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ABSTRACT 
Association rule mining is a vital technique of data mining 
which is of great use and importance. For Association Rule 
mining various new techniques have been developed but 
concept for the newly developed algorithms remains the 
same. These recent developments are basically modifications 
to previous ones which introduce some minute changes in 
existing algorithms for better results. This paper addresses 
these basic algorithms and techniques in an elaborative way. 
So the reader can understand each of these techniques along 
with their pros and cons, without any additional effort. The 
techniques discussed here involve AIS, SETM, Apriori and 
FP-tree in detail. 
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1. INTRODUCTION 
Originally, “DATA MINING" is statistician's term which 
means the overuse of data to obtain valid inferences. So, it is 
the discovery of useful summaries of data. Data Mining is the 
process to discover the knowledge or hidden pattern from 
large databases [5]. It is a useful method required for the 
intersection of machine learning, dbase systems, AI (artificial 
intelligence) and statistics. It works on the principle of 
retrieving relevant information from data. It is mainly in use 
of financial analysts, banks, insurance companies, retail 
stores, business intelligence organizations, and hospitals, to 
extract the useful information that they require from large 
databases. The goal of this process is to create and find 
accurate patterns that are not previously known by us. So, the 
overall goal of data mining is to extract and obtain 
information from databases and transform it into an 
understandable format for use in future. In actual data mining 
task as in [5] can be automatic or semi-automatic to extract 
the unknown patterns.  

1.1 Data Mining Tasks 
Data mining may involve six classes of tasks in common: 

 Anomaly detection – It is identification of unusual data 
records that might have errors and are un-interesting. 

 Association rule learning (Dependency modeling) – It is 
the process of searching relationships between 
variables in provided database.  

 Clustering – It is the task of discovering groups and 
structures in the data that can be similar in some way 
or another, without using any known structures. 

 Classification – It is the process of generalizing known 
structure to apply to new data.  

 Regression – It attempts to find a function that create 
model of data with the minimum errors. 

 Summarization – It is process of creating a compact 
representation of the data set, including report 
generation and visualization. 

1.2 Data Mining Process 
Data Mining can also be seen as one of the core processes of 
Knowledge Discovery in Database (KDD). 
It can be viewed as process of Knowledge Discovery in 

Databases [15]:  

 Data Extraction/gathering: To collect the data from 
sources. e.g., data warehousing, Web crawling. 

 Data cleansing: To eliminate bogus data or/and errors, 
e.g., atmospheric temperature = 150. 

 Feature extraction: To extract only task relevant data, i.e 
to obtain the interesting attributes of data,  

 Pattern extraction and discovery: This step is seen as 
process of “data mining”, where one should 
concentrate the effort. 

 Visualization of the data and Evaluation of results: To 
create knowledge base. 

 
Figure 1: KDD process [15] 

The specific approaches, however, differ from one researcher 
to other and one company to the other. For example: 

IBM in [4, 15] defined four major operations for Data 
Mining: 

 Predictive modelling: that uses inductive reasoning 
techniques i.e. neural networks and inductive 
reasoning algorithms for creating predictive models. 

 Database segmentation: that partition data into clusters 
using statistical clustering techniques. 

 Link analysis: It involved identifying useful and 
meaningful associations in data. 

 Deviation detection: It detects and explains why certain 
records could not be inserted into specific segments.  
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Fayyad in [2, 3] has, proposed these following steps: 
 Retrieving data from large databases. 

 Selecting the required subset to work. 

 Deciding the appropriate sampling system, cleaning data 
and dealing the missing records or fields. 

 Applying suitable transformations, projections and 
reductions. 

 Fitting models created to pre-processed data. 

In general Data Mining can be viewed as process of: 
 Preparing the Data 

 Reducing the Data 

 Looking for valuable information 

1.3 Data Mining Techniques 
Many Data Mining techniques and systems have been 
designed. These techniques can be classified based on the the 
knowledge to be discovered, techniques to be utilized, and 
database. As proposed by Chen et al in [5, 15] data mining 
techniques can be classified on following basis. 

 Based on the database: 

There are many database systems that are used in 
organizations, such as, transaction database, spatial database, 
object-oriented database multimedia database, relational 
database, Web database, and legacy database. A Data Mining 
system can be classified based on the type of database for 
which it is designed.  

 Based on the techniques: 

Data mining systems can be analysed according to Data 
Mining techniques to be used. E.g., a Data Mining system 
can be categorized by driven method, i.e. data driven mining, 
autonomous knowledge mining, interactive Data Mining, and 
query-driven mining techniques. Else, it can also be 
classified by its mining approach, such as statistical- or 
mathematical-based mining, integrated approaches, 
generalization based mining, and pattern-based mining. 

 Based on the knowledge: 

As discussed earlier in section 1.1, Data mining systems 
discovers various types of knowledge, including 
classification, association, prediction, decision tree 

clustering, and sequential patterns. The knowledge can also 
be classified into multilevel knowledge, primitive-level 
knowledge and general knowledge. 

2.  ASSOCIATION RULE MINING 
Association Rule Mining [6] is a data mining function which 
discovers the probability of co-occurrence of items in 
transactional database. Association rule mining is a most 
important and one of the well researched techniques among 
data mining, which was introduced in [6]. It aims to extract 
interesting associations, casual structures, correlations or 
frequent patterns among sets of items in data repositories or 
transaction databases. 

Agarwal in [6] firstly introduced the formal statement for 
association rule mining problem. Statement was: 

Let I is item-set of m distinct attributes, I = {I1, I2, ….,Im} 
and transaction database, D = {T1, T2,….TN}, where T C I 

and there are two item-sets X and Y, such that X C T and Y C 

T. Then association rule, X=>Y holds where           X C I and 

Y C I and X ∩ Y = Ø. Here, X is known as antecedent while 

Y as consequent. There are two important basic measures for 

association rules, support(s) and confidence(c). Thresholds 
for support and confidence are predefined by users to 
eliminate the uninterested rules.  

Support(s) of an association rule is defined as the percentage 
or fraction of transactions in D that contain X ∪ Y. 
Support(s) can be calculated by the following formula:       ∪             ∪                       Eq no.(1) 

 
Confidence is a measure of strength of the association rules. 
Confidence is defined by the percentage or fraction of the 
number of transactions in D that contain X also contains Y. 
‘IF’ component is Antecedent and ‘THEN’ component is 
consequent. It can be calculated by dividing the probability 
of items occurring together to the probability of occurrence 
of antecedent. Confidence(c) is calculated by the following 
formula: 

                               ∪                                Eq no.(2) 

Association rule mining is to find out association rules that 
satisfy the predefined supmin and confmin from a given 
database [6]. Objective of ARM is to find the universal set S 
of all valid association rules. 

2.1 Association Rule Mining Explanation  

The problem in Association Rule Mining is usually 
decomposed into two sub-problems:  

 First problem is to find the item-sets with occurrences or 
support exceeding the given predefined threshold 
(supmin) in database. These item-sets are called 
large/frequent large item-sets. The first problem is 
further divided into two sub-problems:  

o  Candidate item-sets generation process and  
o Frequent item-sets generation process.  

 Second problem is the generation of association rules 
from above generated large item-sets using confmin. 

The item-sets whose support exceeds the given support 
threshold are large or frequent item-sets, and those item-sets 
that are expected to be large or frequent are called candidate 
item-sets. 

e.g. we are provided with a database D (Table 1) with some 
set of transactions, supmin=66% and confmin=70% 

Table 1: Database, D 
 
 
 
 
 
 
 
Step 1: 
According to the first sub-problem we have to find the 
candidate item-set from the given database before generating 
the large/frequent item-set. So, from database, D the 
following candidates are taken along with their support 
(Table 2) using Eq no.(1).  

Table 2: Candidate Item-set 

 

Transaction Item-sets 

11 (B,C),(B,D), (C,D), (B,C,D) 

12 (A,B), (A,C), (B,D), (A,B,C) 

13 (B,C), (B,D), (A,D), (C,D), (B,C,D) 

Candidate Item-Set Support  Candidate Item-Set Support 

(A,B) 33% 

 

(B,D) 100% 

(A,C) 33% (C,D) 67% 

(A,D) 33% (A,B,C) 33% 

(B,C) 100% (B,C,D) 67% 



International Journal of Computer Applications (0975 – 8887)  

 Volume 78 – No.14, September 2013 

28 

As, we are provided with supmin=66%,  
Large item-set would be (Table 3). 
 

Table 3: Large Item-set  
 

 
 
 
 
 
 
 

 

 
Table 4: Possible Rules with Confidence 

 
 

Step 2:  
Next Step is to find the Association rules that can be 
generated from large item-set.  

For which we have to find the possible set of rules and their 
confidence (Table 4) using     Eq no (2). And using given 
confmin=70%, Association Rules would be (Table 5).  

Table 5: Association Rules 

 
 

 
 

 

 
 

2.2 Algorithms for ARM  
For ARM certain approaches/algorithms many have been 
proposed. Various among these algorithms are: 

 AIS Algorithm [13]:  
The AIS algorithm is the first algorithm proposed for mining 
association rules. It is Adaptive Importance Sampling 
technique. The algorithm has two phases. The first phase 
constitutes the generation of the frequent item-sets. The 
algorithm uses candidate generation to detect the frequent 
item-sets. This is followed by the generation of the 
association rules in the second phase. The main drawback of 
the AIS algorithm is that it generates too many candidate 
item sets that need to be reduced, consuming more space and 
effort. This also requires too many passes over the whole 
database. These algorithms will be discussed in detail in 
section 3. 

 SETM Algorithm [6]: 
SETM uses SQL to find large item-sets. The algorithm 
remembers TIDs i.e. transaction IDs of the transactions with 
the candidate item-sets. It uses this information instead of 
subset operation. This approach has a disadvantage that if Ck 
needs to be sorted. And moreover if Ck is too large to fit in 

buffer allocated memory space, the disk is used in FIFO 
approach. Then this requires two external sorts. These 
algorithms will be discussed in detail in section 4. 

 Apriori Algorithm [6,13]:  
Apriori involves frequent item-sets, which is a set of items 
appearing together in the given number of database records 
meeting the user-specified threshold. Apriori uses a bottom-
up search method that creates every single frequent item-set. 
This means that to produce a frequent item-set of length; it 
must produce all of its subsets as need to be frequent. This 
exponential complexity fundamentally restricts Apriori-like 
algorithms to discovering only short patterns. These 
algorithms will be discussed in detail in section 5. 

 FP-tree Algorithm [9,13]: 
 FP-tree-based algorithm is to partition the original database 
to the smaller sub-databases by using some partition cells, 
and then to mine item-sets in these sub-databases. Until no 
new item-sets are found, we have to recursively do the 
partitioning with the growth of partition cells. The FP-tree 
construction takes exactly two scans of the transaction 
database. The first scan collects the set of frequent items, and 
the second scan constructs the FP-tree.  

Many other approaches have been introduced in between 
with minute changes. But main among them and which are 
basis for new upcoming algorithms are Apriori and FP-tree 
Algorithm. These algorithms will be discussed in detail in 
section 6. 

3. AIS ALGORITHM 
In this approach candidate item-sets are generated and 
counted during the database scan [1]. It is done as follows: 

  After scanning transaction it is determined that which of 
the previously founded large item-sets are present in 
transaction.  

  New candidate item-set is generated by extending large 
item-sets in lexicographic order and their count entry is 
increased if it is created in previous transaction. 

Candidate item-sets are place in dynamic and multi-level 
hash table to make subset operation fast. When in case buffer 
overflow occur during candidate generation, the 
corresponding large item-set and its possible candidates is 
discarded from memory. The discarded large item-set 
discarded in pass are extended in next pass. 

3.1 AIS Candidate and Large Item-set  
The AIS function takes an argument L1, the set of all large 
(k-1)-item-set and returns a superset of the set of all large k-
item-sets. The function works as follows. First, in the 
extension step, we extend the frontier set. And in the pruning 
step, we don’t take those item-sets c, where c ϵ Ck such that 
any (k-1)-subset of c is not in large item-set of the previous 
pass. 

This whole process is defined using the algorithm 1 as 
follows:  

1) Algorithm AIS (large-1 item-sets) 
2) L1={large-1 item-sets}; 
3) for(k=2; Lk-1≠ ; k++) do begin 
4)   Ck= ; 
5)   forall transactions t   D do begin 
6)       Lt=subset(Lk-1,t); //Large item-set contained in t 
7)       forall large item-sets lt   Lt do 
8)            Ct=1-extensions of lt contained in t   

                                                        //Candidates in t 

Large Item-set Support 

(B,C) 100% 

(B,D) 100% 

(C,D) 67% 

(B,C,D) 67% 

Large Item-set Rules Confidence 

(B,C) 

B=>C sup(B∪C)/sup(B)=100/100=100% 

C=>B sup(C∪B)/sup(C)=  100/100=100% 

(B,D) 

B=>D sup(B∪D)/sup(B)=  100/100=100% 

D=>B sup(D∪B)/sup(D)=  100/100=100% 

(C,D) 

C=>D sup(C∪D)/sup(C)=  67/100  =67% 

D=>C sup(D∪C)/sup(D)=  67/100  =67% 

(B,C,D) 

(B,C) =>D sup((B,C)∪D)/sup(B,C)=  67/100  =67% 

(B,D) =>C sup((B,D)∪C)/sup(B,D)=  67/100  =67% 

(C,D) =>B sup((C,D)∪B)/sup(C,D)=  67/67  =100% 

Association Rules Confidence 

B=>C 100% 

C=>B 100% 

B=>D 100% 

D=>B 100% 

(C,D) =>B 100% 
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9)             forall candidates c   Ct do 
10)                  if(c   Ck) then 

11)                    add 1 to count of c in corresponding  
                                                                entry in Ck; 

12)                 else 
13)                    add c to Ck with count of 1;  
14)             end 
15)        end 
16)     end 
17)     Lk={c   Ck | c.count ≥ minsup} 
18) end 

19) Answer=UkLk 
Algorithm 1: AIS Algorithm [1] 

3.2 AIS Example 
AIS algorithm generates the candidate item-sets considering 
the transactions in the database. For Example; we are 
provided with a database D (Table 6) with some set of 
transactions, supmin=66% (i.e count=2) and confmin=70% 

Table 6: Transaction Database, D 
 
 

 

 
 

 

From Table 6 we find Candidate item-set (Table 7) and its 
support by the using Eq.no.1.  
Next is to find the Large item-set, L1 using supmin=66%. i.e 
Creating Table 8 from Table 7 using support threshold. 
 

Step 1: 
Candidate item-set C2 is generated by extending item-set L1 

with only those items that are large and occur later in 
lexicographic ordering of items (Table 9 from Table 8). 

Table 7: Candidate item-set, C1 
 
 
 
 
 
 

 
Table 8: Large Item-set L1 

 
 
 
 
 
 

 
 

Table 9: Candidate Item-set C2  
 
 
 

 
 
 
 

 
 

Step 2: 
Large item-set, Lk is generated from candidate item-set, Ck 
using supmin. Large item-set L2 is created from Candidate C2 
using support threshold. 

 The above two steps are repeated until Large Item-set came 
to be empty. i.e. From L2, candidate item-set C3 is generated 
by extending it with only those items that are large and occur 

later in lexicographic ordering of items (Table 11 to Table 
10). The large item-set, L3 is same as candidate item-set, C3 
as its support is more than support threshold.  

Table 10: Large Item-set L2  
 
 
 
 
 
 
 
 
 
 

Table 11: Candidate Item-set C3 and large item-set L3 

 
 
 
 
 
At last candidate item-set, C4 cannot be generated further 
from (A, C, D) and (B, C, D), as there is no other element in 
next lexicographic order to extend the large item-set L4. 

4.  SETM ALGORITHM 
SETM algorithm [1] uses same notation as used by other 
algorithms. But it uses SQL to compute large item-sets. It 
generates candidates as in AIS algorithm. To make use of 
standard SQL join process for candidate generation, it 
separates candidates from counting. Each member of these 
item-sets is of the form <TID, itemset>. It remembers TIDs 
of transactions with candidate item-sets. To avoid subset 
operation, the algorithm uses these TIDs to find large item-
sets in transaction read. Ĉk is set of candidates in which TIDs 
of generating transactions is associated. Here Ḹk C Ĉk and is 
obtained by deleting the candidates not having minimum 
support. The disadvantage of SETM is that Ĉk needs to be in 
sorted order. After counting and pruning the small candidate 
item-sets, resulting Ḹk needs to be sorted.  

4.1 SETM Candidate and Large Item-set 
The SETM function takes an argument L1, the set of all large 
(k-1)-item-set and returns a superset of the set of all large k-
item-sets. The function works as follows. First, the Ḹk and Ĉk 
item-sets are created of the form <TID, itemset>. And the 
pruning step remains the same as of AIS i.e. we don’t take 
those item-sets c, where c ϵ Ck such that any (k-1)-subset of c 
is not in large item-set of the previous pass. 

This whole process is defined using the algorithm 2 as 
follows:  

1) Algorithm SETM (large-1 item-sets) 
2) L1={large-1 item-sets}; 
3) Ḹ1={large-1 item-sets together with sorted TIDs} 
4) for(k=2; Lk-1≠ ; k++) do begin 
5)   Ĉk= ; 
6)   forall transactions t   D do begin 
7)       Lt={l   Ḹk-1 | l.TID = t.TID}; //Large (k-1)  

                   item-set contained in t 
8)       forall large item-sets lt   Lt do 
9)            Ct=1-extensions of lt contained in t   

                                                        //Candidates in t 
10)             Ĉk+={<t.TID, c> | l   Ĉk }; 
11)        end 
12)     end 
13) Sort Ĉk on item-sets;    
14) Delete item-sets c   Ĉk for which c.count<supmin  

Transaction Item-sets 

11 (A,C), (A,D), (C,D), (A,C,D) 

12 (A,B), (A,C), (B,D), (B,C,D) 

13 (A,B), (A,D), (A,E), (B,C), (B,D), (C,D), (A,C,D), 
(B,C,D) 

Candidate Itemset, C1 Count Support 

A 3 100% 

B 2 67% 

C 3 100% 

D 3 100% 

E 1 33% 

Large Itemset, L1 Count Support 

A 3 100% 

B 2 67% 

C 3 100% 

D 3 100% 

Candidate,C2 Count Support 

(A,B) 2 67% 

(A,C) 3 100% 

(A,D) 2 67% 

(B,C) 2 67% 

(B,D) 2 67% 

(C,D) 3 100% 

Large Itemset, L2 Count Support 

(A,B) 2 67% 

(A,C) 3 100% 

(A,D) 2 67% 

(B,C) 2 67% 

(B,D) 2 67% 

(C,D) 3 100% 

Candidate Itemset, C3 and Large Itemset, 
L3 

 
Count 

 
Support 

(A,C,D) 2 67% 

(B,C,D) 2 67% 
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                                                                       giving Ḹk 
15) Lk={l.itemset, count of t in Ḹk > l | l   Ḹk }; 
16) end 
17) Answer=UkLk 

Algorithm 2: SETM Algorithm [1] 

 

4.2 SETM Example 

SETM algorithm generates the candidate item-sets 
considering the transactions in the database. For Example; 
we are provided with a database D (Table 12) with some set 
of transactions, supmin=66% (i.e count=2) and confmin=70% 

Table 12: Transaction Database, D 
 

 
 

 

 
 

Table 13: Item-set Ĉ1 

 

From Table 12 we find create Ĉ1 using D (Table 13 using 
Table 12).  

Table 14: Large Item-set L1  
 

 

 

 
 
 

 
Next is to find the Large item-set, L1 using supmin=66%. i.e 
Creating Table 14 from Table 13 using support threshold. 

Table 15: Item-set Ḹ1 

 
Item-set Ḹ1 is created with the help from L1 and Ĉ1 (i.e Table 
15 from Table 13, 14) 

Step 1: 
Candidate item-set C2 is generated by extending item-set L1 

with only those items that are large and occur later in 
lexicographic ordering of items (Table 16 from Table 14).  

In this step we also create Ĉ2 using C2 and Ḹ1 (Table 17 using 
Table 16, 14). 

Step 2: 

Large item-set, Lk is generated from candidate item-set, Ck 
using supmin. Large item-set L2 is created from C2 using 
support threshold (Table 17 from Table 16).  

In this step we also create Ḹ2 using L1 and D (Table 19 using 
Table 17, 18). 

The above two steps are repeated until Large Item-set came 
to be empty. 

Table 16: Candidate Item-set C2  
 
 
 
 
 

Table 17: Item-set Ĉ2 
 

 
 
 
 
 

 Table 18: Large Item-set L2 

 

 

 

 

 

 

 

 

 
 

Table 19: Item-set Ḹ2 
 
 
 
 

 
Using the same procedure as explained above in Step 1 and 
2, we create C3, Ĉ3, L3 and Ḹ3. 

Table 20: (a) Candidate Item-set C3 and (b) Item-set Ĉ3 

 

 
 
At last candidate item-set, C4 cannot be generated further 
from (A, C, D) and (B, C, D), as there is no other element in 
next lexicographic order to extend the large item-set L4. Thus 
Ĉ4 and Ḹ4 cannot be generated also. 

Table 21: (a) Large Item-set L3 and (b) Item-set Ḹ3 

 

5. APRIORI ALGORITHM 
The Apriori algorithm [6] generate the candidate item-sets in 
a pass by using only the item-sets found large in the 
preceding pass without considering the transactions of the 
database. The basic concept it uses is that any subset of a 
large item-set must be large. Therefore, the candidate item-
sets having k items can be generated from previous pass by 
joining large item-sets having k-1 items (candidate 
generation), and delete those that contain any subset that is 
not large (Pruning concept). The procedure resulted in 
generation of a much smaller number of candidate item-sets.  

Algorithm 3 is the Apriori algorithm. The first pass of the 
algorithm simply finds the item occurrences to determine the 
large 1-item-sets. A pass, say pass k, has two phases. First, 
the large item-sets, say Lk-1 founded in the     (k-1)th pass are 
used to generate the candidate item-set Ck, using the apriori-
gen function discussed in Section 5.1. Then, the database is 
scanned and support of candidates in Ck is calculated. For 
fast calculations, we need to efficiently determine the 
candidates in Ck that are contained in a given transaction t. 

`TID Set of Item-set 

11 { {A,C},{A,D},{C,D} } 

12 { {A,B},{A,C},{A,D},{B,C},{B,D},{C,D}} 

13 { {A,B},{A,C},{A,D},{B,C},{B,D},{C,D}} 

TID Set of Item-set 

11 { {A},{C},{D} } 

12 { {A},{B},{C},{D} } 

13 { {A},{B},{C},{D},{E} } 

Itemset, L1 Count Support 

A 3 100% 

B 2 67% 

C 3 100% 

D 3 100% 

TID Set of Item-set 

11 { {A},{C},{D} } 

12 { {A},{B},{C},{D} } 

13 { {A},{B},{C},{D} } 

Candidate,C2 

(A,B) 

(A,C) 

(A,D) 

(B,C) 

(B,D) 

(C,D) 

Transaction Item-sets 

11 (A,C), (A,D), (C,D), (A,C,D) 

12 (A,B), (A,C), (B,D), (B,C,D) 

13 (A,B), (A,D), (A,E), (B,C), (B,D), (C,D), (A,C,D), (B,C,D) 

Large Itemset, L2 Count Support 

(A,B) 2 67% 

(A,C) 3 100% 

(A,D) 2 67% 

(B,C) 2 67% 

(B,D) 2 67% 

(C,D) 3 100% 

TID Set of Item-set 

11 { {A,C},{A,D},{C,D} } 

12 { {A,B},{A,C},{A,D},{B,C},{B,D},{C,D}} 

13 { {A,B},{A,C},{A,D},{B,C},{B,D},{C,D}} 

Candidate Itemset, C3 

(A,B,C) 

(A,B,D) 

(A,C,D) 

(B,C,D) 

TID Set of Item-set 

11 { {A,C,D} } 

12 { {A,B,C},{A,B,D},{A,C,D},{B,C,D}} 

13 { {A,B,C},{A,B,D},{A,C,D},{B,C,D}} 

Large Itemset, L3 Count Support 

(A,C,D) 2 67% 

(B,C,D) 2 67% 

TID Set of Item-set 

11 { {A,C,D} } 

12 { {A,C,D},{B,C,D}} 

13 { {A,C,D},{B,C,D}} 
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Section 5.2 describes the subset function used for this 
purpose.  

1) Algorithm Apriori(large-1 item-sets) 

2) L1={large-1 item-sets}; 

3) for(k=2; Lk-1≠ ; k++) do begin 

4)     Ck=apriori-gen(Lk-1);  //New candidates 

5)      forall transactions t   D do begin 

6)          Ct=subset(Ck,t);    //Candidates contained in t 

7)           forall candidates c   Ct do 

8)               c.count++; 

9)           end 

10)          Lk={c   Ck | c.count≥minsup} 

11) end 

12) Answer=UkLk 

Algorithm 3: Apriori Algorithm [6] 
 

5.1 Apriori Candidate Generations [6] 
The apriori-gen function takes an argument Lk-1, the set of all 
large (k-1)-item-set and returns a superset of the set of all 
large k-item-sets. The function works as follows. First, in the 
join step, we join one Lk-1 with another matching Lk-1. And in 
the next prune step, we delete those item-sets c, where c ϵ Ck 

such that any (k-1)-subset of c is not in Lk-1 of the previous 
pass. 

1) Algorithm Apriori-gen(Lk) 

2) insert into Ck 

3) select p.item1.p.item2,.....p.itemk-1,q.itemk-1  

    from Lk-1 p,Lk-1 q 

    where p.item1=q.item1.....p.itemk-2= q.itemk-2, 

              p.itemk-1<q.itemk-1; 

4) forall item-sets c   Ck do 

5)      forall (k-1)-subsets s of c do 

6)          if(s Lk-1) then 

7)                 delete c from Ck; 

Algorithm 4: Apriori-Gen function [6] 
 

5.2 Subset Function 
 Candidate item-sets Ck are stored in a hash-tree for use. A 
node of this hash-tree either contains a list of item-sets (as 
leaf node) or a hash table (as interior node). In the interior 
node, each value in the hash table points to another node. If 
root is defined to be at depth 1, then the interior node at 
depth d points to nodes at depth d+1. Item-sets are stored in 
the leaf nodes. When we add a created item-set c from 
Apriori-gen function, we start from the root and go down the 
tree until we the leaf is reached. At the interior node of depth 
d, we decide which branch to follow by using a hash function 
to dth item of the item-set. When the number of item-sets in a 
leaf node exceeds the specified mentioned threshold, the leaf 
node is converted to make an interior node. 

From the root node, the subset function finds all candidates 
contained in a transaction, t as described below: 

 If we are at leaf, we find which of the item-sets in this leaf 
are contained in t and add the references to them. If we are at 
interior node and we have reached it by hashing the item j, 
we apply hash function on each item coming after j in t and 
this procedure is applied to the node recursively. 

5.3 Apriori Example 
 As Apriori algorithm generate the candidate itemsets 
without considering the transactions in the database, so firstly 
create database appropriate for Apriori i.e. from Table 22 to 
Table 23. For Example; we are provided with a database D 
(Table 23) with some set of transactions, supmin=66% and 
confmin=70% 

Table 22: Database D 

 

 

Table 23: Transformed Database 

 

Before creating large item-sets (L1, L2, L3, L4 & so on) and 
candidate item-sets (C2, C3, C4 & so on) candidate, firstly 
Candidate item-set, C1 is generated from database (i.e. Table 
24 from Table 23) and then, Large item-set, L1 is created 
from C1 using supmin=67% (i.e. Table 25 from Table 24) 
 

Table 24: Candidate Item-set C1 

 

 
 

 

 

 

Table 25: Large Item-set L1 

 
 

 

 

 

 

Step 1:  
Candidate set is generated as follows: 
• The candidate itemsets, Ck can be generated by joining 

large itemsets Lk-1 items, and  
•  Deleting those that contain any subset that is not large.  

In Example C2 is generated from L1 items by join procedure 
(i.e. Table 26 from Table 25) and those item-sets are deleted 
that have some (k-1) subset of c is not in Lk-1 where c   Ck. 

Step 2: 
Large item-set, Lk is generated from candidate item-set, Ck 
using supmin. Large item-set L2 is created from Candidate C2 
using support threshold (Table 27 from Table 26). 

The above two steps are repeated until Large Item-set came 
to be empty. 

Here from the candidate item-sets, C2 elements with sup ≥ 
supmin, Large item-set, L2 is created (Table 27 from Table 
26). As all candidate item-sets, C3 has sup ≥ supmin, so all 
became Large item-set, L3 (Table 28 from Table 27). 
 
 
 

Transaction Item-sets 

11 (A,C),(B,D), (C,D), (B,C,D) 

12 (A,B), (B,D), (A,B,D) 

13 (B,C), (B,D), (C,D), (D,E), (B,C,D) 

Transaction Items 

11 A,B,C,D 

12 A,B,D 

13 B,C,D,E 

Candidate Itemset, C1 Support 

A 67% 

B 100% 

C 67% 

D 100% 

Large Itemset, L1 Support 

A 67% 

B 100% 

C 67% 

D 100% 
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Table 26: Candidate Item-set C2 

 
 
 
 
 
 
 
 

Table 27: Large item-set L2 

 
 
 
 

 
 

Table 28: Candidate Item-set C3 & Large item-set L3 
 

 

 
 
 

 

Table 29: Candidate Item-set C4 & Large item-set L4 

 

 
 
 
Same technique is used to create C4 and L4 (Table 29).  As 
all candidate item-sets, C4 has sup ≥ supmin, so all became 
Large item-set, L4. 

6.  FP-TREE APPROACH 
This approach develops the three techniques in order to solve 
the problem of Apriori-like algorithm that may suffer in 
terms of cost to handle a huge candidate sets and repeatedly 
scanning the database for large set. 
 Compact data structure, called frequent-pattern tree, or 

FP-tree, is constructed, that stores information about 
frequent patterns. Only frequent length-1 items are 
making nodes in tree, and these nodes are arranged in a 
way that the more frequently used nodes must have 
better chances of node sharing than the less frequent 
items. 

 An FP-tree-based mining method is developed. Starting 
from a frequent length-1 pattern (as initial suffix 

pattern), examine only conditional-pattern or sub-
database. The pattern growth is achieved using 
concatenation of the suffix pattern with new ones 
generated from a conditional FP-tree. 

 The search techniques employed in mining is a 
partitioning-based, divide-and conquers method. 

 

6.1 Frequent Pattern Tree: Construction 
A frequent-pattern tree (or FP-tree) is a tree structure which 
has following properties: 

1. It contains root labeled as “null”, children as set of 
item-prefix sub-trees, and a frequent-item-header 
table. 

2. Every node of item-prefix sub-tree has three fields: 
Item-name, its count, and node-link, where  
a. Item-name defines which item this node 

represents,  
b. Count defines the number of transactions 

represented by the path reaching this node, and  
c. Node-link links one node to the next node in the 

FP-tree. 

d. Every entry in the frequent-item-header 
table consists of two fields:  

e. Item-name and  
f. Head of node-link is pointer pointing to the first 

node in the FP-tree which carries the item-

name). 
Process or algorithm to construct a frequent-pattern tree has 
two steps, explained as follows: 
Step 1: 

A scan over database, D derives a list of frequent items 
of the form => (A:4), (C:4) and so on, in which items are 
ordered in frequency descending order, where the number 
after “:” indicates the support/count. This ordering is of 
importance here as path will follow this sequence in tree. 
Step 2: 

The “null” labeled root is created for a tree. The FP-tree 
is constructed by scanning the transaction database DB for 
the second time. 
Example: Assume an Example of Table 29. We can create 
FP-tree as defined in above steps. 

Table 30: Transaction Table (Database, D) 
 
 

 

 
 

 

 

Step 1: 

Scan of the transactions one by one and construct list of item-
sets as follows: 

(A:4), (B:2), (C:4), (D:3), (E:3), (F:2), (G:1), (H:1) 
  Here, (A:2) means A’s support= 2 and so on.  

And ordered frequent item-set would be if supmin=2 (i.e. 
67%), then (A:4), (C:4), (D:3), (E:3), (B:2), (F:2) 

Table 31: Frequent Items 
 

 

 
 

 

 
 

 

 
 

Step 2: 
Database is scanned second time to create FP-tree. Scan the 
first transaction to the construct of the first branch of the tree: 

 (A:1), (C:1), (D:1), (E:1), (B:1), (F:1) 
Then move to second transaction. Since the transaction has 
common prefix (B, D, A) as with the previous one, they 
share the path and count of each node is incremented by 1 for 
these nodes as (B:2), (D:2), (A:2).  
The process is repeated to complete the FP-tree. 

 
Figure 2: Frequent Pattern Tree 

 
 

 
 
 

Candidate Itemset, C2 Support 

A,B 67% 

A,C 33% 

A,D 67% 

B,C 67% 

B,D 100% 

C,D 67% 

Large Itemset, L2 Support 

A,B 67% 

A,D 67% 

B,C 67% 

B,D 100% 

C,D 67% 

Candidate itemset, C3 and Large Set L3 Support 

A,B,D 67% 

B,C,D 100% 

Candidate itemset, C4 Support 

A,B,C,D 67% 

  

Transaction Items 

11 A,B,C,D,E,F 

12 A,C,D,E,F,H 

13 A,B,C,E,G 

14 A,C,D 

Transaction Items Ordered Frequent Items 

11 A,B,C,D,E,F A,C,D,E,B,F 

12 A,C,D,E,F,H A,C,D,E,F 

13 A,B,C,E,G A,C,E,B 

14 A,C,D A,C,D 

 root 

  A: 4 

  C: 4 

  D: 3 

  E: 2 

  B: 1 

  F: 1 

  E: 1 

  F: 1 

item 

HEADER TABLE 

A  

C  

D  

E  

B  

F  

  B: 1 

Head of node link 
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6.2 Mining Frequent Pattern with FP-Tree 

In order to mine the required frequent patterns from FP-tree 
efficiently, a technique was proposed called FP–growth. In 
this technique the mining is done by finding the Conditional 

Patter Base and Conditional FP-tree of the frequent items 
say, nodes.  

Conditional Pattern Base for a frequent item is the 
list of items in sequence coming between the frequent item 
and the root.  

Conditional FP-tree for a frequent item is the list 
of items common in all conditional pattern base of the 
frequent item. 

 
The whole process for mining constitutes two steps: 
Step 1: 

Create the conditional pattern base for X. Then create FP-tree 
for the frequent item. 
Step 2: 
From the conditional FP-tree of the frequent item X construct 
frequent patterns containing X by pairing it with the other 
items coming in its conditional FP-tree. 
The above two steps are repeated for all of the frequent 
items. 
Example: Assume the same Example taken above in Table 
29. We have constructed the FP-tree (Figure 2) for the given 
database. Now, we have to mine the frequent patterns that 
contain frequent item-set by the use of the process as defined 
above. 
Step 1: 
For node F, the immediate frequent pattern is (F:2), and it has 
two paths, {A:4, C:4, D:2, E:2, B:1, F:1} and {A:4, C:4, D:2, 
E:2, F:1}. So, F’s conditional pattern-base is {(ACDEB:1), 
(ACDE:1)}. We derive F’s conditional FP-tree, {(A:4, C:4, 
D:2, E:2)}|F as in Figure 3.  
Similarly, the conditional pattern base and conditional FP-
tree is created for all other frequent items (as in Table 31). 

 
Figure 3: Conditional FP-Tree for Frequent item, F 

 
Table 32: Conditional Pattern Base & Conditional FP-

tree for all frequent items 

 

Step 2: 
This conditional FP-tree is then mined from ({A:4, C:4, 
D:3,E:2} | F). Figure 3 represents “({A:4, C:4, D:3, E:2} | 
F)” involves mining four items (A), (C), (D), (E) in the 
sequence. From this conditional FP-tree of the frequent item 
F, we construct frequent patterns containing F by pairing it 
with the other items coming in its conditional FP-tree. 

We first derives a frequent pattern (EF:2), a 
conditional pattern-base {ACD:2}, and conditional FP tree 
for it would be ({A:2, C:2, D:2} | EF); 

Secondly derives a frequent pattern (DF:2), a 
conditional pattern-base {( AC :2)}, and conditional FP tree 
for it would be ({A:2, C:2} | DF); 

Thirdly derives a frequent pattern (CF:2), a 
conditional pattern-base {( A:2)}, and conditional FP tree for 
it would be ({A:2} | CF);  

Then recursively derives other patterns (AF:2), 
(DEF:2), (CEF:2), (AEF:2), (CDF:2), (ADF:2), (ACF:2), 
(ACDF:2), (ACEF:2), (ADEF:2), (CDEF:2) and (ACDEF:2). 

 Therefore, the set of frequent patterns involving F 
is: {(F:2), (EF:2), DF:2), (CF:2), (AF:2), (DEF:2), (CEF:2), 
(AEF:2), (CDF:2), (ADF:2), (ACF:2), (ACDF:2), (ACEF:2), 
(ADEF:2), (CDEF:2) and (ACDEF:2)}. 

 
Table 33:  Possible Frequent Patterns 

 
Similarly, the possible frequent patterns are created for all 
other frequent items (as in Table 32). 
 

7. CONCLUSION 

The paper discussed the various main ARM approaches in 
detail. The various approaches discussed in this paper have 
many pros and cons. The AIS algorithm generates too many 
candidate item sets that consume more space/effort and also 
requires too many passes over the whole database. The 
SETM approach needs candidate item-set to be sorted and if 
it is too large to fit in buffer allocated memory space, the disk 
is used in FIFO approach. APRIORI involves frequent item-
sets for candidate generation using a bottom-up search, 
which requires producing all of its frequent subsets. This 
results in exponential complexity not suitable for discovering 
bigger patterns. FP approach needs exactly two scans of the 
transaction database and avoids costly candidate generation. 
But this approach needs to whole procedure to be done again 
(i.e. generation of FP-tree, conditional pattern base, 
conditional pattern tree, etc). 

Many other approaches have also been introduced 
for ARM with minute changes to the previous ones. But main 
among them which acts as basis for new upcoming 
algorithms are APRIORI and FP-tree Algorithm. 
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