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Abstract

Background: Genetic variation at loci influencing adult levels of HbF have been shown to modify the clinical course of sickle
cell disease (SCD). Data on this important aspect of SCD have not yet been reported from West Africa. We investigated the
relationship between HbF levels and the relevant genetic loci in 610 patients with SCD (98% HbSS homozygotes) from
Cameroon, and compared the results to a well-characterized African-American cohort.

Methods and Findings: Socio-demographic and clinical features were collected and medical records reviewed. Only
patients .5 years old, who had not received a blood transfusion or treatment with hydroxyurea were included. Hemoglobin
electrophoresis and a full blood count were conducted upon arrival at the hospital. RFLP-PCR was used to describe the HBB
gene haplotypes. SNaPshot PCR, Capillary electrophoresis and cycle sequencing were used for the genotyping of 10
selected SNPs. Genetic analysis was performed with PLINK software and statistical models in the statistical package R. Allele
frequencies of relevant variants at BCL11A were similar to those detected in African Americans; although the relationships
with Hb F were significant (p ,.001), they explained substantially less of the variance in HbF than was observed among
African Americans (, 2% vs 10%). SNPs in HBS1L-MYB region (HMIP) likewise had a significant impact on HbF, however, we
did not find an association between HbF and the variations in HBB cluster and OR51B5/6 locus on chromosome 11p, due in
part to the virtual absence of the Senegal and Indian Arab haplotypes. We also found evidence that selected SNPs in HBS1L-
MYB region (HMIP) and BCL11A affect both other hematological indices and rates of hospitalization.

Conclusions: This study has confirmed the associations of SNPs in BCL11A and HBS1L-MYB and fetal haemoglobin in
Cameroonian SCA patients; hematological indices and hospitalization rates were also associated with specific allelic variants.
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Introduction

Sickle cell disease (SCD) affects the structure of erythrocytes by

altering the normal biconcave shape to a crescent. During this

process the hemoglobin S (HbS) mutation leads to polymerization

and precipitation of hemoglobin during deoxygenation or

dehydration resulting in sickling, abnormal adhesion of leukocytes

and platelets, inducing inflammation, hypercoagulation, hemolysis

and hypoxia, in addition to microvascular obstruction, and

ultimately organ damage [1]. SCD is prevalent among indigenous

populations in tropical regions of Africa and Asia; 305,800 births

with SCD are estimated to occur annually, nearly two-third of

which take place in Africa. Sickle Cell Anaemia (SCA; the

homozygous HbSS state) is by far the most prevalent and severe

form of SCD [2]. Only limited early detection and treatment

initiatives have been implemented in Africa and as consequence

death rates are high before the age of 5 years in this region [3].

Cameroon has a population about 20 million inhabitants and a

growth rates of 3% per annum; the carrier frequency of SCA

ranges from 8 to 34% [4]. Cameroon has developed a national

control program for SCA, although at present it remains a policy

document without implementation; provision of neonatal screen-

ing and development of specialized centers for lifelong medical

care and surveillance have yet to become part of the health system

[5]. Universal medical insurance coverage does not exist, and care

of SCA patients is therefore dependent on financial support and

care-giving by family members. Poverty in Cameroon affects more
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than 50% of the rural population and up to 30% of the urban

population [6], which in turn means that the financial burden of

medical care for SCA can often not be met [5] and patients

frequently suffer exceptionally severe SCD sequelae such as of

stroke [7] and neurocognitive compromise [8].

SCA is genetically characterised by a single point mutation in

the globin locus, however, there are additional genetic factors that

modulate the clinical course of this disease and patients manifest

widely varying degrees of severity. Several genomic loci have now

been identified that are associated with increased levels of fetal

haemoglobin (HbF) and as a consequence influence the clinical

course of SCA [9–11]. HbF is a highly heritable trait; based on

samples of Europeans with a normal hematocrit 89% of the

variation is genetically determined [12]. To date at least 3

quantitative trait loci (QTL) have been shown to be associated

with persistence of elevated HbF and account for 20–50% of the

inter-individual variation in HbF. These loci include the combined

XmnI-158 and OR51B5/6 locus on chromosome 11p15.4 [13], the

HBS1L-MYB intergenic polymorphism (HMIP) locus on chromo-

some 6q23.3 [14], which may reflect the role of a single variant,

and the BCL11A locus on chromosome 2q16.1 [15,16]. In order to

stimulate HbF expression, experimental and clinical work resulted

in adoption of hydroxyurea as adjunct treatment for high risk SCA

patients [17], and this is now widely accepted therapy. Moreover,

other investigators have recently demonstrated that inactivation of

BCL11A in an SCD transgenic mouse model completely eliminates

the hematologic and pathologic defects associated with SCD

through induction of high-level pancellular HbF [18].

SCA was the first molecular disease to be recognized in medical

practice and the description of the DNA-protein relationship

underlying this disorder was a milestone in molecular medicine. It

is both ironic and unfortunate, therefore, that the powerful new

tools of genomics have not been applied to research on SCA on

the African continent. To the best of our knowledge, only one

study has reported data on selected genetic effects associated with

increased level of HbF amongst SCA patients in sub-Saharan

Africa [19] and no studies on the association of these SNPs with

clinical outcomes has yet been reported from the region. The

sickle mutation exists in Africa on diverse genetic haplotype

backgrounds [20] and geographically separate African populations

may vary in the effects of linked genetic variants found on specific

haplotypes. Studies of SCA in African sub-populations could

therefore potentially lead to important new findings about factors

that influence the disease phenotype. The aim of this study was to

explore the frequency and influence of 10 SNPs known to

influence HbF within the HMIP, BCL11A, XmnI-158 and

OR51B5/6 loci amongst a group of Cameroonian SCA patients

and to compare these data to a well described cohort of African-

American patients in the Cooperative Study of Sickle Cell Disease

(CSSCD).

Materials and Methods

Ethics Statement
The study was performed in accordance with the guidelines of

the Helsinki Declaration. Ethical approval was given by the

National Ethical Committee Ministry of Public Health, Republic

of Cameroon (No 033/CNE/DNM/07); and the University of

Cape Town, Faculty of Health Sciences Human Research Ethics

Committee (HREC RE: 132/2010). Written and signed informed

consent was obtained from the adult participants who were 18

years or older, and for the children consent was obtained from

parents/guardians with an assent from the participants older than

seven years of age.

Patients and assessment of clinical events
The study was conducted at the Yaoundé Central Hospital and

Laquintinie Hospital in Douala, the primary port and second

largest city in Cameroon. Socio-demographic and clinical data

were collected by means of a structured questionnaire. Parents/

guardians as well as adult SCA patients were interviewed; patients’

medical records were reviewed, to delineate their clinical features

over the past three years. Specifically, the occurrences of vaso-

occlusive painful crisis (VOC), hospital outpatient visits, hospital-

isations, overt strokes, blood transfusions and administration of

hydroxyurea were recorded. VOC events were defined as episodes

that could not be attributed to causes other than SCA and

required a hospital visit and treatment with prescription analgesics.

Anthropomorphic variables (body mass Index (BMI), and blood

pressures (BP) were measured in the outpatient setting.

The sampling strategy was not restricted to hospital-based

patients in an attempt to avoid the bias that might result from

including only the sickest patients. To accomplish this goal two

SCA patients’ associations in Cameroon were engaged for

collaboration and additional patients were recruited during their

monthly meetings. No incentive was provided for participation in

the study. Only patients who had not received a blood transfusion

or hospitalisation in the past 6 weeks where included. None were

currently treated with hydroxyurea.

Hematological Phenotypes
Hemoglobin electrophoresis and complete routine blood count

of the SCA patients were conducted upon arrival at the hospital.

Two methods of HbF detection were employed in this study for

successive groups of patients; initially, as a result of limited

capacity, the alkali denaturation test (ADT) was used, and

subsequently high performance liquid chromatography (HPLC)

was performed. HbF determinations were performed at the

hematological laboratory of the Centre Pasteur in Yaoundé; we

excluded from the analysis measurements done in patients ,5

years old because HbF levels are not yet stable at this age. HbF

levels were measured by ADT in 344 patients (55.5%). HbF

measurements by HPLC and ADT techniques were found to have

differences in median values (P = 0.001), with ADT yielding the

median value of 11.7% compared to 6.8% for the HPLC method.

As previously reported, HbF was measured in the CSSCD

samples by ADT and HbA2 was measured by Diethylamino

Ethanol column chromatography [21]. For HbF in the CSSCD

study, we also excluded from the analysis measurements done in

patients ,5 years old [9].

Genotypes
Cameroonian patients. DNA samples were extracted from

peripheral blood, following instructions for the commercial kit

(Puregene blood kit (Qiagen, USA) at the molecular diagnostic

laboratory, Gyneco-Obstetric and Paediatric Hospital, Yaoundé,

Cameroon. Genotype analyses were performed in the Division of

Human Genetics, Faculty of Health Sciences, University of Cape

Town.

Molecular Diagnostic Testing for SCA (HbSS). Analysis

for presence of the sickle mutation was carried out on 200 ng DNA

by PCR, on a thermocycler (BIORAD, USA) to amplify a 770 bp

segment of the b-globin gene, followed by Dde I (GIBCO-BRL,

USA) restriction analysis of the PCR product. Only patients SCD-

HbSS were included in the analysis, according to a previously

reported method [22].
Haplotyping of the b-globin gene cluster. Five restriction

fragment length polymorphism (RFLP) regions in the b-globin

gene cluster were amplified using published primers and methods
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to analyse the XmnI (5’Gc), HindIII (Gc), HindIII (Ac), HincII

(3̇’Yb), and HinfI (5’b) [23]. RFLP sites and the fragments were

visualised by agarose gel electrophoresis; b-globin gene haplotypes

were defined by examining the combination of the restriction sites.

SNPs genotyping in the HMIP, BCL11A, XmnI-158 and

OR51B5/6 loci: For the purpose of obtaining genotype for

variants associated with HbF levels that had been previously

identified in SCA patients, ten regions containing specific SNPs

were amplified: viz, for the BCL11A locus, SNPs rs11886868 and

rs4671393; for the HMIP1/2 loci: SNPs rs28384513, rs9376090,

rs9399137, rs9389269; rs9402686 and rs9494142; for the

OR51B5/6 loci: SNP rs5006884, for HBG loci, SNP rs7482144.

PCR was performed to determine genotypes using SNaPshot

multiplex ready reaction mix (Applied Biosystems, California,

USA) as previously reported [24]. For SNP genotyping, the

accuracy of the SNaPshot method was shown to be comparable to

Biplex Invader and Pyrosequencing, while lower in cost when

multiplex reactions are used [24]. Two singleplex reactions

allowed the amplification of SNPs rs7482144 and rs9399137;

and three multiplex reactions allowed the amplification of

rs11868668, rs28384513 and rs9389269 (mutiplex1); rs9376090,

rs9402686 and rs5006884 (mutiplex 2); rs9494142 and rs4671393

(mutiplex 3).

Capillary electrophoresis was used for the determination of

genotype; 0.5 ml treated SNaPshot reaction mixture was mixed

with 5 ml HiDi formamide (Applied Biosystems) and 0.2 ml

GeneScan -120 Liz size standard. This mixture was loaded onto

a Micro Amp 96 well reaction Plate (Applied Biosystems) and

analysed using the GeneScan-120 Liz and run model at

E5_36_POP7.

Cycle sequencing. For Cameroonian samples, we confirmed

the genotyping results for both SNaPshot and RFLP-PCR by

sequencing a sub-set of samples (10%). Sequencing was performed

using BigDye terminator mix (Promega, Wisconsin, USA) and 5X

BigDye terminating buffer (Promega, Wisconsin, USA). Cycle

sequencing was then performed on the Applied Biosystems

thermal cycler (Gene Amp PCR system 9700). An electrophero-

gram was generated using sequence analysis software and

imported into Bioedit Sequence alignment editor 7.0.0 (Tom

Hall, Isis Pharmaceuticals, Inc.) for the alignment of the sequence

with a reference sequence to identify the SNP of interest.

CSSCD patients. For the CSSCD patients, all DNA

genotyping was performed by using the mass spectrometry-based

MassArray iPLEX platform from Sequenom as previously

reported [9]. For SNPs passing quality control, the genotyping

success rate was .93% and the consensus error rate, estimated

from replicates, was ,0.3%.

Statistical analysis
Descriptive statistics were obtained for all quantitative data

using SPSS (IBM, USA version 21.0). Normality was confirmed by

the Shapiro-Wilk Test followed, by the use of parametric (Chi-

squared test and t-test) or non-parametric tests (Mann-Whitney U

test for 2 samples or the Kruskal-Wallis ONE way ANOVA for

more than 2 samples). Significance was set at the 0.05 level.

Genetic analysis was performed with PLINK software [25], testing

only the additive genetic model under a linear regression

framework. For quality control, a Hardy-Weinberg test was

performed on all genotype results: two SNPs were dropped

because of significant violation of HWE (rs1188686 in BCL11A,

MAF 0.31; HWE P-value: 0.000609; and rs9389269 in the

HBS1L-MYB locus, MAF: 0.17; HWE P-value: 2.42E-05). A third

SNP was monomorphic (rs9376090 in the HBS1L-MYB locus, all

the patients were T/T homozygous). In the CSSCD patients, on

Hardy-Weinberg equilibrium test, P value was .0.05 for all SNPs,

except for the -158 (G.A) XmnI polymorphism in the Gc-globin

(HBG2) gene promoter (rs7482144), which was in disequilibrium

(P = 0.002) [9]. For a polymorphism in LD (linkage disequilib-

rium) with the sickle cell mutation, this finding is expected in a

population of SCD patients [9].

When several SNPs were genotyped at the same locus, we used

conditional analysis and stepwise regression to determine whether

one or more independent association signals were present.

To correct for the skewness of the HbF distribution, we log10-

transformed and normalized the data to obtain the quantitative

trait used in the association analysis (after correcting for age,

gender, and electrophoresis technique and history of transfusion).

Statistical models to investigate the relationship between HbF-

associated SNPs and SCD complications were conducted in the

statistical package R, version 2.5.1.

Results

Socio-demographic and Hematological variables
The description of the study sample is presented in Table 1.

Among the 610 patients 50.3% were female; the mean age (6 SD)

of patients was 17.3610 years (range: 5–54 years), and the

majority of patients were children aged 5–10 years (32.2%;

n = 196) or adolescents 11–20 years (50%; n = 305). Patients lived

mostly in the urban areas of Yaoundé and Douala (93%; n = 567),

the two largest cities in Cameroon. Among the participants, 41%

(n = 238), 45.6% (n = 265) and 13.2% (n = 78) attended formal

primary, secondary or tertiary education levels, respectively.

Marital status of parents was distributed as follows: married

(58%; n = 235), single (28%; n = 113), widows (9%, n = 36) and

divorced (5%; n = 21). Forty two percent (n = 158) of fathers and

23% (n = 108) of mothers were formally employed, while 41%

(n = 153) of fathers and 39% (n = 183) of mothers were working in

the informal sector. The majority of parents (75%) earned monthly

direct incomes that were , 300 USD. The median age at

diagnosis of SCA, based on haemoglobin electrophoresis, was 3

years (range: 1month - 29 years). Only 31% (n = 180) of patients

were diagnosed before their first year of life.

After molecular analysis, the vast majority of patients were

determined to have SCA (HbSS) (ie, 97.4%; n = 594); 15 (2.4%)

patients were HbS-b thalassemia and one patient had an HbSC

genotype.

There were no significant differences among the socio-

demographic variables (marital status of parents, employment

status, ,300 USD direct revenue; urban vs. rural), in association

with HbF levels or in association with the clinical events (number

of VOC, number of hospital attendance or number of hospital-

isations, overt strokes). The hematological parameters were

generally comparable to those of African Americans in the

CSSCD; the WBC count and the occurrence of VOC were

somewhat more frequent in the Cameroonians (Table 1).

Haplotypes in the beta-globin gene cluster
Based on analysis of 1082 chromosomes, the allele frequencies

of various haplotypes in the beta-globin genes cluster showed that

Benin (74%; n = 799) and Cameroon (19%; n = 207) were most

prevalent forms, followed by atypical haplotype (6%; n = 66).

Bantu (n = 5); Senegal (n = 3) and Indian-Arab (n = 2) alleles were

very rare.

In combination, the Benin/Benin haplotypes represented 57%

(n = 307), Benin/Cameroon 25% (n = 137), Benin/atypical 8%

(n = 45) and Cameroon/Cameroon 5% (n = 26) haplotypes were

most prevalent. There were no significant differences in the
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association with clinical events or HbF levels among the haplotype

combinations.

Association of Genetic Variants to HbF Levels
We did not replicate the association of rs7482144 in HBG2 to

the HbF levels. The adjacent rs5006884 OR51B5/6, was also not

significantly associated to HbF level in Cameroonian SCA patients

(Table 2). On the other hand, the two principal known HbF loci

were significantly associated in the study patients (Table 2). The

effect of minor alleles at this these loci resulted either in a

depression of mean HbF values (rs28384513, HBS1L-MYB), or an

increase in HbF (rs4671393 in BCL11A; rs9399137 and rs9494142

in HBS1L-MYB) (figure 1). As previously reported in African

Americans at the BCL11A loci, when we conditioned the

association analysis on rs4671393, rs11886868 was no longer

significant, suggesting that these markers tag the same causal

polymorphism n this Cameroonian SCA cohort.

The largest allelic effect (0.41, Table 2) in the Cameroonian

patients was detected at the HBS1L-MYB locus, rs9399137;

leading to changes in median values of HbF of 10.6%, 10.3%

and 8.7% for the C/C, C/T and TT alleles, respectively. We

further explored whether the multiple variants at the HBS1L-MYB

locus represented independent signals of association. Using

stepwise regression, we found that rs28384513, rs9399137,

rs9376090, rs9389269 rs9402686 and rs9494142 are independent

association signals in the Cameroonian sample (Table S1 and

Figure S1).

We disaggregated the patient sample, based on the HbF

assessment technique (ADT vs HPLC), and found that the

significant associations with HF levels, examined independently,

were present in both sub-groups studied using the different assay

methods, in rs11886868 (BCL11A), rs4671393 (BCL11A),

rs28384513 (HMIP 1) and rs9494142 (HMIP 2) (Table S2).

HbF-associated variants and hematological parameters
We tested correlations between the 10 HbF-associated SNPs

and various blood cell parameters [RBC count, WBC count, mean

corpuscular volume (MCV), mean corpuscular hemoglobin

(MCH), platelet count, and monocyte levels]. BCL11A

rs4671393 was associated with a wide range of haematological

indices (Table 3). In addition, rs9402686 (HMIP 2) was

significantly associated with platelet count; rs28384513 (HMIP 1)

with WBC counts, and rs9399137 (HMIP 2) with Hb levels,

rs9402686 (HMIP 2) and rs9494142 (HMIP 2) were both

associated with MCV.

Effect of HbF-associated variants on pain crises and rate
of hospitalization

Two SNPs [rs28384513 (HMIP 1) and rs9494142 (HMIP 2)]

were associated with the number of hospitalisations (P = 0.028 and

P = 0.04, respectively, independent of HbF level and various socio-

demographical parameters (figure 2; Table S3). We did not,

however, find an association between the genotyped SNPs and the

numbers of VOC, and overt stroke episodes. In addition, there

was no differential in MAF in the three loci across various age

ranges suggesting that there is not a strong selective advantage for

these loci.

Discussion

Considerable progress has been made in understanding disease

modifying genetic factors in SCD, prompting speculation that this

information may be of potential therapeutic value. In an earlier

study, Thein and colleagues concluded that at least three

independent genetic variants (rs28384513, rs9399137 and

rs6929404) explain the linkage peak observed at 6q23 in the

HBS1L-MYB intergenic region associated with HbF levels [14]. An

association signal with HbF levels in the HBS1L-MYB intergenic

region was also identified in a large non-anemic Sardinian cohort

Table 1. Cohorts’ description.

Variables Cameroon CSSCD

N Mean±SD N Mean±SD

M/F 303/307 682/593

Age (Yrs) 610 17.3610 1275 14.5612.1

RBC (1012/L) 610 2.860.7 1275 2.860.6

Hb (g/dl) 610 7.861.6 1275 6.464.7

MCV (fl) 610 84.469.9 1275 89.469.0

MCHC (g/dl) 610 34.063.8 1275 30.162.9

WBC (109/l) 610 13.765.6 1275 11.962.6

Monocytes (109/l) 610 1.561 1275 0.760.5

Pl atelets (109/l) 610 374.66123 1275 4426151

HbA2 (%) HPLC* 244 3.361.3 1275 2.960.6

HbF (%) (HPLC)* 244 7.564.8 1275 6.364.6

N VOC/Yr 572 363 1275 0.761.4

N hospital attendance (per Yr) 608 2.263.2 NA

N hospital admission (per Yr) 606 2.363 NA

N patients with Strokes 25/608 4.1% 46/1229 3.6%

*Hb electrophoresis was also obtained from 344 patients (55.5%) using alkali denaturation test (ADT), with a mean of 11.469.4 for HbF and 4.162.1 for HbA2 levels. For
the analysis, to correct for the skewness of the HbF distribution, we log10-transformed and normalized the data to obtain (after correcting for age, gender, and
electrophoresis technique and history of transfusion) the quantitative trait used in the association analysis. NA = Not Applicable.
doi:10.1371/journal.pone.0092506.t001
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[26]. Lettre et al. [9] genotyped SNPs rs28384513 and rs9399137,

originally reported by Thein et al. [14] as well as three SNPs

reported in the Sardinian study (rs7776054, rs9389268, and

rs4895441), in the US CSSCD and a Brazilian SCD cohort and

replicated the association with HbF levels [9]. Moreover, Lettre et

al. also explored the intronic SNP in BCL11A, rs11886868, that

strongly correlates with HbF levels in the CSSCD and confirmed

that rs4671393 in BCL11A provides a strong signal of association

with HbF levels in SCD populations [9]. In a Tanzanian SCD

cohort, SNPs in HBS1L-MYB and BCL11A were also found to

have a significant impact on the HbF level [19]. Most recently,

researchers found that common genetic variation at BCL11A

associated with HbF levels lies in noncoding sequences associated

with an erythroid enhancer chromatin signature, this led to the

suggestion that the GWAS-marked BCL11A enhancer represents

an attractive target for therapeutic genome engineering for the b-

hemoglobinopathies [16].

In the present study, the first to our knowledge examining these

genetic relationships in West Africans, we examined the effect of

10 common genetic polymorphisms on HbF and various clinical

outcomes in SCA patients from Cameroon. We have confirmed

robust genetic associations in BCL11A and HBS1L-MYB intergenic

region loci, as previously reported in African Americans and Afro-

Brazilians [9] and Tanzanians [19]. In the CSSCD, five SNPs

explained .20% of residual HbF variation; in the present study 4

SNPs explained about 10% of HbF variation. As a correlate, in the

present study, we found much lower effect sizes for the relevant

markers, especially in the BCL11A loci (Table 2); this could in part

be due to our smaller sample size, or to the reduction in precision

through the use of ADT to measure HbF levels in the majority of

patients [27]. Nevertheless, HbF was measured in the CSSCD

samples in the 1980s by ADT [21]; thus, the difference in effect

size could well be a valid finding that deserves further investiga-

tion; additional fine-mapping of BCL11 should therefore be

considered in future studies. Alternatively, another potential

explanation could be possible poor assay precision of ADT

techniques to measure HbF on the Cameroonian samples. Despite

this possible limitation in HbF phenotyping, the replication of this

level of genetic effect sizes for human complex quantitative traits,

explained using a few genetic polymorphisms, is relatively strong

in comparison to many other quantitative human traits.

As also reported in the present study, multiple variants at the

HBS1L-MYB locus were shown to be independent in African-

American, Afro-Brazilian [9] and Tanzanian SCD patients [19].

Together the polymorphisms explained 8.3% of the variation in

HbF levels in our SCA patients (Table 2). In addition, we have

shown that rs9399137, which acts as a tagging SNP for the HMIP-

2 sub-locus in European populations [14,26], occurred at a low

frequency in this Cameroonian cohort, as noted previously in both

African-American [9] and Tanzanian patients [19]; thus,

Table 2. Fetal hemoglobin association results for SNPs at the BCL11A, HBS1L-MYB, and beta-globin loci in the CSSCD and the
Cameroon sickle cell Anaemia cohort.

SNPs HbSS Cameroon (N = 596) HbSS CSSCD (N = 1275)

Locus SNP Position&
Allele
Change MAF

$
Effet
Size#(SE)

Variance
Explamined
(%) P values MAF

Effet Size
(SE)

Variance
Explamined
(%) P values

Chr. 2&

BCL11A rs11886868+ 60720246 T.C 0.31 0.167
(0.06685)

1.4 0.01 0,31 0.524 (0.041 11.8 4.00E-35

BCL11A rs4671393 60720951 G.A 0.30 0.201
(0.07322)

1.7 0.01 0.27 0.598
(0.042)

14.1 2.00E-42

Chr. 6

HBS1L-MYB rs28384513 135376209 A.C 0.2 –0.3002
(0.08189)

3 0 0.2 –0.102
(0.049)

0.4 0.04

HBS1L-MYB rs9376090 135411228 T.C 0 NA NA NA NA

HBS1L-MYB rs9399137 135419018 T . C 0.043 0.412
(0.1562)

1.6 0.01 0.06 0.571
(0.086)

3.5 5.00E-11

HBS1L-MYB rs9389269+ 135427159 T.C 0.18 0.09561
(0.08244)

0.3 0.25 ND ND ND ND

HBS1L-MYB rs9402686 135427817 G.A 0.03 0.1447
(0.1887)

0.1 0.44 ND ND ND ND

HBS1L-MYB rs9494142 135431640 T.C 0.11 0.3391
(0.111)

2.1 0 ND ND ND ND

Chr.11

HBG2 rs7482144 5276169 G.A 0.005 –0.05843
(0.5031)

0 0.91 0.07 0.407 (0.080) 2.2 4.00E-07

OR51B5/6 rs5006884 5373251 C.T 0.08 0.04163
(0.1246)

0 0.74 ND ND ND ND

NA = Not applicable. Monomorphic T for the entire sample.
ND = Not determined.
&Chr. = chromosome; Position on NCBI Build 36.1.
$
MAF, minor allele frequency. Minor alleles (positive strand) are given in the parentheses.

#Effect sizes and standard errors are given in standard deviation units for the minor allele.
+On QC, these two SPNs were out of HWE.
doi:10.1371/journal.pone.0092506.t002
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Figure 1. Distribution of fetal hemoglobin levels conditioned on SNP genotypes. Boxes have lines at the lower quartile, median, and upper
quartile. The plot whiskers extend up and down from the median a distance 1.5 times the interquartile range of the boxes (truncated at zero where
necessary). Outliers are the points outside the whiskers indicated as circles.
doi:10.1371/journal.pone.0092506.g001

Table 3. BCL11A (rs4671393) affected a wide range of haematological variables.

GENOTYPES Hemotological variables

RBC (1012/l) Hemoglobin (g/dl) Leucocytes (109/l)
Lymphocytes
(109/l) Platelets (109/l)

rs4671393 (BCL11A) Median P Median P Median P P Median P

CC 2.9 0.02 8.1 0.02 13.1 0.01 6.1 316

CT 2.7 7.8 12.6 5.1 0.02 393 0.02

TT 2.6 7.5 13.6 5.5 385.5

doi:10.1371/journal.pone.0092506.t003
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rs9399137, is not an appropriate proxy for the causative sequence

variant that influences HbF at HMIP-2 on African chromosomes

[28]. However, we report, in the HMIP-2 sub-locus, a much

higher frequency of rs9389269 (0.18) in Cameroonian as

compared to the Tanzanian SCD patients (0.03); this observation

could indicate a high degree of variation in the MAF of this SNP

amongst SCD patients from various African population groups.

Specifically, a 3 bp deletion in perfect LD with rs9399137 in

Figure 2. Association of SNPs in HBS1L-MYB locus and Rates of Hospitalization. Two specific SNPs were associated, with rate of
hospitalization, a potential marker of overall disease severity. Boxes have lines at the lower quartile, median, and upper quartile. Outliers are the
points outside the whiskers indicated as circles.
doi:10.1371/journal.pone.0092506.g002
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Chineses, Europeans and some Africans was reported to be the

candidate functional motif for the HMIP-2 region [29]. But, in the

current Cameroonian samples, rs9389269 was not linked to

rs9399137 (r2 = 0; D’ = 0.138; Table S1). Using 1000Genome

data (Phase I Release Version 3 20101123), we also estimated the

LD between rs9389269 and rs9399137 among Luhya in Webuye

from Kenya (AWK) and Yoruba in Ibadan from Nigeria (YRI);

equally, the results did not indicate any linkage between the two

SNPs in any of the two native African populations: r2 = 0.012;

D’ = 0.233 for AWK and r2 = 0.002; D’ = 1.000 for YRI. Thus,

the candidate for functional motif for the HMIP-2 region in sub-

Saharan African populations deserves to be explored in future

study.

The importance of the HMIP locus in African populations

might therefore have been underestimated by datasets using

markers tailored to European studies [19]. Fine-mapping this locus

could lead to new findings in African patients with SCD.

The association between the XmnI polymorphism (rs7482144)

in the proximal promoter of the c-globin (HBG2) gene and HbF

levels is well documented in SCA patients [9,20]. Due to the

virtual absence of the Senegal and Indian Arab haplotypes that

contain the XmnI variant, we lacked power to replicate the

association of rs7482144 in HBG2 with HbF levels; in the CSSCD,

rs7482144 explains 2.2% of the variation in HbF levels. Other

African populations with the Senegal S haplotype that contains the

rs7482144 SNP would be better suited to study the effects of this

variant. Similarly, a strong signal adjacent to the HBB cluster,

recently detected in African-American patients at rs5006884 in

OR51B5/6 [13], was not significant in our patients. In a report

that included Tanzanian patients, the positive association of HbF

with rs5006884 disappeared when linkage disequilibrium with

rs7482144 was taken into account [19]; this additional HbF locus

does not seem to play an important role in Cameroonians or

Tanzanians.

We also described the prevalence of various haplotypes in the b-

globin gene cluster in Cameroonian SCD patients and reveal that

the Benin haplotype was the most prevalent. It is perhaps

anomalous that the ‘‘Cameroon’’ haplotype, which seems to occur

more frequently in Sudan [30], is not dominant in this population.

The results raise the question of the geographical origin of this

haplotype and also suggest that the detailed geographic distribu-

tion of known sickle haplotypes is still not well established. The

refinement of the molecular structure (i.e. haplotype) in HBB and

migration patterns may yield important information about the

evolutionary history of SCA that could also be clinically relevant

[31]. Contrary to our findings, a recent report argues that the S

haplotype itself (beyond HbF regulation) correlates with severity

[32]. Differences in haplotypes and SNP allele frequencies

between SCA patients from different geographic populations

underscore the need to conduct GWAs in regional sub-Saharan

African populations.

Understanding the effect that HbF-associated variants have

more generally on blood cell production and other parameters will

be important in our efforts to define their biological roles and for

the development of targeted therapies [9,16]. As in African

Americans and Afro-Brazilians studies [9], we replicated the

finding that in combination HBS1L-MYB rs9399137, and BCL11A

rs4671393 SNPs affected platelet counts. In addition BCL11A

rs4671393 SNPs was associated with wider range of hematological

indices in Cameroonians (Table 3), independently of HbF level.

Significant associations of HBS1L-MYB rs9399137 with RBC

indices (RBC count, MCV, MCH), and platelet and monocyte

counts have been reported in healthy non-anemic Europeans [14].

However, in African-American and Brazilian patients Lettre et al.

did not replicate these findings [9].

Previous analyses of the CSSCD dataset showed that increased

HbF levels correlate with less severe complications, fewer pain

crises [33] and improved survival [34]. Having shown that four

sequence variants at two loci influence HbF levels (table 2; Fig. 1),

we next asked whether these SNPs correlate with pain crisis or

stroke in SCA: we did not find any significant associations.

However, two SNPs in HBS1L-MYB were associated with the

number of hospitalisations (figure 2); if confirmed, this could be the

first evidence of the clinical effect that is associated with these

variants. This result could suggest that clinical genotyping of these

variants, and others, yet to be found, may potentially be useful to

risk stratify SCD patients, and to serve as a guide to adjusting

therapeutic and follow up strategies. This finding deserves further

investigation with a larger sample or, ideally, a prospective birth

cohort, to fully appreciate the potential clinical value. Clearly

much remains to be learned about the myriad genetic factors

which modify the course of SCA in Africans.

Limitations and perspectives
A limitation of this study was our inability to use the HPLC

method to measure HbF in all patients; this method was not

available in Cameroon at the beginning of the sample collection.

Even though we have shown that, use of the older assay did not

affect the main outcomes ie, the association of targeted SNPs to

HbF (supplementary data 2). The systematic use of HPLC for HbF

measurement should have allowed more precise estimation of

effect sizes of the genotyped SNPs as well as appropriate

comparison to the other populations of SCA patients. In addition,

phenotyping HbF levels with ADT instead of HPLC in the

majority of samples could have affected the study of the

associations of haplotypes, HbF levels and various clinical events.

Self-report of clinical variables like VOC episodes can also lack

precision and pain tolerance and financial factors could have been

limiting factors for hospital attendance. However, it has also

proven difficult to detect an association of genetic markers with

VOC in affluent settings [9] [35].

Despite the above limitations, this study represent an important

step forward in the understanding of influence of SNPs in

modifying genes on HbF level in Cameroon, and in sub-Saharan

African patients generally. While more than 70% of SCA patients

world-wide live in Africa, most advances in the molecular

understanding and management of SCA have been based on

research conducted in either the US or the UK. Clearly

contemporary research tools must now be widely implemented

in Africa. This study therefore also has a capacity-building

dimension, as it was fully performed from design, molecular

analysis and reporting, on the African continent. Increased

capacity to conduct both clinical and laboratory research on

SCA in Africa could in turn create major collaborative research

opportunities at the regional and international levels.

Conclusion

This study has confirmed the associations of SNPs in BCL11A

and HBS1L-MYB and fetal haemoglobin in Cameroonian SCA

patients and the association of two specific SNPs with rate of

hospitalization, a potential marker of overall disease severity.

These results highlight the differential frequency of SNPs

associated to HbF levels amongst various demographic groups of

SCA patients. Additional data in other African site are needed to

define an updated map of these variants on the continent, as well

as potential new loci that could influence fetal hemoglobin.
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