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Abstract. Association rule mining is used in various applications. Also information systems may need to take 
privacy issues into account when releasing data to outside parties. Due to recent advances, releasing data to other 
parties may be done in a streaming fashion. In this paper, we introduce a new system in which association rule mining 
over data streams and association rule hiding for traditional databases are merged. The stream association rule hiding 
algorithm presented can be applied on both raw data and template guided XML data. The algorithms presented are 
implemented and tested. 
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1. Introduction 

Association rule mining techniques [1, 2] have 
been widely used in various applications such as mar-
keting, modern business, medical analysis and website 
navigation analysis [3-6]. In e-commerce, for instance, 
a company can understand the behavior of its custo-
mers, support decision making and gain an overall 
significant benefit over its rivals using association rule 
mining. Thus, some association rule mining algo-
rithms have been developed especially for handling 
transactional data in e-commerce [7-8]. 

In spite of its benefits in all of these applications, 
association rule mining can also have a threat to pri-
vacy and information security, if not done or used 
properly [9]. There are a number of realistic scenarios 
in which privacy and security issues in association 
rule mining arise. Three challenging e-commerce sce-
narios are described in the following. 

Scenario 1: First let us consider the scenario of a 
supermarket and two drink suppliers A and B explai-
ned in [10]. Let us suppose that, as purchasing direc-
tors of our large supermarket chain, we are negotiating 
an agreement with Drink Company A. Drink Compa-
ny A offers its products at a reduced price, if we agree 
to give it access to our database of customer pur-
chases. We accept the deal and Drink Company A 
starts mining our customer purchases data. By using 
an association rule mining tool, Company A finds out 
that people who purchase products of Biscuit Com-
pany X also purchase Drink B. Drink Company A now 
runs a marketing campaign advertising that “you can 
get 60 cents off Biscuit X with every purchase of a 
Drink A product”. This campaign cuts heavily into the 

sales of Drink B, which in turn may increase the price 
for us due to decreased sales. During our next nego-
tiation with Drink Company A, we find out that with 
reduced competition, they are unwilling to offer us a 
low price. Finally, we start to lose business to our 
competitors, who were able to negotiate a better deal 
with Drink B. From this aspect, releasing the database 
is disadvantageous for our supermarket. Therefore, for 
our supermarket, an effective way to hide sensitive 
rules while releasing the database is required. 

Scenario 2: Let us now consider the following 
scenario explained in [11]. Suppose that two or more 
companies have huge dataset records of their cus-
tomers’ buying activities. To have an advantage over 
other competitors, these companies decide to coopera-
tively conduct association rule mining on their data-
sets for their mutual benefit. However, some of these 
companies may not want to share some strategic 
patterns hidden within their own data (sensitive 
association rules) with the other parties. They would 
like to transform their data in such a way that these 
sensitive association rules cannot be discovered.  

Scenario 3: Let us consider the e-commerce 
scenario explained in [12]. Let us think of a system 
which consists of a server and many clients. In this 
system, each client has a set of sold items (e.g. books, 
clothes, movies, etc). The clients want the server to 
collect statistical information about associations 
among items. On the other hand, the clients do not 
want the server to know some sensitive association 
rules. In this context, the clients represent companies 
and the server is a recommendation system for an e-
commerce application. In this system association rules 
can be effectively used to build models for on-line 
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recommendation. When a client sends its frequent 
itemsets or association rules to the server, it sanitizes 
some sensitive itemsets according to some specific 
policies. The server then gathers statistical information 
from the sanitized itemsets and recovers from them 
the actual associations. 

In all of these scenarios we ask ourselves the 
following question. “How can we get rational data 
mining results that will allow for correct decision 
making while preventing the disclosure of sensitive 
information?” In other words, “Is it possible for us to 
benefit from the collaborations in which we share our 
data (as explained in Scenarios 1-3) and still preserve 
some sensitive association rules?” In our proposed 
system, we try to answer these questions in an 
environment where real-time data are sent in a 
streaming fashion.  

The rest of this paper is organized as follows. 
Section 2 explains our proposed system. 

Section 3 provides our experimental results. Sec-
tion 4 contains the conclusions. 

2. Proposed System 
2.1. Problem Definition 

In this section, we introduce ARDHS, the system 
that we propose for association rule hiding over 
streaming data. In ARDHS, we have a single-pass 
algorithm for hiding all sensitive itemsets in data 
streams, similar to the landmark windows model 
explained in [13], when a user-specified minimum 
support threshold ms Є  (0, 1), and a user-defined er-
ror threshold ε Є (0, ms) for data pruning phase are 
given. As explained in [14-15], a data stream can be 
defined as follows: 

Let I = {I1, I2, I3… Im} be a set of literals, called 
items. Let the data stream DS = B1, B2, B3 … BN be an 
infinite sequence of blocks, where an identifier i is 
attached to each block, and N is the identifier of the 
“latest” block, BN. Each block Bi consists of a 
timestamp tsi, and a set of transactions; that is, Bi = 
[tsi, T1, T2, T3… Tk], where k ≥ 0. Hence, the current 
length (CL) of the data stream is defined as CL = 
|B1|+|B2|+…+|BN|. A transaction T consists of a set 
of items such that T ⊆ I. Moreover, each transaction is 
given a unique transaction identifier, called TID. A set 
of items X is also called an itemset and an itemset X 
with k items is denoted as (x1, x2, x3… xk), such that X 
⊆ I. 

The support (defined in [1]) of an itemset X, 
denoted by sup(X), is the number of transactions seen 
so far in which that itemset occurs as a subset. An 
itemset X is called a sensitive itemset if sup(X) ≥ 
ms*CL. An itemset is called an insensitive itemset if 
ms*CL > sup(X).  

Hence, given a user-defined minimum support 
threshold ms Є (0, 1), a user-specified error threshold 
ε Є (0, ms) and a data stream DS, our goal is to 

develop a single-pass algorithm to hide all sensitive 
itemsets, in a manner similar to the landmark windows 
model, of the streaming data using as little main 
memory space as possible.  

2.2. Assumptions 

In our proposed system ARDHS, we have the 
following assumptions: 

1) Arriving items in a transaction or an itemset are 
sorted in lexicographic order.   

2) The average size of each block of the data 
stream is a constant value k, for simplicity (i.e. each 
block contains k transactions). 

3) We hide only rules that are supported by disjoint 
large itemsets, as done in [16]. If we try to hide 
overlapping rules, then hiding a rule may have side 
effects on the other rules to be hidden. This increases 
the time complexity of our algorithm, since hiding a 
rule may cause an already hidden rule to haunt back. 
Therefore we reconsider previously hidden rules and 
hide them back if they are no longer hidden. 

4) We hide one rule at a time. Hiding one rule must 
be considered as an atomic operation. This is actually 
related to the third assumption. Since the rules to be 
hidden are assumed to be disjoint, the items chosen for 
hiding a rule will also be different for different rules. 
Therefore, hiding a rule will not have a side effect on 
the rest of the rules. Thus considering the rules one at 
a time or all together will not make any difference as 
explained in [16].  

2.3. ARHDS Algorithm 

Our algorithm for ARHDS consists of six steps. 
After describing the steps of the algorithm in detail, 
we present two examples to illustrate and clarify the 
system. 

Step 1: Reading a block of transactions: In the 
first step, we read a block of transactions from the data 
stream. 

Step 2: Constructing the Potentially Sensitive 
Itemset Forest (PSIF) and the Temporary Database 
(TDb) for the block:  To have a fast and an efficient 
system, the data structures PSIF and TDb are const-
ructed and used. PSIF consists of Potentially Sensitive 
Itemset Trees (PSIT) of item suffixes as explained in 
[17]. Similarly TDb consists of Temporary Database 
Trees (TDbT) where the root of each tree represents 
the first item in a transaction. Both PSIT and TDbT 
have the same tree structure which is explained in the 
following.  

Each node in the tree consists of four fields: 
itemName, support, ChildTrees and parentTree, where 
itemName is the name of the node; support records the 
number of transactions containing the item; Child-
Trees is a hash table for faster access to its children 
trees and parentTree is a pointer to the parent tree of 
the item. In addition to these fields, each root node has 
a Hash Table (HT) for its children nodes. The key for 
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HT is the children item id and the value of HT consists 
of two fields: the number of occurrences of children 
items in the tree and the pointers to these occurrences.  

The construction of TDb can be described as 
follows. In the current block, let the first transaction to 
be inserted to the system be T1 = (x1, x2, x3, …, xk) 
which consists of k items. First, ARDHS reads this 
transaction, T1, from the current block and sets item x1 
as the root node for the first tree of TDb. Later x2, x3, 
…, xk are inserted into the tree one by one, as nodes, 
in such a way that the newly inserted one becomes a 
child of the one inserted just before it (i.e. xi becomes 
the parent of xi+1 for i=1, k-1). Consequently, item xk 
becomes the leaf node.  Each node represents an item 
of the transaction and a support counter is associated 
with it.  Also a HT will be created for the root node x1 
and childrenTree and parentTree HT’s for each of the 
other nodes.  Then ARDHS reads the next transaction 
T2 = (y1, y2, y3, …, yk). If y1 is equal to x1 (or if y1 is 
equal to the item associated with the root node of any 
tree, ta, in TDb) ARDHS does not add a new tree into 
TDb but it adds the path of itemset (y2, y3, …, yk) as a 
branch (connected to the node associated with x1 with 
an edge) of the first tree (or ta) of TDb and updates 
the support of each node accordingly. If the first trans-
action, T1, and the next one, T2, have their first r items 
in common (i.e. x1= y1, x2= y2, …, xr= yr), then the 
support of the nodes associated with x1, x2, …, xr are 
incremented by one and the path associated with yr+1, 
yr+2, …, yk is connected to node xr with an edge 
(Please refer to Example 1 for concrete examples and 
their illustrations). If y1 is not equal to x1 (or if y1 is 
not equal to the item associated with the root node of 
any tree in TDb) a new tree which has y1 as the root 
node and yk as leaf node will be added to TDb.   

The construction of PSIF is similar to the const-
ruction of TDb but there is a small difference. Before 
the first transaction T1 is inserted into PSIF, it is 
converted into the following k small transactions: (x1, 
x2, x3, …, xk), (x2, x3, …, xk), …, (xk-1, xk) and (xk). Then 
each of these k small transactions are inserted into 
PSIF as a tree. For each of these small transactions, 
the tree insertion procedure of PSIF is same as the tree 
insertion procedure of TDb. After T1 is inserted into 
PSIF, ARHDS will read the next transaction T2 = (y1, 
y2, y3, …, yk) and divide it into k small transactions: 
(y1, y2, y3, …, yk), (y2, y3, …, yk) , …, (yk-1, yk) ,(yk) and 
add these small transactions into PSIF in the same 
manner. 

Each of the remaining transactions in the block is 
inserted into PSIF and TDbT in the same manner as T2 
is inserted. 

For XML data, we use the same structure specified 
above. Additionally, at each leaf node, we store the 
transaction number for each transaction. 

Step 3: Pruning the insensitive itemsets from PSIF. 
To speed up the execution of ARHDS, we use pruning. 
The user provided error threshold ε Є (0, ms) is used 
in pruning the insensitive items from PSIF. Before 

starting the hiding process, we repeat Steps 1 to 3 for 
the remaining blocks of transactions. 

Step 4: Finding sensitive disjoint itemsets from 
PSIF to hide: To hide all sensitive association rules, 
we developed the following heuristic. Given a 
minimum support threshold ms Є (0, 1) provided by 
the user, first we find all sensitive itemsets.  Then we 
sort these sensitive itemsets according to their support. 
Next, beginning from the sensitive itemset with the 
highest support, we discover the sensitive disjoint 
itemsets to hide. We hide sensitive rules from TDb in 
Step 5. Then we come back to Step 4 to check if there 
still exists any sensitive disjoint itemsets. We repeat 
this strategy until we hide all sensitive association 
rules from TDb. 

Step 5: Hiding sensitive disjoint itemsets and 
updating TDb: After determining the sensitive disjoint 
itemsets, we hide them by using a modified version of 
one of the strategies given in [16]. There are five 
different algorithms for association rule hiding in [16]. 
Here, we use the fastest of these algorithms, since we 
are trying to hide association rules over data streams. 
Also the algorithm that we use does not introduce new 
rules. The algorithm is as follows: 

To hide sensitive rules, we decrease the support of 
their generating itemsets until the support is below the 
minimum support threshold as explained in [18]. If 
there are more than one large itemsets to hide, we first 
sort the large itemsets with respect to their size and 
support. Let Z be the next itemset to be hidden. Let 
TSZ be the set of transactions in which Z occurs as a 
subset. We hide Z from Database D by removing the 
items in Z, from the transactions in TSZ, in round robin 
fashion. We start with a random order of items in Z 
and a random order of transactions in TSZ. Assume 
that the order of items in Z is i0, i1, …,  in-1 and the 
order of transactions in TSZ is T0, T1, …, Tm-1. At Step 
0 of the algorithm, the item i0 is removed from T0. At 
Step 1, i1 is removed from T1, and in general, at Step k, 
item is (s= k mod n) is removed from transaction Tk. 
The execution stops after the support of the current 
itemset, to be hidden, goes below the minimum sup-
port threshold as explained in [16]. The intuition be-
hind the idea of hiding in round robin fashion is fair-
ness. Thus no item is over-killed and the chance of 
having a smaller number of side effects is higher than 
choosing an item at random and always trying to hide 
it. 

The mentioned algorithm given in [16] hides only 
selected sensitive itemsets, in ARHDS we hide all 
sensitive itemsets. When we update the database D, 
we also update our PSIF structure to go back to Step 4 
to check if sensitive itemsets still exist. 

Step 6: Sending the updated TDb (the block): After 
hiding all sensitive items from TDb, the hidden TDb is 
sent to the receiver. 

In the following we present two simple examples 
to explain our proposed system. In the first example, 
we will inspect our algorithm step by step for raw 
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data. In the second example, we will give only the 
structure of TDb for XML data, since the other steps 
are the same.  

Example 1: Let us suppose that the data stream 
consists of two blocks each having five transactions. 
Let the first block B1 of the data stream be (acdef), 
(df), (abe), (acdf), (cef), the second block B2 be (bef), 
(bdg), (def), (bg), (ceg). Let ε = 0.25 be the error 
threshold for pruning and ms = 0.3 be the minimum 
support for hiding phases where a, b, c, d, e, f, g are 
items in the stream.  

Step 1: We read the first block B1 from the data 
stream. 

Step 2: 1) First transaction acdef: ARHDS reads 
the first transaction acdef, inserts item-suffix 
transactions acdef, cdef, def, ef, f into PSIF and acdef 
into TDb. The results are shown in Figure 1. Here, 
item name and support of each PSIT (Potentially 
Sensitive Itemset Tree) are presented. Also for each 
PSIT, HT (Hash Table) for the children nodes are 
shown. In the following steps, we omit the pointers to 
the occurrences of each children node for a concise 
representation. 

 
Figure 1. PSIF and TDb after inserting  

the first transaction acdef 

2) Second transaction df: ARHDS reads the second 
transaction df, inserts item-suffix transactions df, f into 
PSIF and df into TDb. The results are shown in Figure 
2.  

3) Third transaction abe: ARHDS reads the third 
transaction abe, inserts item-suffix transactions abe, 
be, e into PSIF and abe into TDb. The results are 
shown in Figure 3.  

4) Fourth transaction acdf: ARHDS reads the 
fourth transaction acdf, inserts item-suffix transactions 
acdf, cdf, df, f into PSIF and acdf into TDb. The re-
sults are shown in Figure 4.  

5) Fifth transaction cef: ARHDS reads the fifth 
transaction cef, inserts item-suffix transactions cef, ef, 

f into PSIF and cef into TDb. The results are shown in 
Figure 5. 

 
Figure 2. PSIF and TDb after inserting  

the second transaction df 

 
Figure 3. PSIF and TDb after inserting  

the third transaction abe 

 
Figure 4. PSIF and TDb after inserting  

the fourth transaction acdf 
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Figure 5. PSIF and TDb after inserting  

the fifth transaction cef 

Step 3: After processing the first block B1, 
ARHDS prunes insensitive itemsets from the current 
PSIF. At this time, ARHDS deletes the PSIT(b) and its 
corresponding HT(b), and prunes the entry b from all 

other PSIT ’s because item b is an insensitive item (i.e.  
sup(b) < ε * CL (1 < 0.25 * 5)). The resulting PSIF is 
shown in Figure 6. 

 
Figure 6. PSIF TDb after pruning insensitive item b 

 
Figure 7. PSIF  and TDb after processing the second block B2 

After pruning the insensitive items from PSIF, we 
read the second block B2 for constructing the PSIF and 
TDb. The construction process is repeated for block 
B2. The resulting PSIF  and TDb are given in Figure 7. 
Next, we go to Step 4 and start hiding sensitive 
itemsets.  

Step 4: After processing the second block B2, first 
we find all sensitive itemsets with respect to the 
minimum support threshold ms =0.30 and then we 
sort these sensitive itemsets according to their support 
(df with support 4, ef with support 4, ce with support 
3, cf with support 3). Next, beginning from the 
sensitive itemset with the highest support, we compute 
the sensitive disjoint itemsets to hide (df with support 
4, ce with support 3).  

Step 5: At this step, we hide sensitive itemsets by 
using the hiding algorithm we proposed. Pairs of 
transactions and the items to be hidden are acdef-d, 
acdf-f, acef-c.  

After completing the first iteration we go back to 
Step 4 to check if there still exists any sensitive 
itemsets. We find the itemset ef with support 4. Then, 

we come back to Step 5 to hide the sensitive itemsets 
we discovered during the second iteration. Pairs of 
transactions (to be changed) and the items to be 
hidden are aef-e, def-f. After the second iteration, we 
again go back to Step 4 to check if there still exists 
any sensitive itemsets. Since we find no sensitive 
itemsets, we continue with Step 6. Figure 8 shows the 
hidden TDb.  

 
Figure 8. Hidden TDb 
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Example 2: Let us suppose that the data stream is 
the same as that in Example 1, but the stream arrives 
in XML format. Figure 9 shows the XML stream for 
block B1. 

 
Figure 9. XML stream for the first block B1 

The steps of our algorithm for the template guided 
XML stream are the same as that for raw data. The 
only difference is that at each leaf node, we store the 
transaction number for each transaction. Figure 10 
shows the TDb after processing block B1. 

 

Figure 10. TDb for XML data after processing  
the first block B1 

Figure 11 shows the TDb after processing the se-
cond block B2 and Figure 12 shows the hidden TDb 
for the XML stream. 

 
Figure 11. TDb for XML data after processing  

the first block B2 

 
Figure 12. Hidden TDb for XML data 

The reason for storing the transaction number, 
while hiding an item from a transaction, is as follows. 
When we send the hidden data to the receiver, we use 
the transaction numbers to merge the data (on which 
we apply association rule hiding) with its related part. 

3. Experimental Results 

In this section we present the performance and 
scalability assessment of ARHDS for raw data and 
XML data with different parameter settings. The most 
important issue in ARHDS is the execution time since 
we must hide the sensitive rules of the data and send 
the hidden database to the receiver in a very short 
time. We evaluated the time consumed to finish diffe-
rent steps of ARHDS such as creating PSIF (Poten-
tially Sensitive Itemset Forest) and TDb (Temporary 
Database), hiding the sensitive rules and writing the 
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output data to the file (sending the hidden database to 
the receiver). 

Later, we analyzed the performance of ARHDS 
under different parameter settings. We performed tests 
under different values of parameters such as user-spe-
cified minimum support threshold ms Є (0, 1), user-
defined error threshold ε Є (0, ms) and block size for 
the synthetic data.  Finally we ran ARHDS for XML 
data that we generated and compared our algorithm on 
XML and on raw data for execution time.   

The experiments were done on a PC with AMD 
Athlon (TM) 1.8GHz CPU, 1GB main memory and 
Microsoft XP Professional. The code for the proposed 
algorithm is written in Microsoft Visual C# 2.0 and 
the application development environment Microsoft 
Visual Studio 2005 is used. We ran our code in VS 
2005 environment. We made use of Dictionary (imple-
mented as a generic hash table) and List (generic equi-
valent of the ArrayList class) classes of the Generic 
collection in Microsoft Visual C# 2.0. 

IBM Synthetic Dataset: To evaluate the perfor-
mance of ARHDS, we generated some synthetic data-
sets via the IBM’s data generator in [2]. For clarity, we 
named each dataset in the form of TxxIxxDxx where 

T, I and D mean the average transaction length, the 
average length of maximum pattern, and the total 
number of transactions, respectively. To evaluate our 
work, we used four datasets: T7I4D200K, T5I4D10K, 
T5I4D50K, and T5I4D100K. For T7I4D200K, the 
number of distinct items is 1000 and for other datasets 
it is 50. We made use of T7I4D200K for the execution 
time evaluation of the proposed system. We used other 
datasets for comparing the hiding time of ARHDS 
with that of one of the algorithms given in [16]. 

To evaluate ARHDS on XML data, we generated 
synthetic XML data by using the synthetic data gene-
rated via the IBM’s data generator. We used the syn-
thetic data which we generated earlier as the essential 
part of the synthetic XML data on which we applied 
association rule hiding. 

Test 1: The first test is performed to examine the 
time executed by our algorithm at each step. With ms 
= 0.0025 and ε = 0.0005, we ran ARHDS on 
T7I4D200K data. The data are broken into blocks of 
size 25K for simulating the continuous characteristics 
of streaming data. Hence there are 8 blocks in this test. 
Figure 13 shows the execution time for creating PSIF 
and TDb (prior to association rule hiding). 

 
Figure 13. Execution time for creating PSIF and Tdb 

Note that after arrival of each block, we prune 
PSIF. We expect that the time needed for inserting 
new transactions into both PSIF and TDb will increase 
with the incoming new blocks. In Figure 13, we see 
some points where the execution time decreases. This 
may be due to the characteristic of the data that we 
generated. Since there is no sharp increase in execu-
tion time we may say that our system creates the data 
structure for ARHDS reasonably efficiently. 

Table 1 shows the number of all sensitive itemsets, 
the number of disjoint sensitive itemsets chosen after 
sorting all sensitive itemsets with respect to their sup-
port and the number of transactions changed during 
the hiding process. As expected, all of them decrease 
from one iteration to the next. Also note that by 
number of transactions changed we actually mean that 
the number of different transactions changed as we 
can change the same transaction several times. 

Table 1. Number of all and disjoint sensitive itemsets and the 
number of transactions changed 

 

Number 
of all 

sensitive 
itemsets 

Number of 
disjoint 
sensitive 
itemsets 

Number 
of trans. 
changed 

Iteration 1 20 7 849 

Iteration 2 15 5 449 

Iteration 3 8 4 192 

Iteration 4 5 1 57 

Iteration 5 4 1 53 

Iteration 6 3 1 40 

Iteration 7 2 1 2 

Iteration 8 1 1 1 
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In this test, constructing PSIF and TDb takes 47 
seconds, hiding disjoint itemsets takes 15 seconds and 
sending the hidden database to the receiver takes 4 
seconds. These results can change with respect to the 
parameter settings (i.e. hiding time may exceed const-
ruction time of PSIF and TDb). 

Test 2: To evaluate the scalability of our approach, 
we performed our second test on user-defined 
minimum error threshold. We change the minimum 
error threshold ε while keeping other variables cons-
tant (ms = 0.0025, block size=25K, number of blocks 
= 8). Figure 14 shows execution times for different 
minimum error threshold. As there is no sharp in-
crease or decrease in the graph, we may say that our 
approach is stable. 

Test 3: As the third test, to examine the execution 
time of hiding the association rules for the disjoint 
sensitive itemsets, we ran ARHDS with different mini-
mum support threshold ms while keeping other 
variables constant (ε = 0.0005, block size=25K, num-
ber of blocks = 8). Figure 15 shows the execution time 
for hiding disjoint sensitive itemsets changing with 
different minimum support threshold values. Note that 
in addition to the time required for the hiding process, 
execution time includes the time spent for finding all 
sensitive itemsets and getting the disjoint sensitive 
itemsets. Figure 15 shows that our heuristic for hiding 
all sensitive itemsets from the database gives reason-
ably efficient results. 

 
Figure 14. Execution time vs. minimum error threshold 

 
Figure 15. Execution time for hiding vs. minimum support threshold 

Table 2 shows the hiding time and the number of 
transactions changed for different minimum support 
threshold values. We see that if the minimum support 
threshold value decreases, the number of transactions 
changed increases but hiding time does not always 

increase. This is due to the heuristic we developed for 
hiding sensitive rules. Also we can conclude that one 
should choose the minimum support threshold care-
fully to execute ARHDS fast. 
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Table 2. Execution time of ARDHS at each step 

ms execution 
time 

Number of transactions 
changed 

0,0030 3 620 

0,0029 12 740 

0,0028 3 899 

0,0027 4 1098 

0,0026 5 1344 

0,0025 15 1642 

0,0024 17 1968 

0,0023 21 2487 

Test 4: The fourth test is performed to examine the 
time taken by our ARHDS for different block size 
while keeping other variables constant (ms = 0.0025 
and ε = 0.0005). Figure 16 shows the total execution 
time of ARHDS with changing block size for 
T7I4D200K data. Having the highest execution time 

with block size 10K may be due to the highest number 
of pruning or the characteristics of the data tested. 
Figure 16 shows that the system is stable under dif-
ferent block sizes. 

Raw data XML data comparison: The fifth test 
is performed to compare the execution time of our 
algorithm for raw data and that for XML data that we 
generated. For comparison, we used the same para-
meters (ms = 0.0025, ε = 0.0005, and the block size = 
25K) in both executions. Also T7I4D200K is used for 
generating raw data and XML data. Figure 17 shows 
the execution time to create PSIF and TDb for raw 
data and XML data (prior to association rule hiding). 
From Figure 17, we see that the execution time grows 
sharply at the last block. This is due to the fact that we 
store parts of XML data that we do not use for 
association rule hiding but for sending back to the 
receiver. File sizes for raw data and XML data are 
6MB and 120MB, respectively. 

 

Figure 16. Total execution time for hiding vs. different block size 

 
Figure 17. Comparison of execution times to create PSIF and Tdb

Table 3 shows the hiding time and time of sending 
the hidden database (DB) to the receiver for raw data 
and the XML data. As expected, there is not much 

difference in hiding time. However it is important to 
note the difference in time for sending hidden data-
base to the receiver. 
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Table 3. Hiding time and time of sending hidden DB to 
receiver 

 hiding 
time(sec) 

sending hidden DB (sec) 

Raw Data 15 4 

XML Data 17 20 

Comparison with another hiding Algorithm: As 
explained in Section 3, we modified and adopted one 
of the algorithms given in [16] for the sensitive rule 
hiding part of ARHDS. We also compared the hiding 
time of our algorithm with that of the mentioned algo-
rithm in [16].   

The algorithm in [16] hides 5 or 10 chosen rules 
but in ARHDS all sensitive rules above a user spe-
cified minimum support threshold are hidden. From 
this view point, a correct comparison of our algorithm 
with that in [16] is not possible. Yet we ran ARHDS 
with different minimum support thresholds and with 
different size databases, similar to those given in [16] 
to get some idea about the hiding time of our system. 
The results show that the two algorithms have similar 
hiding times. 

4. Discussion and conclusion 
Mining data streams is an interesting and challen-

ging research field.  Also, due to the fact that recent 
advances in data mining algorithms have increased the 
disclosure risks that one may encounter when relea-
sing data to outside parties, association rule hiding is 
another interesting and challenging research field [16]. 
We merged these two challenging research areas. In 
this paper we introduce a novel system we named 
ARHDS for discovering and hiding association rules 
over data streams. 

ARDHDS mainly consists of two parts. The first 
part creates our data structure to discover sensitive 
itemsets to hide and the second part hides these item-
sets from the data we stored. For the first part we use a 
prefix tree structure similar to that in [17]. In the 
second part we hide sensitive itemsets by decreasing 
their supports. 

We ran ARHDS with different parameter settings 
to examine the scalability and stability of our 
algorithm. We also tested our proposed system on both 
raw data and the XML data. We have found that our 
algorithm is reasonably fast and efficient.  

Our approach is open for improvements. It remains 
a future work to make a more efficient implementation 
for our proposed system. 
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