

dependence diagnoses while accounting for the remaining

diagnoses, our primary analysis used ordinal logistic regres-

sion with additively coded rs1799971 as the dependent vari-

able and the five dependence diagnoses, four exposures, sex,

and age as explanatory variables. This model simultaneously

estimates association of rs1799971 with each substance while

accounting for co-morbidity (Grucza et al. 2008). This anal-

ysis used only the datasets that had all five substance depen-

dence diagnoses and all four exposure variables because the

model required that there be no missing variables.

To interpret and examine the robustness of these results,

we evaluated traditional logistic regression models on the

same datasets, also accounting for co-morbidity: each

specific substance dependence was tested as the outcome,

with log-additively coded rs1799971, age, sex, and the

remaining specific substance dependence diagnoses as

explanatory variables. Here, cases were dependent on a

given substance, and controls were exposed but not

dependent on that substance regardless of diagnoses for the

remaining four substances. Additionally, to test equiva-

lence of regression coefficients from ordinal regression

analyses of individual substances, we conducted a two

sample t-test assuming unequal variance.

To examine whether substance-specific results remained

consistent with a larger number of datasets, we used all

datasets that had assessed each substance for additional

interpretive tests, with the dependence diagnosis as out-

come and additively coded rs1799971, sex, and age as

explanatory variables.

Multiple Test Correction

To estimate the effective number of independent tests cor-

responding to the six correlated discovery tests, we used

matSpD [http://gump.qimr.edu.au/general/daleN/matSpD/],

which accounts for correlations among phenotypes (Che-

verud 2001; Li and Ji 2005; Nyholt 2004). Using Pearson

correlations among the five dependence diagnoses from the

studies with all five phenotypes assessed (see Table S3), plus

one additional test for general substance dependence, we

obtained a conservative estimate of 5.1218 independent

tests, corresponding to a Bonferroni-corrected p-value

threshold of a
0 ¼ 9:76� 10�3 for statistical significance.

Results

The G (Asp) Allele of rs1799971 Shows a Modest

Protective Effect on General Substance Dependence

We observed a significant association between rs1799971

and general substance dependence (Fig. 1). Based on 9064

cases and 7844 age-filtered controls from 20 datasets, the G

Table 4 Summary of the effect of rs1799971 on specific substance dependence diagnoses in 9 studies that assessed all five substance

dependence diagnoses and exposures

Ordinal logistic regression results

Substance Cases Controls Cochrane’s Q Q-p value Odds Ratio L95 %-U95 % OR-p value

Alcohol 2031 3361 8.90 0.351 0.90 0.76–1.06 0.218

Nicotine 2718 2674 7.78 0.455 0.89 0.74–1.07 0.216

Cannabis 839 4553 10.76 0.216 0.91 0.73–1.14 0.420

Cocaine 992 4085 0.86 0.990 0.92 0.69–1.24 0.593

Opioid 607 4274 3.12 0.682 0.91 0.65–1.27 0.577

Traditional logistic regression results (Dependence as outcome variable)

Alcohol 2051 3430 10.66 0.222 0.88 0.76–1.02 0.974

Nicotine 2066 1412 8.69 0.276 0.91 0.76–1.08 0.267

Cannabis 861 3036 9.08 0.336 0.90 0.74–1.09 0.283

Cocaine 1011 899 0.85 0.997 0.91 0.70–1.19 0.492

Opioid 600 577 2.31 0.679 0.91 0.67–1.24 0.547

Substance column shows the tested outcome phenotype. All effects shows are fixed effect estimates. In the traditional logistic regression results,

controls were required to be exposed each tested substance, in addition to meeting the previously applied filters for age and exposure to alcohol
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allele showed a modest protective effect (OR = 0.90, 95 %

C.I. [0.83–0.97], p value = 9:52 � 10�3, N = 16,908);

15 of the 20 studies showed a protective direction of the G

allele. Heterogeneity variance was not statistically signifi-

cant (Q = 20.13, p value = 0.39). A secondary analysis

that did not require controls to be over 25 years old yielded

a similar odds ratio (OR = 0.90, 95 % C.I. (0.84–0.98),

N = 17,918), but was not statistically significant after

multiple correction in this larger sample (p

value = 1:06 � 10�2), consistent with our hypothesis that

it is important for controls to be past the typical age of risk.

Leave-one-out test of robustness yielded odds ratio esti-

mates ranging from 0.88 to 0.92, with none of the 20 itera-

tions showing significant heterogeneity. This tight range of

ORs centered on the overall odds ratio indicates that our

finding was not driven by a single dataset. Only a few of the

individual iterations showed significant association (e.g. 4 of

20 when using a
0 ¼ 9:76 � 10�3 as the significance

threshold), likely due to the reduced sample size.

To reduce potential heterogeneity among the general

dependence controls, we meta-analyzed the 10 datasets that

had all five substance-specific dependence diagnoses and at

least five cases and five controls. For these 10 datasets

(3947 cases and 2348 controls), the summary odds ratio

was 0.87 (p value = 0.01), very similar to the discovery

result based on 20 studies.

Additionally, to aid interpretation, we compared the

cases for each specific substance to the general dependence

controls. We found that the G allele of rs1799971 was

consistently protective (odds ratio of 0.83–0.93) across all

five substances (Table 3), consistent with the interpretation

that this allele is a non-substance-specific protective factor.

To further confirm robustness, we examined the effect of

redefining general dependence using alternative definitions

for nicotine dependence, namely the Fagerström Test for

Nicotine Dependence (FTND) (case C 4, control B 1; 13

studies, N = 8481) or DSM-IV nicotine dependence (14

studies, N = 11 711), in place of our CPD-based heavy/-

light phenotype (20 studies, N = 16 908). Analyses of

these smaller samples gave similar protective odds ratios

for general dependence, though results were not statisti-

cally significant: OR = 0.91, 95 % C.I. (0.81–1.02) for

FTND and OR = 0.94, 95 % C.I. (0.85–1.03) for DSM-IV

nicotine dependence.

For Each Substance-Specific Dependence, the G

Allele of rs1799971 is Similarly Protective But Non-

Significant

In our primary test of rs1799971 genotype as the dependent

variable on the nine datasets that had assessed all five

substance dependence diagnoses and exposures, we

Fig. 1 Forest plot of general substance dependence and rs1799971

across studies that had at least 5 cases and 5 controls. Summary odds

ratio, 95 % Confidence Interval, and p-values are based on fixed

effect meta-analysis. Asterisk indicates the subset of 10 studies that

had all five specific substance dependence diagnoses, examined in

secondary analyses to confirm consistency of results. Estimated

heterogeneity variance was Q = 20.13 with a p-value of 0.387 among

all 20 studies and Q = 6.49 with a p-value of 0.69 among the subset

of 10 studies
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obtained odds ratios that ranged from 0.89 (nicotine

dependence) to 0.92 (cocaine dependence). The odds ratio

for each specific substance showed the same protective

direction as that for general substance dependence, though

none was statistically significant in these smaller samples

(Table 4). Also, odds ratios for specific substances did not

differ significantly from each other (Table S2), suggesting

consistency across substances.

We also examined traditional logistic regression in these

nine datasets. Each substance dependence diagnosis was

examined as the outcome (cases dependent on that sub-

stance and controls required to be non-dependent but

exposed to that substance), with rs1799971 as the predictor

and the remaining diagnoses as covariates. Results were

similar to those from our ordinal logistic model (Table 4,

bottom half). Finally, analyzing all available datasets for

these same case/control outcomes (cases dependent on

each specific substance, controls non-dependent and

exposed to that substance) also showed protective, but non-

significant, odds ratios consistent with those seen in the

datasets that assessed all dependence diagnoses and expo-

sures (Supplementary Figures S1–S5).

Discussion

This project, the first collaborative genetic meta-analysis to

investigate specific and general liability for these substance

dependence diagnoses, has demonstrated that the G allele

of rs1799971 has a modest protective effect on general

substance dependence liability (OR = 0.90, 95 % C.I.

(0.83–0.97), p-value = 9:52 � 10�3) in samples of

European ancestry. This is the first meta-analysis to show

that this non-synonymous variant, which has been heavily

studied for functional effects, is significantly associated in

European ancestry samples with liability to substance

dependence. The small but significant effect size of

rs1799971 suggests that variability in previous association

reports may be due in part to sampling variation. This

collaborative meta-analysis benefited from the opportunity

to define uniform phenotypes across studies, perform

coordinated, de novo analyses to test our hypotheses, and

include existing datasets that have not yet focused on the

question of rs1799971 and addiction.

The protective effect of this allele on substance depen-

dence liability appears to be non-specific: it is not driven

primarily by dependence on any particular substance. For

each substance-specific subset of cases compared to the

general dependence controls, we observed a protective

effect of similar size to that observed for general depen-

dence. Additional substance-specific analyses similarly

showed consistent protective effects of the G allele. These

substance-specific odds ratios were not statistically signif-

icant, but this may have been largely due to reduced sample

size and power.

These findings indicate that rs1799971 in OPRM1 may

contribute to mechanisms of addiction liability that are

shared across different addictive substances, consistent

with the high genetic correlation between the traits, high

co-morbidity, and with prior studies showing that both

substance-specific and non-specific genetic effects on

addiction liability can be expected (Bierut et al. 1998;

Kendler et al. 2007; Merikangas et al. 1998; Swan et al.

1997; Tsuang et al. 1998; Vanyukov et al. 2012, 2003).

Rs1799971 is now one of the few examples of a genetic

factor that demonstrates a similar, general effect across

multiple substances, albeit of modest magnitude. In this

sense, our study is similar to a genome-wide association

study of multiple psychiatric disorders that identified

variants having a common, cross-disorder genetic effect on

five major psychiatric diseases (Cross-Disorder Group of

the Psychiatric Genomics Consortium 2013). Both studies

underscore the value of investigating the genetics of gen-

eral liability underlying related diseases. Genetic studies of

addiction would therefore benefit from including measures

pertaining to multiple substances that can then be analyzed

collectively. Indeed, a very recent genome-wide study of

general substance dependence liability using four of the

five substances studied here (alcohol, cannabis, cocaine,

opioids) reported novel associations (Wetherill et al. 2015),

further supporting the potential benefits.

Our results are compatible with negative results from

prior genome-wide meta-analyses of cigarettes-per-day

(Liu et al. 2010; The Tobacco and Genetics Consortium

2010; Thorgeirsson et al. 2010). Our hypothesis-driven

analyses of a single SNP translate to a study-wide required

significance threshold of 9.76 9 10-3. This led to statisti-

cally significant evidence for a modest effect (OR = 0.90)

of rs1799971 on general substance dependence liability, in

N = 16 908 subjects (Table 3). The three genome-wide

smoking consortia tested OPRM1 only in each consortium

separately (N = 38 000, N = 31 000, and N = 16 000

smokers with cigarettes-per-day); estimated power to have

detected the nicotine-specific odds ratio of 0.93 (Table 3)

in at least one of the three consortia with genome-wide

significance (alpha = 5 9 10-8) is only 4 %. Power

details are in Supplementary Text S2. Hence it is not sur-

prising that these smoking consortia did not report an

OPRM1 effect.

This study contributes valuable information to connect

functional findings to the clinically important outcome of

addiction in humans. Several neurobiological, functional,

and physiological changes have been demonstrated for the

rs1799971 (A118G) amino acid change and a

Behav Genet

123



corresponding mutation in a similar region of the receptor

in mice (A112G) (Drakenberg et al. 2006; Huang et al.

2012; Mague and Blendy 2010; Palmer and de Wit 2012;

Ray et al. 2012; Wang et al. 2014). In vitro studies of the G

allele have reported increased binding to b-endorphin
(Bond et al. 1998), altered downstream signaling (Deb

et al. 2010), and decreased mu opioid receptor expression

(Zhang et al. 2005). In human brain imaging, the G allele is

associated with striatal dopamine response to alcohol

(Ramchandani et al. 2011) and increased mu opioid

receptor binding potential (Ray et al. 2011). In mouse

knock-in models (A112G), the G/G knock-in has shown

reduced receptor protein levels overall and reduced rein-

forcing value of morphine in female mice (Mague et al.

2009), reduced G-protein signaling (Wang et al. 2014), and

increased peak dopamine response to alcohol challenge

(Ramchandani et al. 2011); changes are often brain-region

specific.

It is important to note that some functional and neuro-

biological findings have been interpreted as indicating that

the G allele of rs1799971 should increase risk for addic-

tion, for example due to its association with greater alco-

hol-induced reinforcement and reward (Ramchandani et al.

2011; Ray and Hutchison 2004, 2007; Ray et al. 2010). Our

data-driven evidence of a modest protective effect of this

allele on substance dependence liability is thus surprising

and all the more important to integrate with functional

findings to understand downstream contributions to human

substance dependence. A protective effect of the G allele

on addiction may be consistent with either increased or

decreased reward/reinforcement, for example due to vary-

ing roles of positive versus negative reinforcement at dif-

ferent stages in the transition from use to dependence.

Modeling these connections remains an open area to be

worked out by neurobiological theories of addiction (Ray

et al. 2012).

This project demonstrates the value of collaborative data

sharing and meta-analysis, as the modest odds ratio of

rs1799971 would be challenging to detect and consistently

replicate in modestly sized candidate gene studies (Hall

et al. 2013; Hart et al. 2013). Also important was our

approach of defining consistent phenotypes across all

datasets. In particular, careful definition of controls can

help to detect associations (Nelson et al. 2013; Schinka

et al. 2002). In our case, requiring controls to be at least

25 years of age led to stronger association results even with

the reduced number of controls.

This study has limitations. First, as in any meta-analysis,

sample heterogeneity could not be completely avoided.

Studies had diverse ascertainment schemes, with some

designed to recruit dependent cases for one particular

substance. Some studies recruited from the general popu-

lation while others recruited potentially more extreme

cases from treatment centers. Hence, over- and under-

representation of phenotypes were present in contributing

datasets, and the severity of dependence, degree of co-

morbid dependence, and prevalence of substance exposure

varied. Reduced proportions of exposed controls would

reduce effective sample size and power for a study. But

overall, uniform phenotype definitions were an important

design feature to ameliorate effects of heterogeneity.

Although some bias may have occurred, it seems unlikely

to have been systematic in either direction. Similarly, it

seems unlikely that systematic bias would have occurred

due to differences between studies that contributed to this

meta-analysis and those that declined to participate.

Second, this project interrogated only the non-synony-

mous variant rs1799971. As with any statistical associa-

tion, our finding may reflect a proxy association for which

the true functional variant(s) remain to be recognized.

Other OPRM1 variants have been associated with addiction

and merit consideration for future study (Clarke et al. 2013;

Hancock et al. 2015; Zhang et al. 2006a). Analyses of

multiple SNPs and haplotypes will also be of future

interest: recent evidence indicates an important role in

heroin addiction for the haplotype structure of OPRM1,

with the A allele of rs1799971 showing association only in

the presence of the C allele of rs3778150 (Hancock et al.

2015). Importantly, (Hancock et al. 2015) also found that

the G allele of rs1799971 is protective (A allele confers

risk) on that background, agreeing with the direction of

effect observed in our meta-analysis of general substance

dependence.

Third, further phenotypic refinement is possible. We did

not consider substance abuse criteria, nor did we use the

newer diagnostic system, DSM-5 (American Psychiatric

Association 2013). Our threshold for exposure was a single

use for all substances except nicotine; therefore, the genetic

effect of rs1799971 detected by our analyses may involve a

combination of effects on development of regular/repeated

use and effects on dependence. We focused on dichoto-

mous diagnoses for each substance. For nicotine, we

examined heavy/light smoking as the most widely avail-

able nicotine trait in our datasets. Consistency of results

was confirmed using DSM-IV and Fagerström Test of

Nicotine Dependence criteria when available. Because we

focused on dichotomous diagnoses that could then be

combined into the general substance dependence diagnosis,

we did not examine quantitative or categorical cigarettes-

per-day.

Fourth, we focused on main effects of rs1799971 to

limit multiple testing. Thus, we did not examine gene-en-

vironment interactions (e.g., sex-specific effects) or gene–

gene interactions. We did adjust statistically for sex, which

showed no evidence for a main effect on general substance

dependence (p = 0.57). Interactions likely have roles in a
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complex trait such as addiction, and could attenuate the

genetic main effect when not accounted for (e.g. when the

effect occurs only in a specific stratum). Thus, it is possible

that the modest main effect that we detected could translate

to a stronger effect if particular genetic or environmental

backgrounds are considered. Future work could examine

interactions nominated in the literature (Mague et al. 2009;

Miranda et al. 2013; Ray et al. 2006).

Finally, a model that explicitly partitions the association

between a general factor for any substance dependence and

substance-specific components was not fitted to these data.

Although such a model would allow a more refined dis-

tinction between general and specific associations (Med-

land and Neale 2010; Neale et al. 2006), we chose not to

apply this because of the complexities of running and

integrating such analyses across sites.

In closing, this data-driven, collaborative meta-analysis

has demonstrated a modest protective effect of the G allele

of rs1799971 on general liability to substance dependence.

This work highlights the benefits of jointly studying related

disorders: larger samples and insight into factors involved

in underlying shared liability. An important strength of our

approach is that the analyses of our datasets were designed

and conducted in collaboration with the originating inves-

tigators. Thus, we benefited from collaborators’ deep

knowledge of their own data and our combined expertise

on addiction. This effort underscores the value of collab-

oratively sharing data and expertise to accelerate

discoveries.
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