
International Journal of Computer Applications (0975 – 8887)

 Volume 78 – No.14, September 2013

26

Association Rule Mining Algorithm’s Variant Analysis

Prince Verma
Assistant Professor CSE Dept.

CT Institute of Engg., Mgt. & Tech.
Punjab, India

Dinesh Kumar
Associate Professor IT Dept.
DAV Institute of Eng. & Tech.

Punjab, India

ABSTRACT
Association rule mining is a vital technique of data mining
which is of great use and importance. For Association Rule
mining various new techniques have been developed but
concept for the newly developed algorithms remains the
same. These recent developments are basically modifications
to previous ones which introduce some minute changes in
existing algorithms for better results. This paper addresses
these basic algorithms and techniques in an elaborative way.
So the reader can understand each of these techniques along
with their pros and cons, without any additional effort. The
techniques discussed here involve AIS, SETM, Apriori and
FP-tree in detail.

Keywords
Data Mining, KDD Process, Association Rule Mining,
Pruning.

1. INTRODUCTION
Originally, “DATA MINING" is statistician's term which
means the overuse of data to obtain valid inferences. So, it is
the discovery of useful summaries of data. Data Mining is the
process to discover the knowledge or hidden pattern from
large databases [5]. It is a useful method required for the
intersection of machine learning, dbase systems, AI (artificial
intelligence) and statistics. It works on the principle of
retrieving relevant information from data. It is mainly in use
of financial analysts, banks, insurance companies, retail
stores, business intelligence organizations, and hospitals, to
extract the useful information that they require from large
databases. The goal of this process is to create and find
accurate patterns that are not previously known by us. So, the
overall goal of data mining is to extract and obtain
information from databases and transform it into an
understandable format for use in future. In actual data mining
task as in [5] can be automatic or semi-automatic to extract
the unknown patterns.

1.1 Data Mining Tasks
Data mining may involve six classes of tasks in common:

 Anomaly detection – It is identification of unusual data
records that might have errors and are un-interesting.

 Association rule learning (Dependency modeling) – It is
the process of searching relationships between
variables in provided database.

 Clustering – It is the task of discovering groups and
structures in the data that can be similar in some way
or another, without using any known structures.

 Classification – It is the process of generalizing known
structure to apply to new data.

 Regression – It attempts to find a function that create
model of data with the minimum errors.

 Summarization – It is process of creating a compact
representation of the data set, including report
generation and visualization.

1.2 Data Mining Process
Data Mining can also be seen as one of the core processes of
Knowledge Discovery in Database (KDD).
It can be viewed as process of Knowledge Discovery in

Databases [15]:

 Data Extraction/gathering: To collect the data from
sources. e.g., data warehousing, Web crawling.

 Data cleansing: To eliminate bogus data or/and errors,
e.g., atmospheric temperature = 150.

 Feature extraction: To extract only task relevant data, i.e
to obtain the interesting attributes of data,

 Pattern extraction and discovery: This step is seen as
process of “data mining”, where one should
concentrate the effort.

 Visualization of the data and Evaluation of results: To
create knowledge base.

Figure 1: KDD process [15]

The specific approaches, however, differ from one researcher
to other and one company to the other. For example:

IBM in [4, 15] defined four major operations for Data
Mining:

 Predictive modelling: that uses inductive reasoning
techniques i.e. neural networks and inductive
reasoning algorithms for creating predictive models.

 Database segmentation: that partition data into clusters
using statistical clustering techniques.

 Link analysis: It involved identifying useful and
meaningful associations in data.

 Deviation detection: It detects and explains why certain
records could not be inserted into specific segments.

Databases

Data

Warehouse

Data

Mining

Visualization

and Pattern

Evaluation

Feature

Extraction

Data

Extraction

and Cleaning

Patterns

Task Relevant /

Processed Data

Selection

http://en.wikipedia.org/wiki/Anomaly_detection
http://en.wikipedia.org/wiki/Association_rule_learning
http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Automatic_summarization

International Journal of Computer Applications (0975 – 8887)

 Volume 78 – No.14, September 2013

27

Fayyad in [2, 3] has, proposed these following steps:
 Retrieving data from large databases.

 Selecting the required subset to work.

 Deciding the appropriate sampling system, cleaning data
and dealing the missing records or fields.

 Applying suitable transformations, projections and
reductions.

 Fitting models created to pre-processed data.

In general Data Mining can be viewed as process of:
 Preparing the Data

 Reducing the Data

 Looking for valuable information

1.3 Data Mining Techniques
Many Data Mining techniques and systems have been
designed. These techniques can be classified based on the the
knowledge to be discovered, techniques to be utilized, and
database. As proposed by Chen et al in [5, 15] data mining
techniques can be classified on following basis.

 Based on the database:

There are many database systems that are used in
organizations, such as, transaction database, spatial database,
object-oriented database multimedia database, relational
database, Web database, and legacy database. A Data Mining
system can be classified based on the type of database for
which it is designed.

 Based on the techniques:

Data mining systems can be analysed according to Data
Mining techniques to be used. E.g., a Data Mining system
can be categorized by driven method, i.e. data driven mining,
autonomous knowledge mining, interactive Data Mining, and
query-driven mining techniques. Else, it can also be
classified by its mining approach, such as statistical- or
mathematical-based mining, integrated approaches,
generalization based mining, and pattern-based mining.

 Based on the knowledge:

As discussed earlier in section 1.1, Data mining systems
discovers various types of knowledge, including
classification, association, prediction, decision tree

clustering, and sequential patterns. The knowledge can also
be classified into multilevel knowledge, primitive-level
knowledge and general knowledge.

2. ASSOCIATION RULE MINING
Association Rule Mining [6] is a data mining function which
discovers the probability of co-occurrence of items in
transactional database. Association rule mining is a most
important and one of the well researched techniques among
data mining, which was introduced in [6]. It aims to extract
interesting associations, casual structures, correlations or
frequent patterns among sets of items in data repositories or
transaction databases.

Agarwal in [6] firstly introduced the formal statement for
association rule mining problem. Statement was:

Let I is item-set of m distinct attributes, I = {I1, I2, ….,Im}
and transaction database, D = {T1, T2,….TN}, where T C I

and there are two item-sets X and Y, such that X C T and Y C

T. Then association rule, X=>Y holds where X C I and

Y C I and X ∩ Y = Ø. Here, X is known as antecedent while

Y as consequent. There are two important basic measures for

association rules, support(s) and confidence(c). Thresholds
for support and confidence are predefined by users to
eliminate the uninterested rules.

Support(s) of an association rule is defined as the percentage
or fraction of transactions in D that contain X ∪ Y.
Support(s) can be calculated by the following formula: ∪ ∪ Eq no.(1)

Confidence is a measure of strength of the association rules.
Confidence is defined by the percentage or fraction of the
number of transactions in D that contain X also contains Y.
‘IF’ component is Antecedent and ‘THEN’ component is
consequent. It can be calculated by dividing the probability
of items occurring together to the probability of occurrence
of antecedent. Confidence(c) is calculated by the following
formula:

 ∪ Eq no.(2)

Association rule mining is to find out association rules that
satisfy the predefined supmin and confmin from a given
database [6]. Objective of ARM is to find the universal set S
of all valid association rules.

2.1 Association Rule Mining Explanation

The problem in Association Rule Mining is usually
decomposed into two sub-problems:

 First problem is to find the item-sets with occurrences or
support exceeding the given predefined threshold
(supmin) in database. These item-sets are called
large/frequent large item-sets. The first problem is
further divided into two sub-problems:

o Candidate item-sets generation process and
o Frequent item-sets generation process.

 Second problem is the generation of association rules
from above generated large item-sets using confmin.

The item-sets whose support exceeds the given support
threshold are large or frequent item-sets, and those item-sets
that are expected to be large or frequent are called candidate
item-sets.

e.g. we are provided with a database D (Table 1) with some
set of transactions, supmin=66% and confmin=70%

Table 1: Database, D

Step 1:
According to the first sub-problem we have to find the
candidate item-set from the given database before generating
the large/frequent item-set. So, from database, D the
following candidates are taken along with their support
(Table 2) using Eq no.(1).

Table 2: Candidate Item-set

Transaction Item-sets

11 (B,C),(B,D), (C,D), (B,C,D)

12 (A,B), (A,C), (B,D), (A,B,C)

13 (B,C), (B,D), (A,D), (C,D), (B,C,D)

Candidate Item-Set Support Candidate Item-Set Support

(A,B) 33%

(B,D) 100%

(A,C) 33% (C,D) 67%

(A,D) 33% (A,B,C) 33%

(B,C) 100% (B,C,D) 67%

International Journal of Computer Applications (0975 – 8887)

 Volume 78 – No.14, September 2013

28

As, we are provided with supmin=66%,
Large item-set would be (Table 3).

Table 3: Large Item-set

Table 4: Possible Rules with Confidence

Step 2:
Next Step is to find the Association rules that can be
generated from large item-set.

For which we have to find the possible set of rules and their
confidence (Table 4) using Eq no (2). And using given
confmin=70%, Association Rules would be (Table 5).

Table 5: Association Rules

2.2 Algorithms for ARM
For ARM certain approaches/algorithms many have been
proposed. Various among these algorithms are:

 AIS Algorithm [13]:
The AIS algorithm is the first algorithm proposed for mining
association rules. It is Adaptive Importance Sampling
technique. The algorithm has two phases. The first phase
constitutes the generation of the frequent item-sets. The
algorithm uses candidate generation to detect the frequent
item-sets. This is followed by the generation of the
association rules in the second phase. The main drawback of
the AIS algorithm is that it generates too many candidate
item sets that need to be reduced, consuming more space and
effort. This also requires too many passes over the whole
database. These algorithms will be discussed in detail in
section 3.

 SETM Algorithm [6]:
SETM uses SQL to find large item-sets. The algorithm
remembers TIDs i.e. transaction IDs of the transactions with
the candidate item-sets. It uses this information instead of
subset operation. This approach has a disadvantage that if Ck
needs to be sorted. And moreover if Ck is too large to fit in

buffer allocated memory space, the disk is used in FIFO
approach. Then this requires two external sorts. These
algorithms will be discussed in detail in section 4.

 Apriori Algorithm [6,13]:
Apriori involves frequent item-sets, which is a set of items
appearing together in the given number of database records
meeting the user-specified threshold. Apriori uses a bottom-
up search method that creates every single frequent item-set.
This means that to produce a frequent item-set of length; it
must produce all of its subsets as need to be frequent. This
exponential complexity fundamentally restricts Apriori-like
algorithms to discovering only short patterns. These
algorithms will be discussed in detail in section 5.

 FP-tree Algorithm [9,13]:
 FP-tree-based algorithm is to partition the original database
to the smaller sub-databases by using some partition cells,
and then to mine item-sets in these sub-databases. Until no
new item-sets are found, we have to recursively do the
partitioning with the growth of partition cells. The FP-tree
construction takes exactly two scans of the transaction
database. The first scan collects the set of frequent items, and
the second scan constructs the FP-tree.

Many other approaches have been introduced in between
with minute changes. But main among them and which are
basis for new upcoming algorithms are Apriori and FP-tree
Algorithm. These algorithms will be discussed in detail in
section 6.

3. AIS ALGORITHM
In this approach candidate item-sets are generated and
counted during the database scan [1]. It is done as follows:

 After scanning transaction it is determined that which of
the previously founded large item-sets are present in
transaction.

 New candidate item-set is generated by extending large
item-sets in lexicographic order and their count entry is
increased if it is created in previous transaction.

Candidate item-sets are place in dynamic and multi-level
hash table to make subset operation fast. When in case buffer
overflow occur during candidate generation, the
corresponding large item-set and its possible candidates is
discarded from memory. The discarded large item-set
discarded in pass are extended in next pass.

3.1 AIS Candidate and Large Item-set
The AIS function takes an argument L1, the set of all large
(k-1)-item-set and returns a superset of the set of all large k-
item-sets. The function works as follows. First, in the
extension step, we extend the frontier set. And in the pruning
step, we don’t take those item-sets c, where c ϵ Ck such that
any (k-1)-subset of c is not in large item-set of the previous
pass.

This whole process is defined using the algorithm 1 as
follows:

1) Algorithm AIS (large-1 item-sets)
2) L1={large-1 item-sets};
3) for(k=2; Lk-1≠ ; k++) do begin
4) Ck= ;
5) forall transactions t D do begin
6) Lt=subset(Lk-1,t); //Large item-set contained in t
7) forall large item-sets lt Lt do
8) Ct=1-extensions of lt contained in t

 //Candidates in t

Large Item-set Support

(B,C) 100%

(B,D) 100%

(C,D) 67%

(B,C,D) 67%

Large Item-set Rules Confidence

(B,C)

B=>C sup(B∪C)/sup(B)=100/100=100%

C=>B sup(C∪B)/sup(C)= 100/100=100%

(B,D)

B=>D sup(B∪D)/sup(B)= 100/100=100%

D=>B sup(D∪B)/sup(D)= 100/100=100%

(C,D)

C=>D sup(C∪D)/sup(C)= 67/100 =67%

D=>C sup(D∪C)/sup(D)= 67/100 =67%

(B,C,D)

(B,C) =>D sup((B,C)∪D)/sup(B,C)= 67/100 =67%

(B,D) =>C sup((B,D)∪C)/sup(B,D)= 67/100 =67%

(C,D) =>B sup((C,D)∪B)/sup(C,D)= 67/67 =100%

Association Rules Confidence

B=>C 100%

C=>B 100%

B=>D 100%

D=>B 100%

(C,D) =>B 100%

International Journal of Computer Applications (0975 – 8887)

 Volume 78 – No.14, September 2013

29

9) forall candidates c Ct do
10) if(c Ck) then

11) add 1 to count of c in corresponding
 entry in Ck;

12) else
13) add c to Ck with count of 1;
14) end
15) end
16) end
17) Lk={c Ck | c.count ≥ minsup}
18) end

19) Answer=UkLk
Algorithm 1: AIS Algorithm [1]

3.2 AIS Example
AIS algorithm generates the candidate item-sets considering
the transactions in the database. For Example; we are
provided with a database D (Table 6) with some set of
transactions, supmin=66% (i.e count=2) and confmin=70%

Table 6: Transaction Database, D

From Table 6 we find Candidate item-set (Table 7) and its
support by the using Eq.no.1.
Next is to find the Large item-set, L1 using supmin=66%. i.e
Creating Table 8 from Table 7 using support threshold.

Step 1:
Candidate item-set C2 is generated by extending item-set L1

with only those items that are large and occur later in
lexicographic ordering of items (Table 9 from Table 8).

Table 7: Candidate item-set, C1

Table 8: Large Item-set L1

Table 9: Candidate Item-set C2

Step 2:
Large item-set, Lk is generated from candidate item-set, Ck
using supmin. Large item-set L2 is created from Candidate C2
using support threshold.

 The above two steps are repeated until Large Item-set came
to be empty. i.e. From L2, candidate item-set C3 is generated
by extending it with only those items that are large and occur

later in lexicographic ordering of items (Table 11 to Table
10). The large item-set, L3 is same as candidate item-set, C3
as its support is more than support threshold.

Table 10: Large Item-set L2

Table 11: Candidate Item-set C3 and large item-set L3

At last candidate item-set, C4 cannot be generated further
from (A, C, D) and (B, C, D), as there is no other element in
next lexicographic order to extend the large item-set L4.

4. SETM ALGORITHM
SETM algorithm [1] uses same notation as used by other
algorithms. But it uses SQL to compute large item-sets. It
generates candidates as in AIS algorithm. To make use of
standard SQL join process for candidate generation, it
separates candidates from counting. Each member of these
item-sets is of the form <TID, itemset>. It remembers TIDs
of transactions with candidate item-sets. To avoid subset
operation, the algorithm uses these TIDs to find large item-
sets in transaction read. Ĉk is set of candidates in which TIDs
of generating transactions is associated. Here Ḹk C Ĉk and is
obtained by deleting the candidates not having minimum
support. The disadvantage of SETM is that Ĉk needs to be in
sorted order. After counting and pruning the small candidate
item-sets, resulting Ḹk needs to be sorted.

4.1 SETM Candidate and Large Item-set
The SETM function takes an argument L1, the set of all large
(k-1)-item-set and returns a superset of the set of all large k-
item-sets. The function works as follows. First, the Ḹk and Ĉk
item-sets are created of the form <TID, itemset>. And the
pruning step remains the same as of AIS i.e. we don’t take
those item-sets c, where c ϵ Ck such that any (k-1)-subset of c
is not in large item-set of the previous pass.

This whole process is defined using the algorithm 2 as
follows:

1) Algorithm SETM (large-1 item-sets)
2) L1={large-1 item-sets};
3) Ḹ1={large-1 item-sets together with sorted TIDs}
4) for(k=2; Lk-1≠ ; k++) do begin
5) Ĉk= ;
6) forall transactions t D do begin
7) Lt={l Ḹk-1 | l.TID = t.TID}; //Large (k-1)

 item-set contained in t
8) forall large item-sets lt Lt do
9) Ct=1-extensions of lt contained in t

 //Candidates in t
10) Ĉk+={<t.TID, c> | l Ĉk };
11) end
12) end
13) Sort Ĉk on item-sets;
14) Delete item-sets c Ĉk for which c.count<supmin

Transaction Item-sets

11 (A,C), (A,D), (C,D), (A,C,D)

12 (A,B), (A,C), (B,D), (B,C,D)

13 (A,B), (A,D), (A,E), (B,C), (B,D), (C,D), (A,C,D),
(B,C,D)

Candidate Itemset, C1 Count Support

A 3 100%

B 2 67%

C 3 100%

D 3 100%

E 1 33%

Large Itemset, L1 Count Support

A 3 100%

B 2 67%

C 3 100%

D 3 100%

Candidate,C2 Count Support

(A,B) 2 67%

(A,C) 3 100%

(A,D) 2 67%

(B,C) 2 67%

(B,D) 2 67%

(C,D) 3 100%

Large Itemset, L2 Count Support

(A,B) 2 67%

(A,C) 3 100%

(A,D) 2 67%

(B,C) 2 67%

(B,D) 2 67%

(C,D) 3 100%

Candidate Itemset, C3 and Large Itemset,
L3

Count

Support

(A,C,D) 2 67%

(B,C,D) 2 67%

International Journal of Computer Applications (0975 – 8887)

 Volume 78 – No.14, September 2013

30

 giving Ḹk
15) Lk={l.itemset, count of t in Ḹk > l | l Ḹk };
16) end
17) Answer=UkLk

Algorithm 2: SETM Algorithm [1]

4.2 SETM Example

SETM algorithm generates the candidate item-sets
considering the transactions in the database. For Example;
we are provided with a database D (Table 12) with some set
of transactions, supmin=66% (i.e count=2) and confmin=70%

Table 12: Transaction Database, D

Table 13: Item-set Ĉ1

From Table 12 we find create Ĉ1 using D (Table 13 using
Table 12).

Table 14: Large Item-set L1

Next is to find the Large item-set, L1 using supmin=66%. i.e
Creating Table 14 from Table 13 using support threshold.

Table 15: Item-set Ḹ1

Item-set Ḹ1 is created with the help from L1 and Ĉ1 (i.e Table
15 from Table 13, 14)

Step 1:
Candidate item-set C2 is generated by extending item-set L1

with only those items that are large and occur later in
lexicographic ordering of items (Table 16 from Table 14).

In this step we also create Ĉ2 using C2 and Ḹ1 (Table 17 using
Table 16, 14).

Step 2:

Large item-set, Lk is generated from candidate item-set, Ck
using supmin. Large item-set L2 is created from C2 using
support threshold (Table 17 from Table 16).

In this step we also create Ḹ2 using L1 and D (Table 19 using
Table 17, 18).

The above two steps are repeated until Large Item-set came
to be empty.

Table 16: Candidate Item-set C2

Table 17: Item-set Ĉ2

 Table 18: Large Item-set L2

Table 19: Item-set Ḹ2

Using the same procedure as explained above in Step 1 and
2, we create C3, Ĉ3, L3 and Ḹ3.

Table 20: (a) Candidate Item-set C3 and (b) Item-set Ĉ3

At last candidate item-set, C4 cannot be generated further
from (A, C, D) and (B, C, D), as there is no other element in
next lexicographic order to extend the large item-set L4. Thus
Ĉ4 and Ḹ4 cannot be generated also.

Table 21: (a) Large Item-set L3 and (b) Item-set Ḹ3

5. APRIORI ALGORITHM
The Apriori algorithm [6] generate the candidate item-sets in
a pass by using only the item-sets found large in the
preceding pass without considering the transactions of the
database. The basic concept it uses is that any subset of a
large item-set must be large. Therefore, the candidate item-
sets having k items can be generated from previous pass by
joining large item-sets having k-1 items (candidate
generation), and delete those that contain any subset that is
not large (Pruning concept). The procedure resulted in
generation of a much smaller number of candidate item-sets.

Algorithm 3 is the Apriori algorithm. The first pass of the
algorithm simply finds the item occurrences to determine the
large 1-item-sets. A pass, say pass k, has two phases. First,
the large item-sets, say Lk-1 founded in the (k-1)th pass are
used to generate the candidate item-set Ck, using the apriori-
gen function discussed in Section 5.1. Then, the database is
scanned and support of candidates in Ck is calculated. For
fast calculations, we need to efficiently determine the
candidates in Ck that are contained in a given transaction t.

`TID Set of Item-set

11 { {A,C},{A,D},{C,D} }

12 { {A,B},{A,C},{A,D},{B,C},{B,D},{C,D}}

13 { {A,B},{A,C},{A,D},{B,C},{B,D},{C,D}}

TID Set of Item-set

11 { {A},{C},{D} }

12 { {A},{B},{C},{D} }

13 { {A},{B},{C},{D},{E} }

Itemset, L1 Count Support

A 3 100%

B 2 67%

C 3 100%

D 3 100%

TID Set of Item-set

11 { {A},{C},{D} }

12 { {A},{B},{C},{D} }

13 { {A},{B},{C},{D} }

Candidate,C2

(A,B)

(A,C)

(A,D)

(B,C)

(B,D)

(C,D)

Transaction Item-sets

11 (A,C), (A,D), (C,D), (A,C,D)

12 (A,B), (A,C), (B,D), (B,C,D)

13 (A,B), (A,D), (A,E), (B,C), (B,D), (C,D), (A,C,D), (B,C,D)

Large Itemset, L2 Count Support

(A,B) 2 67%

(A,C) 3 100%

(A,D) 2 67%

(B,C) 2 67%

(B,D) 2 67%

(C,D) 3 100%

TID Set of Item-set

11 { {A,C},{A,D},{C,D} }

12 { {A,B},{A,C},{A,D},{B,C},{B,D},{C,D}}

13 { {A,B},{A,C},{A,D},{B,C},{B,D},{C,D}}

Candidate Itemset, C3

(A,B,C)

(A,B,D)

(A,C,D)

(B,C,D)

TID Set of Item-set

11 { {A,C,D} }

12 { {A,B,C},{A,B,D},{A,C,D},{B,C,D}}

13 { {A,B,C},{A,B,D},{A,C,D},{B,C,D}}

Large Itemset, L3 Count Support

(A,C,D) 2 67%

(B,C,D) 2 67%

TID Set of Item-set

11 { {A,C,D} }

12 { {A,C,D},{B,C,D}}

13 { {A,C,D},{B,C,D}}

International Journal of Computer Applications (0975 – 8887)

 Volume 78 – No.14, September 2013

31

Section 5.2 describes the subset function used for this
purpose.

1) Algorithm Apriori(large-1 item-sets)

2) L1={large-1 item-sets};

3) for(k=2; Lk-1≠ ; k++) do begin

4) Ck=apriori-gen(Lk-1); //New candidates

5) forall transactions t D do begin

6) Ct=subset(Ck,t); //Candidates contained in t

7) forall candidates c Ct do

8) c.count++;

9) end

10) Lk={c Ck | c.count≥minsup}

11) end

12) Answer=UkLk

Algorithm 3: Apriori Algorithm [6]

5.1 Apriori Candidate Generations [6]
The apriori-gen function takes an argument Lk-1, the set of all
large (k-1)-item-set and returns a superset of the set of all
large k-item-sets. The function works as follows. First, in the
join step, we join one Lk-1 with another matching Lk-1. And in
the next prune step, we delete those item-sets c, where c ϵ Ck

such that any (k-1)-subset of c is not in Lk-1 of the previous
pass.

1) Algorithm Apriori-gen(Lk)

2) insert into Ck

3) select p.item1.p.item2,.....p.itemk-1,q.itemk-1

 from Lk-1 p,Lk-1 q

 where p.item1=q.item1.....p.itemk-2= q.itemk-2,

 p.itemk-1<q.itemk-1;

4) forall item-sets c Ck do

5) forall (k-1)-subsets s of c do

6) if(s Lk-1) then

7) delete c from Ck;

Algorithm 4: Apriori-Gen function [6]

5.2 Subset Function
 Candidate item-sets Ck are stored in a hash-tree for use. A
node of this hash-tree either contains a list of item-sets (as
leaf node) or a hash table (as interior node). In the interior
node, each value in the hash table points to another node. If
root is defined to be at depth 1, then the interior node at
depth d points to nodes at depth d+1. Item-sets are stored in
the leaf nodes. When we add a created item-set c from
Apriori-gen function, we start from the root and go down the
tree until we the leaf is reached. At the interior node of depth
d, we decide which branch to follow by using a hash function
to dth item of the item-set. When the number of item-sets in a
leaf node exceeds the specified mentioned threshold, the leaf
node is converted to make an interior node.

From the root node, the subset function finds all candidates
contained in a transaction, t as described below:

 If we are at leaf, we find which of the item-sets in this leaf
are contained in t and add the references to them. If we are at
interior node and we have reached it by hashing the item j,
we apply hash function on each item coming after j in t and
this procedure is applied to the node recursively.

5.3 Apriori Example
 As Apriori algorithm generate the candidate itemsets
without considering the transactions in the database, so firstly
create database appropriate for Apriori i.e. from Table 22 to
Table 23. For Example; we are provided with a database D
(Table 23) with some set of transactions, supmin=66% and
confmin=70%

Table 22: Database D

Table 23: Transformed Database

Before creating large item-sets (L1, L2, L3, L4 & so on) and
candidate item-sets (C2, C3, C4 & so on) candidate, firstly
Candidate item-set, C1 is generated from database (i.e. Table
24 from Table 23) and then, Large item-set, L1 is created
from C1 using supmin=67% (i.e. Table 25 from Table 24)

Table 24: Candidate Item-set C1

Table 25: Large Item-set L1

Step 1:
Candidate set is generated as follows:
• The candidate itemsets, Ck can be generated by joining

large itemsets Lk-1 items, and
• Deleting those that contain any subset that is not large.

In Example C2 is generated from L1 items by join procedure
(i.e. Table 26 from Table 25) and those item-sets are deleted
that have some (k-1) subset of c is not in Lk-1 where c Ck.

Step 2:
Large item-set, Lk is generated from candidate item-set, Ck
using supmin. Large item-set L2 is created from Candidate C2
using support threshold (Table 27 from Table 26).

The above two steps are repeated until Large Item-set came
to be empty.

Here from the candidate item-sets, C2 elements with sup ≥
supmin, Large item-set, L2 is created (Table 27 from Table
26). As all candidate item-sets, C3 has sup ≥ supmin, so all
became Large item-set, L3 (Table 28 from Table 27).

Transaction Item-sets

11 (A,C),(B,D), (C,D), (B,C,D)

12 (A,B), (B,D), (A,B,D)

13 (B,C), (B,D), (C,D), (D,E), (B,C,D)

Transaction Items

11 A,B,C,D

12 A,B,D

13 B,C,D,E

Candidate Itemset, C1 Support

A 67%

B 100%

C 67%

D 100%

Large Itemset, L1 Support

A 67%

B 100%

C 67%

D 100%

International Journal of Computer Applications (0975 – 8887)

 Volume 78 – No.14, September 2013

32

Table 26: Candidate Item-set C2

Table 27: Large item-set L2

Table 28: Candidate Item-set C3 & Large item-set L3

Table 29: Candidate Item-set C4 & Large item-set L4

Same technique is used to create C4 and L4 (Table 29). As
all candidate item-sets, C4 has sup ≥ supmin, so all became
Large item-set, L4.

6. FP-TREE APPROACH
This approach develops the three techniques in order to solve
the problem of Apriori-like algorithm that may suffer in
terms of cost to handle a huge candidate sets and repeatedly
scanning the database for large set.
 Compact data structure, called frequent-pattern tree, or

FP-tree, is constructed, that stores information about
frequent patterns. Only frequent length-1 items are
making nodes in tree, and these nodes are arranged in a
way that the more frequently used nodes must have
better chances of node sharing than the less frequent
items.

 An FP-tree-based mining method is developed. Starting
from a frequent length-1 pattern (as initial suffix

pattern), examine only conditional-pattern or sub-
database. The pattern growth is achieved using
concatenation of the suffix pattern with new ones
generated from a conditional FP-tree.

 The search techniques employed in mining is a
partitioning-based, divide-and conquers method.

6.1 Frequent Pattern Tree: Construction
A frequent-pattern tree (or FP-tree) is a tree structure which
has following properties:

1. It contains root labeled as “null”, children as set of
item-prefix sub-trees, and a frequent-item-header
table.

2. Every node of item-prefix sub-tree has three fields:
Item-name, its count, and node-link, where
a. Item-name defines which item this node

represents,
b. Count defines the number of transactions

represented by the path reaching this node, and
c. Node-link links one node to the next node in the

FP-tree.

d. Every entry in the frequent-item-header
table consists of two fields:

e. Item-name and
f. Head of node-link is pointer pointing to the first

node in the FP-tree which carries the item-

name).
Process or algorithm to construct a frequent-pattern tree has
two steps, explained as follows:
Step 1:

A scan over database, D derives a list of frequent items
of the form => (A:4), (C:4) and so on, in which items are
ordered in frequency descending order, where the number
after “:” indicates the support/count. This ordering is of
importance here as path will follow this sequence in tree.
Step 2:

The “null” labeled root is created for a tree. The FP-tree
is constructed by scanning the transaction database DB for
the second time.
Example: Assume an Example of Table 29. We can create
FP-tree as defined in above steps.

Table 30: Transaction Table (Database, D)

Step 1:

Scan of the transactions one by one and construct list of item-
sets as follows:

(A:4), (B:2), (C:4), (D:3), (E:3), (F:2), (G:1), (H:1)
 Here, (A:2) means A’s support= 2 and so on.

And ordered frequent item-set would be if supmin=2 (i.e.
67%), then (A:4), (C:4), (D:3), (E:3), (B:2), (F:2)

Table 31: Frequent Items

Step 2:
Database is scanned second time to create FP-tree. Scan the
first transaction to the construct of the first branch of the tree:

 (A:1), (C:1), (D:1), (E:1), (B:1), (F:1)
Then move to second transaction. Since the transaction has
common prefix (B, D, A) as with the previous one, they
share the path and count of each node is incremented by 1 for
these nodes as (B:2), (D:2), (A:2).
The process is repeated to complete the FP-tree.

Figure 2: Frequent Pattern Tree

Candidate Itemset, C2 Support

A,B 67%

A,C 33%

A,D 67%

B,C 67%

B,D 100%

C,D 67%

Large Itemset, L2 Support

A,B 67%

A,D 67%

B,C 67%

B,D 100%

C,D 67%

Candidate itemset, C3 and Large Set L3 Support

A,B,D 67%

B,C,D 100%

Candidate itemset, C4 Support

A,B,C,D 67%

Transaction Items

11 A,B,C,D,E,F

12 A,C,D,E,F,H

13 A,B,C,E,G

14 A,C,D

Transaction Items Ordered Frequent Items

11 A,B,C,D,E,F A,C,D,E,B,F

12 A,C,D,E,F,H A,C,D,E,F

13 A,B,C,E,G A,C,E,B

14 A,C,D A,C,D

 root

 A: 4

 C: 4

 D: 3

 E: 2

 B: 1

 F: 1

 E: 1

 F: 1

item

HEADER TABLE

A

C

D

E

B

F

 B: 1

Head of node link

International Journal of Computer Applications (0975 – 8887)

 Volume 78 – No.14, September 2013

33

6.2 Mining Frequent Pattern with FP-Tree

In order to mine the required frequent patterns from FP-tree
efficiently, a technique was proposed called FP–growth. In
this technique the mining is done by finding the Conditional

Patter Base and Conditional FP-tree of the frequent items
say, nodes.

Conditional Pattern Base for a frequent item is the
list of items in sequence coming between the frequent item
and the root.

Conditional FP-tree for a frequent item is the list
of items common in all conditional pattern base of the
frequent item.

The whole process for mining constitutes two steps:
Step 1:

Create the conditional pattern base for X. Then create FP-tree
for the frequent item.
Step 2:
From the conditional FP-tree of the frequent item X construct
frequent patterns containing X by pairing it with the other
items coming in its conditional FP-tree.
The above two steps are repeated for all of the frequent
items.
Example: Assume the same Example taken above in Table
29. We have constructed the FP-tree (Figure 2) for the given
database. Now, we have to mine the frequent patterns that
contain frequent item-set by the use of the process as defined
above.
Step 1:
For node F, the immediate frequent pattern is (F:2), and it has
two paths, {A:4, C:4, D:2, E:2, B:1, F:1} and {A:4, C:4, D:2,
E:2, F:1}. So, F’s conditional pattern-base is {(ACDEB:1),
(ACDE:1)}. We derive F’s conditional FP-tree, {(A:4, C:4,
D:2, E:2)}|F as in Figure 3.
Similarly, the conditional pattern base and conditional FP-
tree is created for all other frequent items (as in Table 31).

Figure 3: Conditional FP-Tree for Frequent item, F

Table 32: Conditional Pattern Base & Conditional FP-

tree for all frequent items

Step 2:
This conditional FP-tree is then mined from ({A:4, C:4,
D:3,E:2} | F). Figure 3 represents “({A:4, C:4, D:3, E:2} |
F)” involves mining four items (A), (C), (D), (E) in the
sequence. From this conditional FP-tree of the frequent item
F, we construct frequent patterns containing F by pairing it
with the other items coming in its conditional FP-tree.

We first derives a frequent pattern (EF:2), a
conditional pattern-base {ACD:2}, and conditional FP tree
for it would be ({A:2, C:2, D:2} | EF);

Secondly derives a frequent pattern (DF:2), a
conditional pattern-base {(AC :2)}, and conditional FP tree
for it would be ({A:2, C:2} | DF);

Thirdly derives a frequent pattern (CF:2), a
conditional pattern-base {(A:2)}, and conditional FP tree for
it would be ({A:2} | CF);

Then recursively derives other patterns (AF:2),
(DEF:2), (CEF:2), (AEF:2), (CDF:2), (ADF:2), (ACF:2),
(ACDF:2), (ACEF:2), (ADEF:2), (CDEF:2) and (ACDEF:2).

 Therefore, the set of frequent patterns involving F
is: {(F:2), (EF:2), DF:2), (CF:2), (AF:2), (DEF:2), (CEF:2),
(AEF:2), (CDF:2), (ADF:2), (ACF:2), (ACDF:2), (ACEF:2),
(ADEF:2), (CDEF:2) and (ACDEF:2)}.

Table 33: Possible Frequent Patterns

Similarly, the possible frequent patterns are created for all
other frequent items (as in Table 32).

7. CONCLUSION

The paper discussed the various main ARM approaches in
detail. The various approaches discussed in this paper have
many pros and cons. The AIS algorithm generates too many
candidate item sets that consume more space/effort and also
requires too many passes over the whole database. The
SETM approach needs candidate item-set to be sorted and if
it is too large to fit in buffer allocated memory space, the disk
is used in FIFO approach. APRIORI involves frequent item-
sets for candidate generation using a bottom-up search,
which requires producing all of its frequent subsets. This
results in exponential complexity not suitable for discovering
bigger patterns. FP approach needs exactly two scans of the
transaction database and avoids costly candidate generation.
But this approach needs to whole procedure to be done again
(i.e. generation of FP-tree, conditional pattern base,
conditional pattern tree, etc).

Many other approaches have also been introduced
for ARM with minute changes to the previous ones. But main
among them which acts as basis for new upcoming
algorithms are APRIORI and FP-tree Algorithm.

8. REFERENCES

[1] R. Agrawal, T. Imielinski, and A. N. Swami, 1993.
Mining association rules between sets of items in large
databases. ACM SIGMOD International Conference on
Management of Data, Washington, D.C., pp 207-216.

[2] U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, 1996.
From data mining to knowledge discovery: an overview.
Advances in Knowledge Discovery and Data Mining,
MIT Press, Cambridge, MA.

Frequent Item Conditional Pattern Base Conditional FP-tree

A Ø Ø

C {(A:4)} {(A:4)} | C

D {(AC:3)} {(A:3,C:3)} | D

E {(ACD:2),(AC:1)} {(A:3, C:3)} | E

B {(ACDE:1),(ACE:1)} {(A:2, C:2)} | B

F { (ACDEB:1), (ACDE:1) } { A:2, C:2, D:2, E:2 } | F

Frequent Item Possible Frequent Pattern

A {(A:4)}

C {(C:4), (AC:4)}

D {(D:3), (CD:3), (AD:3), (ACD:3)}

E {(E:3), (AE:3), (CE:3), (DE:2), (ACE:3), (ADE:2),(CDE:2),
(ACDE:1)}

B {(B:2), (AB:2), (CB:2), (DB:1), (EB:2), (ACB:2), (ADB:1), (AEB:2),
(CDB:1), (CEB:2), (ACDB:1), (ACEB:2), (ADEB:1), (CDEB:1),

(ACDEB:1)}

F {(F:2), (EF:2), DF:2), (CF:2), (AF:2), (DEF:2), (CEF:2), (AEF:2),
(CDF:2), (ADF:2), (ACF:2), (ACDF:2), (ACEF:2), (ADEF:2),

(CDEF:2) and (ACDEF:2)}

 root

 A: 4

 C: 4

 D: 3

 E: 2

item

HEADER TABLE

A

C

D

E

node link

 root

 A: 4

 C: 4

 D: 3

 E: 2

 B: 1

 F: 1

 E: 1

 F: 1

 B: 1

International Journal of Computer Applications (0975 – 8887)

 Volume 78 – No.14, September 2013

34

[3] U. Fayyad, S. G. Djorgovski and N. Weir, 1996.
Automating the analysis and cataloging of sky surveys.
Advances in Knowledge Discovery and Data Mining,
MIT Press, Cambridge, MA, pp. 471-94.

[4] 1997. Technology Forecast, Price Waterhouse World
Technology Center, Menlo Park, CA.

[5] M. S. Chen, J. Han, and P. Yu, 1996. Data mining: an
overview from a database perspective. IEEE
Transactions on Knowledge and Data Engineering, vol.
8, no. 6, pp. 866-883.

[6] Rakesh Agarwal, Ramakrishna Srikant, 1994. Fast
Algorithm for mining association rules. VLDB
Conference Santiago, Chile, pp 487-499.

[7] S. A. Abaya, 2012. Association Rule Mining based on
Apriori Algorithm in Minimizing Candidate generation.
International Journal of Scientific & Engineering
Research, vol-3, issue 7.

[8] Sotiris Kotsiantis, Dimitris Kanellopoulos, 2006.
Association Rules Mining: A Recent Overview. GESTS
International Transactions on Computer Science and
Engineering, vol.32 (1), pp. 71-82.

[9] JaiWei Han, Jian Pei, Yiwen Yin & Runying Mao,
2004. Mining frequent patterns without candidate
generation: A Frequent pattern tree approach. Data
mining and knowledge discovery, Netherlands, pp 53-
87.

[10] Huan Wu, Zhigang Lu, Lin Pan, Rong Seng XU and
Wenbao jiang, 2009. An improved Apriori based

algorithm for association rule mining. IEEE Sixth
international conference on fuzzy systems and
knowledge discovery, pp 51-55.

[11] Farah Hanna AL-Zawaidah, Yosef Hasan Jbara and
Marwan AL-Abed Abu-Zanana, 2011. An improved
Algorithm for mining Association Rule in large
database. World of Computer and Information
technology, vol. 1, no. 7, pp 311-316.

[12] Zhuang Chen, Shibang Cai, Quilin Song, Chonglai Zhu,
2011. An Improved Apriori Algorithm based on pruning
Optimization and transaction reduction. IEEE
transactions on evolutionary computation, pp 1908-
1911.

[13] Suhani Nagpal, 2012. Improved Apriori Algorithm
using logarithmic decoding and pruning. International
Journal of Engineering Research and Applications, vol.
2, issue 3, pp. 2569-2572.

[14] M. Suman, T. Anuradha, K. Gowtham, A. Ramakrishna,
2012. A frequent pattern mining algorithm based on FP-
tree structure and Apriori algorithm. International
Journal of Engineering Research and Applications, vol.
2, issue 1, pp.114-116.

[15] Sang Jun Lee, Keng Siau, 2001. A review of data
mining techniques. Industrial Management and Data
Systems, University of Nebraska-Lincoln Press, USA,
pp 41-46.

[16] R. Patel Nimisha, Sheetal Mehta, 2013. A Survey on
Mining Algorithms. International Journal of Soft
Computing and Engineering, vol. 2, issue 6, pp 460-463.

IJCATM : www.ijcaonline.org

